Mixed-Criticality Support in a High-Assurance,
General-Purpose Microkernel

Anna Lyons, Gernot Heiser
NICTA and UNSW Australia
{anna.lyons,gernot} @nicta.com.au

Abstract—We explore a model for mixed-criticality support in
selL4, a high-assurance microkernel designed for real-world use.
Specifically we investigate how the sel.4 model can be extended
without compromising its security properties and its general-
purpose nature, including high average-case performance. The
proposed model introduces reservations, with admission control
performed at user level, similar to how selL.4 handles spatial
resources.

I. INTRODUCTION

seL4 is a high-performance microkernel of unprecedented
assurance, with a machine-checked proof of implementation
correctness, as well as proofs of spatial isolation properties (in-
tegrity and confidentiality) [1]. This makes it an excellent base
for security-critical uses, particularly systems where security-
critical components share a processor with less critical code,
such as a critical crypto service co-located with an untrusted
Linux system running in a virtual machine.

Our aim is to evolve seL4 into a platform for supporting
similar setups in the safety-critical domain, without com-
promising the kernel’s security properties nor its excellent
performance [2]. A first step was a complete and sound
analysis of seL4’s worst-case execution-time (WCET) laten-
cies [3]. The obvious next step is support for mixed-criticality
scheduling, i.e. the ability to guarantee the timely execution of
highly critical tasks in the presence of less critical tasks with
potentially tighter timeliness requirements.

The cost of formal verification (although less than that of
traditional high assurance [1]) provides a strong disincentive
to maintaining multiple variants of a verified system. Fur-
thermore, security is increasingly becoming a safety issue,
as demonstrated by the recent spate of car-hacking [4]. We
are therefore interested in widening the application domain of
seL4, without losing any of its existing benefits.

Specifically, we are looking for a design which satisfies the
following requirements:

e [t preserves selL4’s strong spatial isolation properties,
its support for transparently interposing security moni-
tors between communicating components, as well as its
best/average case performance.

e Criticality (i.e. ability to meet deadlines) must be orthog-
onal to urgency (proximity of deadline), in that an over-
committed system must meet deadlines of all criticality
levels that would be met if none of the lower-critical tasks
had been admitted. Admission control (i.e. schedulability
analysis) must be possible without making any assump-
tions on less critical tasks.

e Tasks of different urgency and criticality must be able to
share resources.

e There must be no significant (algorithmic or overhead-
related) capacity loss, and any slack time must be avail-
able for best-effort tasks.

o To support certification re-use, it must be possible to ad-
mit black-box components solely based on their criticality,
processor utilisation and minimal period.

e Any policy, including admission control, must be imple-
mented at user level, the kernel is only to provide general
mechanisms.

e The model must not impose restrictions on the program-
ming model beyond what is required to satisfy all other
requirements. In particular, we do not require that all
shared resources are multi-threaded.

Clearly, this means that we need to provide asymmetric
temporal isolation (lower criticality tasks cannot interfere with
the timeliness of higher criticality tasks) enforced by runtime
monitoring, with the ability to switch to a higher criticality
mode of execution when the system is unable to meet all
deadlines. The system should degrade gracefully in such a
case, meaning that task of a certain criticality should only miss
deadlines if higher-criticality tasks leave insufficient slack (i.e.
we should maximize the number of high levels of criticality
that meet their deadlines).

We rule out user-level, hierarchical scheduling as it intro-
duces concurrency between user-level and the kernel. The ver-
ification of sel.4 relies on the kernel remaining single-threaded
to avoid the state-space explosion inherent in proofs about
concurrent programs. Additionally, the current C semantics of
the proof framework do not support concurrent programs [5].
However, the black-box and interposition requirements imply
a requirement for delegation of CPU allocation, which we
provide by leveraging sel.4’s capability system.

The requirements for retaining seL.4’s security and perfor-
mance properties imply that we retain the basics of the sel.4
model, which we summarize in Section II. We explore a model
that satisfies the above requirements in Section III and discuss
the approach to resource sharing in Section IV. We presently
restrict our thinking to uniprocessor systems.

II. SEL4 BASICS

seL4 is a capability-based microkernel system with strong
security and spatial isolation guarantees. Like other L4 mi-
crokernels, seL4 adheres to the minimality principle which
allows features in the kernel only if the required functionality
could not be achieved by a user-level implementation [6].



Specifically, device drivers are not part of the kernel, but run
as unprivileged processes, the only exceptions being a timer
driver and a driver for the interrupt controller.

The most significant difference between selL.4 and other
microkernels is its (spatial) resource-management model: The
kernel, after booting up, never allocates any memory. Instead,
all memory not needed to boot the kernel is handed to a user-
level manager. When performing an operation that requires
allocation of kernel data structures, such as creating threads or
address spaces, the invoking user-level process must provide
the kernel with memory for storing those data structures.
Hence, all memory is completely managed by user-level code,
subject to policies implemented at user level.

The kernel only supports a small number of abstrac-
tions: threads as the execution abstraction, address spaces for
memory management and spatial protection, and endpoints
for communication. Synchronous endpoints are rendezvous
points for message-passing communication (synchronous IPC).
Asynchronous endpoints support non-blocking signalling, they
are essentially binary semaphores. Threads are tied to address
spaces and communicate via endpoints. In earlier versions of
L4, IPC messages were addressed directly to threads rather
than endpoints. This model was abandoned as it introduces
covert channels [7].

All access rights in seL4 are represented by capabilities [8],
unforgeable access tokens protected by the kernel. Capabilities
can be transmitted via IPC (subject to appropriate access
rights) and support privilege delegation. For example, the
initial resource manager can hand control over a partition
of memory to another process, which then can manage that
memory autonomously.

The delegatable user-level control over memory is the key
to the strong, provable spatial isolation properties of seL4 [9],
[10]. It is also useful for temporal isolation, as it can be used
to partition caches [11], which can reduce WCET bounds [12].

IPC is also authorised by capabilities: a thread needs an
endpoint capability in order to send or receive messages.
Besides the simple send() and wait() (i.e. receive) opera-
tions, the kernel offers two combined send-receive operations,
call() and reply wait().

call() is an RPC-like operation typically used by clients
to invoke a server; it consists of a send to a specified endpoint,
followed by waiting on a reply. It is semantically different from
send () immediately followed by wait () in two respects: (i)
the transition between sending and waiting to receive is atomic,
and thus non-preemptible,! and (ii) instead of specifying an
endpoint from which to receive the reply message, the kernel
during the send phase creates a temporary one-shot endpoint
for the reply, and transfers the corresponding reply cap to the
server. Similarly, reply wait() combines the reply to the
caller (through the reply cap) and waiting for the next request
in one atomic system call.

Management of the resource time is less developed, and
time is in fact considered the last concept for which no satis-
factory abstraction has been found to date [2]. Consequently,

I'The kernel executes with interrupts disabled and limits interrupt latencies
through strategically placed preemption points; none are in performance-
critical IPC code [13].

10

scheduling is deliberately left underspecified in selL4 [14];
the present implementation uses a fixed-priority round-robin
scheduler.?

III. PROPOSED SCHEDULING MODEL

In order to support temporal isolation we add reservations
to seL4. This approach had been introduced by RT-Mach [15],
and later deployed in resource kernels [16]. Traditional reser-
vations contain task scheduling parameters enforced by the
kernel, specifically a limit on CPU time consumed over some
interval. Additionally, the kernel performs an admission test to
make sure the set of reservations is schedulable.

Mixed-criticality systems leverage the slack left from con-
servative. WCET estimates of higher criticality tasks to run
lower criticality tasks, thus increasing the overall utilisation
of a system. This is achieved by allocating the excess budget
of high-criticality tasks (from now on called “high tasks” for
simplicity) to tasks of lower criticality. Asymmetric protection
ensures high tasks meet their deadlines, even if this violates
the temporal constraints of low tasks, but not vice versa.
Recent models for mixed criticality systems [17] implement
this through a mode change: if the system is unable to meet
its deadlines, it increases the system criticality level, and
tasks below that level are no longer guaranteed to meet their
deadlines.

Our proposed model differs from traditional reservations in
that we only guarantee upper bounds on execution time, and
by delegating all admission control to user level.

A. Reservation capabilities

An sel4 reservation is a kernel object, and thus is rep-
resented by a reservation capability (“resCap”). Like any
capabilities, resCaps can be easily delegated to subsystems
through existing capability transfer mechanisms. A thread can
only run if it is associated with a resCap, and a resCap can
only be associated with a single thread at a time. Threads can
share resCaps by cooperatively scheduling through IPC, as will
be explained in Section IV.

Reservations act as sporadic servers [18], characterized by
a budget, period and relative deadline, which encapsulates the
processor share and replenishment frequency the reservation
entitles. The kernel enforces budgets through a timer interrupt.

B. Scheduling

For now we retain seL.4’s fixed-priority scheduler, although,
in order to experiment with EDF scheduling, we treat the
median priority (126) special: threads at this priority use the
deadline parameter for EDF scheduling (but only if no threads
of a higher fixed priority are runnable), similar to Ada [19].
Reservations of EDF threads are treated as hard CBS [20].

When the current reservation’s budget is depleted, it is
placed into a waiting queue ordered by replenishment time,
unless the reservation is a full reservation (100%, i.e. budget

2For security-oriented temporal isolation the scheduler is configurable with
multiple non-preemtible scheduling domains, which are scheduled for a fixed
time slice. These domains are unsuitable for real-time use due to the large
algorithmic capacity loss and the high interrupt latencies.



= period), in which case the thread is appended to the end of
its priority’s scheduling queue. Full reservations preserve L4’s
traditional round-robin scheduling.

Obviously a thread with a full reservation should have a
low priority, unless it is trusted not to overrun its budget, in
which case a full reservation with a long period can be used
to avoid the overhead of run-time monitoring.

Our model of reservations enforcing upper bounds of CPU
usage encourages overcommitting, round-robin threads being
an example. Schedulability analysis is a user-level concern. In
fact, the kernel lacks the information to determine schedulabil-
ity, as this would require locating and examining all resCaps
that are associated with some thread.

C. Admission testing

Admission testing implements a particular policy, eg. on-
line vs off-line, dynamic vs static, the degree of overloading
allowed, and whom to trust not to overrun their reservations.
According to the minimality principle it should therefore be
performed at user level. Admission tests can also be very
complex and hard to formally verify.

The basic safety mechanism is control over creation of
reservations. We restrict this to the holder of the special
sched control capability, who is in complete control over
time allocation in the system. The holder is trusted to perform
an admission test upon a request for a reservation. seL4’s
startup protocol provides the sched control capability to
the initial process, which may then transfer it to a dedicated
time manager. It may also split the total available bandwidth
and delegate partitions to individual managers, which achieves
most of the benefits of hierarchical scheduling without its cost.

This approach is analogous to seL4’s mechanism for con-
trolling memory, where the initial process obtains rights to all
free memory. It is also similar to how seL4 manages access
to devices: the holder of a special IRQ control capability
grants device drivers the rights to specific interrupts. On sel.4,
all resource management is performed by trusted user-level
servers, and time is no longer an exception.

Schedulability depends on priorities as well as reservations.
The system provides a safety mechanism by associating each
thread with a maximum controlled priority (MCP). While a
holder of a thread capability can control that thread’s priority,
the kernel will not allow it to raise any thread’s priority
(including its own) to a value higher than its own MCP.?

D. Task Model

We adopt the sporadic task model, where tasks are an
infinite series of jobs. A task is represented by an seL4 thread,
and a job is the release of a thread by the kernel.

A thread has an optional asynchronous trigger endpoint; by
waiting on that endpoint, the thread indicates job completion. A
thread that does not complete is rate-limited by its reservation.

Job release happens by signalling that endpoint, thus re-
suming the thread’s execution. The kernel signals the endpoint

3Note that a thread’s actual priority can exceed its MCP, provided it has
been set by another thread with a sufficiently high MCP.

11

when the thread’s budget is recharged, thus supporting time-
triggered tasks. Alternatively the endpoint can be signalled by
some event, e.g. an interrupt or another thread, resulting in an
event-triggered task. Such a thread does not actually become
runnable until its recharge time has passed (until that occurs,
it has no budget to run).

The kernel has no concept of threads being real-time or not:
whether a thread is able to meet its deadlines solely depends
on whether the thread’s budget is sufficient for its WCET, and
whether the system is over-committed at the thread’s priority.

E. Criticality

We add a criticality field to seL.4 threads, and track a global
kernel criticality level. The criticality level is changed at user-
level by invoking the sched control capability. Threads
whose criticality is less than the global kernel criticality will
not be scheduled: instead, they are post-poned by the period
of their reservation, at which point the criticality level may
have changed. This approach maintains the preemption level
of the lower criticality workload, but allows threads to come
back online automatically once the criticality level is restored.

F. Mode changes

To enable the mode change required for mixed-criticality
support, we introduce a simple, policy-free mechanism: tem-
poral exceptions. This extends the existing selL4 exception
handling approach, which associates an exception endpoint
with each thread. When a thread triggers an exception, the
kernel sends a message to the exception endpoint. A handler
thread waiting on that endpoint can then handle the exception.
In a practical system, many threads share the same excep-
tion endpoint (and thus handler), typically the responsible
operating-system personality.

For temporal exceptions we introduce a second, optional,
temporal exception endpoint. The kernel sends a message to
this endpoint if the thread exceeds its budget or overruns its
deadline. If the thread has no temporal exception endpoint, it
is silently rate-limited. The handler, assumed to be a highly-
privileged thread, can then transition the system into high-
criticality mode.

How the handler responds to the exception depends on the
policy of the system. Some systems may have infrequent and
short mode changes, where all lower criticality threads should
be briefly suspended until the system returns to normal. In
this case, using the kernels criticality mechanism is suitable:
the overruning thread’s budget can be increased to parameters
for a higher criticality mode, and the kernel criticality level
increased. Alternatively, if the system requires that lower
criticality threads remain runnable but with weaker or no
guarantees, the exception handler can reduce the priorities of
lower criticality tasks [21], or give high tasks full reservations
and boost their priorities. Under any mode switch policy, the
exception handler needs its own (high-priority) reservation,
which must be factored into the cost of the mode switch.

The opportunity to return to a lower criticality level can
be detected by using a dedicated thread running at a priority
below that of all threads at or above the current criticality level,
but above the (down-graded) priority of all low threads (should



they be runnable). When the kernel schedules this thread, it is
an indication that there is slack in the system, and the thread
can move the system toward normality by restoring scheduling
parameters or increasing the kernel criticality level.

IV. RESOURCE SHARING

The frequently made assumption of no sharing across
criticality levels is unrealistic [21]. For example, the low-level
flight control of a unmanned aircraft (UAV) is highly critical,
as it ensures the vehicle remains stable and on track, its failure
would lead to loss of the UAV. The UAV’s mission control
determines, in communication with the ground station or based
on analyzing senor input, where the vehicle is to go next. It
is less critical, as ground control can re-transmit commands
or the analysis can be repeated. But, in order to be effective,
mission control must share resources with flight control, e.g.
the way points updated by mission control and used by flight
control.

By definition, sharing implies that a high task may be
blocked while a low task is holding a resource. A shared re-
source must therefore be considered to have the same criticality
as its highest client, including a WCET certified at the level
required for that client. We furthermore require a mechanism
that allows the high task to progress if the low task runs out
of budget while holding the resource.

In sel.4 we model shared resources as resource servers
accessed via synchronous IPC [22]. We distinguish between
active servers, which have their own reservation, and passive
servers, which do not. A passive server can only execute by
another thread transferring its reservation to the server. Such
a transfer happens during synchronous IPC: when a client
invokes a server (via a call() IPC operation), its reservation
is transferred to the receiver, and the server returns it when
completing (via the reply wait operation), see Figure 1.
Such a server is said to execute on a borrowed reservation.

This is similar to time-slice donation in earlier L4 ver-
sions [23], with one crucial difference: a reservation will only
transfer if the receiver does not already have a reservation
(a passive server or a thread which has transferred away its
reservation). That way, all of a passive server’s execution time
is forced to be accounted against a client-provided reservation,
while an active server will always execute on its own reserva-
tion. Both cases enforce temporal isolation between clients.

Reservation transfer avoids invoking the scheduler or up-
dating accounting parameters, key properties for maintaining
seL4’s highly-efficient IPC. But we obviously need to consider
budget expiry and mode changes.

A. Priority Inversion

Resource servers are critical sections, which means to
maintain system schedulability we must provide a mechanism
to avoid unbounded priority inversion. Priority inheritance
(besides its other drawbacks such as implementation com-
plexity and long worst-case blocking times) is infeasible to
implement in a security-oriented model of IPC being mediated
by endpoints: the kernel has no knowledge of who will be
receiving messages sent to a specific endpoint, and thus cannot
determine which thread should inherit the priority of the sender

12

thread blocked on the endpoint. Similar comments apply to the
original priority-ceiling protocol.

Instead we provide the means for user-level code to
implement basic priority ceilings, following highest locker’s
protocol (HLP), where resources are assigned ceiling priorities
and tasks that acquire a resource run at the ceiling priority
immediately. HLP is used in POSIX for PRIO PROTECT with
one key difference, while POSIX runs the task at the highest
priority of any resources held, our model assumes that nested
resource access will be in ascending priority order. The kernel
mechanism for this is simple: even a passive server has a
defined priority, at which it executes irrespective of the priority
of the thread whose reservation the server borrowed. A correct
system configuration then requires that resource servers are
given the correct ceiling priority. (Note that user-level can,
in principle, do this assignment automatically: only clients
who have a send capability on the server’s request endpoint
can invoke the server. The resource manager which distributes
these capabilities can adjust the server priority to the maximum
of the priorities of all clients to which it hands the server’s
request endpoint capability.)

B. Budget Expiry

If the budget of a server’s borrowed reservation expires
before the server completes the request, the server is left
in a state where it cannot serve other client’s requests until
the borrowed reservation is replenished. This constitutes a
potential criticality inversion, where a high thread must trust
that any low thread invoking the server does it with sufficient
budget, obviously not an acceptable situation.

The helping approach taken by Fiasco [23], where clients
donate budget to the blocked thread to get it out of the server,
does not work in the security-oriented IPC endpoint design:
The kernel has no way of knowing on which endpoint the
server will attempt to receive next, and thus cannot determine
the helper.

Temporal exceptions are a suitable mechanism for recover-
ing from this situation. When the reservation expires, the kernel
sends an exception message to the owner of the reservation (i.e.
the thread to which the reservation was allocated, ignoring any
borrowing). The temporal exception handler is then responsible
for the recovery action. Possible actions include giving the
faulter an emergency budget or resetting the server back to a
defined state (ready to receive further requests) and sending
an error replying to the client on the server’s behalf.

The exception handler has its own reservation, which must
be sufficient to implement the policy required by that server.
Note that the required budget can be quite large, if the number
of a server’s low clients is large, and it must be replenished at
the highest rate of all clients. Clearly, cross-criticality resource-
sharing must be done wisely. selL4’s protection mechanisms
help limit such sharing, by controlling the distribution of
capabilities to server request endpoints.

C. Mode change

Mode changes can occur while a shared resource is being
accessed, specifically while threads are enqueued on the re-
source endpoint or actively using the resource. We lazily detect



S

(B)

Fig. 1.

reply wait() S

— system call
- blocking

@ reply capability

@ endpoint
reservation

indicates thread
is running on a
reservation

C,

©

Client threads invoke a passive server via IPC on endpoint e. In (A), two clients, (C7 and Cq with reservations r1, r2) both send requests to the

server S via call(). In (B), C1’s message is processed first: the kernel generates a one-shot endpoint (rc) that C; blocks on, and the server borrows C1’s
reservation 1 while running on C7’s behalf, while C'> remains blocked on the endpoint. (C) shows S completing the invocation using reply wait() on e,
transferring r1 back to C1 over rc. Note that the system is strictly speaking never in the state shown in (C), as the reply wait () operation is atomic, so S
switches directly from the reply to C7 (through rc) to receiving the message and reservation from Co.

if threads queued on an endpoint have sufficient criticality: if
a high-criticality server attempts to receive a message and the
client has insufficient criticality, it will be removed from the
endpoint queue and post-poned. The IPC operation will restart
when the client is scheduled after the kernel criticality level
has been raised. Threads actively using a resource during a
criticality change are detected when they are next scheduled:
the kernel detects that the server is running on a reservation
belonging to a thread with an insufficient criticality level, and
sends a temporal exception to the servers temporal exception
handler, which can reset the server.

Of course, the approach described above works only for
systems using the kernel criticality level to implement mode
changes. Other mode change policies involve client priorities
being lowered or raised, and/or reservation parameters chang-
ing. Endpoint queues are reordered on priority change, and
tasks that are suspended have pending IPC messages cancelled,
while changing reservation parameters has no effect on the
endpoint queues, but will result in an exception triggering
the budget expiry handler if a thread no longer has budget
to complete a resource request.

A server’s borrowed reservation may run out of budget
after a mode change, resulting in a temporal exception. As the
server runs at the ceiling priority, which should be unaffected
by the mode change, a change of the client priority will not
take effect until the server replies to the client. This increases
the worst-case cost of the mode change.

We observe that handling of a temporal exception depends
greatly on circumstances: An exception triggered by a low
thread may simply be ignored, resulting in rate-limiting. If the
low thread’s budget expires while borrowed by a server, a reset
action may be required. If, however, a high thread’s budget
expires, this may require a mode switch. This means that the
handler needs sufficient information to determine the course of
action. To solve this, we allow a data word to be set in each
scheduling context which is delivered with the temporal fault
message. Systems can set this data word to identify the client,
or the clients criticality, within the temporal fault handler.

13

D. Summary

Our kernel changes in total account for a 2045 LoC patch®
This includes the addition of a release queue of pending
and rate-limited jobs, reservations, criticalities, improved timer
driver and modifications to the IPC path.

V. RELATED WORK

Traditional resource kernels [24] support slack reuse but
do not guarantee deadlines of low-criticality tasks even if
this does not prevent high tasks from timely execution. Burns
and Davis [17] present a detailed survey of mixed-criticality
systems research. The systems closest to ours in their aims are
COMPOSITE and Fiasco.

COMPOSITE [25] completely frees the kernel from any
scheduling policy by providing mechanisms for hierarchical
user-level scheduling. It reduces overhead-related capacity loss
by configuration buffers shared between user-level and the
kernel. Some capacity loss remains as timer interrupts must
be delivered down the scheduling hierarchy. This approach
does not suit selL4, as the required reasoning about con-
current access (by kernel and user-level) to those buffers
would drastically increase verification overhead [1]. Unlike all
L4 microkernels, COMPOSITE implements a migrating thread
model [26]. This implies that access to shared resources does
not block, thus avoiding priority inversion, although at the cost
of requiring all server code to be re-entrant, a requirement we
do not want to impose.

A version of Fiasco [23] uses bandwidth inheritance [27]
over IPC, which is analogous to priority inheritance. For
security reasons, Fiasco has also moved to IPC mediated
through endpoints, so this approach does not work in later
versions of the kernel.

Brandenburg introduces an IPC protocol for clustered mul-
ticore mixed criticality systems using EDF and CBS, using
multiple IPC queues to separate critical real-time and non-
critical background tasks [22]. As it uses unmediated IPC,

4Counted by David A. Wheeler’s “SLOCCount”.



their approach does not directly apply to seL4. They avoid
mode changes by servers prioritizing high clients irrespective
of scheduling priority, and resetting a server on budget expiry.

Quest-V [28] is a separation kernel which can be used to
sandbox tasks of different criticalities, allowing them to safely
share hardware, however has no support for mode changes and
thus offers no utilisation increase. Lackorzynski showed that to
virtualise multiple mixed criticality RTOSes, information must
be passed between the guest and host about mode changes to
avoid violating the schedulability guarantees of either guest,
and implemented this in Fiasco.OC [29]. An implementation
of mixed criticality systems in Ada, demonstrates reordering
of priorities on mode change [30].

Recent proposals adapt the original priority-ceiling proto-
col to mixed criticality [31], [32], but are unsuitable for us as
explained in Section IV-A.

VI. CONCLUSIONS & FUTURE WORK

We have outlined a model for supporting mixed-criticality
scheduling in seL.4. The model supports cross-criticality re-
source sharing and mode switches, while retaining sel4’s
security properties and high average-case performance.

We have a mostly complete implementation and are
presently working on evaluating it by building practical mixed-
criticality systems on top, including a UAV and a space satel-
lite. This will be the real test of the practicality of the proposed
approach. In particular, we need this practical experience to
determine the best approach to the (user-level) implementation
of mode switches and temporal exception handling.

ACKNOWLEDGEMENTS

NICTA is funded by the Australian Government through
the Department of Communications and the Australian Re-
search Council through the ICT Centre of Excellence Program.

REFERENCES

[1] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser, “Comprehensive formal verification of an OS
microkernel,” Trans. Comp. Syst., vol. 32, pp. 2:1-2:70, Feb 2014.

[2] K. Elphinstone and G. Heiser, “From L3 to seL4 — what have we learnt
in 20 years of L4 microkernels?,” in SOSP, (Farmington, PA, USA),
pp. 133-150, Nov 2013.

[3] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and
G. Heiser, “Timing analysis of a protected operating system kernel,”
in 32nd RTSS, (Vienna, Austria), pp. 339-348, Nov 2011.

[4] C. Smith, Car Hacker’s Handbook. 2014.

[5] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL.4: Formal verification of an operating
system kernel,” CACM, vol. 53, pp. 107-115, Jun 2010.

[6] J. Liedtke, “On p-kernel construction,” in /5th SOSP, (Copper Moun-
tain, CO, USA), pp. 237-250, Dec 1995.

[7]1 1. S. Shapiro, “Vulnerabilities in synchronous IPC designs,” in /EEE
Symp. Security & Privacy, (Oakland, CA, USA), May 2003.

[8] J. B. Dennis and E. C. Van Horn, “Programming semantics for multi-
programmed computations,” CACM, vol. 9, pp. 143-155, 1966.

[9]1 T. Sewell, S. Winwood, P. Gammie, T. Murray, J. Andronick, and
G. Klein, “seL4 enforces integrity,” in 2nd ITP, vol. 6898 of LNCS,
(Nijmegen, The Netherlands), pp. 325-340, Aug 2011.

[10]

(1]

[12]

[14]

[15]

[19]
[20]

[21]

[23]
[24]

[25]

[28]

[29]

[30]

14

T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “seL4: from general purpose to a proof
of information flow enforcement,” in IEEE Symp. Security & Privacy,
(San Francisco, CA), pp. 415-429, May 2013.

D. Cock, Q. Ge, T. Murray, and G. Heiser, “The last mile: An empirical
study of some timing channels on seL4,” in ACM Conference on
Computer and Communications Security (CCS), (Scottsdale, Arizona,
USA), Nov 2014.

R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni, “Real-time cache management framework for multi-core
architectures,” in /9th RTAS, (Philadelphia, PA, USA), pp. 45-54, Apr
2013.

B. Blackham, Y. Shi, and G. Heiser, “Improving interrupt response
time in a verifiable protected microkernel,” in 7th EuroSys, (Bern,
Switzerland), pp. 323-336, Apr 2012.

S. M. Petters, K. Elphinstone, and G. Heiser, Trustworthy Real-Time
Systems, pp. 191-206. Signals & Communication, Jan 2012.

C. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves: An
abstraction for managing processor usage,” in Proceedings of the 4th
Workshop on Workstation Operating Systems, pp. 129-134, 1993.

R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels:
a resource-centric approach to real-time and multimedia systems,” in
Readings in multimedia computing and networking, pp. 476-490, 2001.
A. Burns and R. Davis, “Mixed criticality systems — a review.” http:
//www-users.cs.york.ac.uk/~burns/review.pdf, Jun 2014. Online;
accessed 29-Sept-2014.

B. Sprunt, L. Sha, and J. Lehoczky, “Scheduling sporadic and aperiodic
tasks in a hard real-time system,” technical report CMU/SEU-89-
TR-011, Carnegie Mellon University, Software Engineering Institute,
Apr 1989. URL resources.sei.cmu.edu/library/asset-view.cfm?
assetid=10919.

A. Burns and A. Wellings, Concurrent and Real-Time Programming in
Ada. 2007.

L. Abeni and G. Buttazzo, “Resource reservation in dynamic real-time
systems,” J. Real-Time Syst., vol. 27, no. 2, pp. 123-167, 2004.

A. Burns and S. Baruah, “Towards a more practical model for mixed
criticality systems,” in Proceedings of the I1st Workshop on Mixed
Criticality Systems, pp. 1-6, 2013.

B. B. Brandenburg, “A synchronous IPC protocol for predictable access
to shared resources in mixed-criticality systems,” in 35th RTSS, (Rome,
Italy), Dec 2014. To appear.

U. Steinberg, A. Bottcher, and B. Kauer, “Timeslice donation in
component-based systems,” in OSPERT, (Brussels, Belgium), Jul 2010.

S. Oikawa and R. Rajkumar, “Linux/RK: A portable resource kernel in
Linux,” in 19th RTSS, 1998.

G. Parmer and R. West, “Predictable interrupt management and
scheduling in the Composite component-based system,” in 29th RTSS,
(Barcelona, Spain), Nov 2008.

G. Parmer, “The case for thread migration: Predictable IPC in a
customizable and reliable OS,” in OSPERT, (Brussels, Belgium), Jul
2010.

G. Lipari, G. Lamastra, and L. Abeni, “Task synchronization in
reservation-based real-time systems,” Trans. Computers, vol. 53,
pp. 1591-1601, Dec 2004.

Y. Li, R. West, and E. S. Missimer, “The Quest-V separation kernel for
mixed criticality systems,” in /st WMC, pp. 31-36, Dec 2013.

A. Lackorzynski, A. Warg, M. Volp, and H. Hirtig, “Flattening hierar-
chical scheduling,” in EMSOFT, (Tampere, Finland), pp. 93-102, Oct
2012.

S. Baruah and A. Burns, “Implementing mixed criticality systems in
Ada,” in Proceedings of Reliable Software Technologies — Ada-Europe,
pp. 174-188, 2011.

A. Burns, “The application of the original priority ceiling protocol to
mixed criticality systems,” pp. 7-11, 2013.

Q. Zhao, Z. Gu, and H. Zeng, “HLC-PCP: A resource synchronization
protocol for certifiable mixed criticality scheduling,” Embedded Systems
Letters, IEEE, vol. 6, pp. 8 — 11, Jul 2013.



