www.cea.fr

Lleti ¢ List

Maximizing the execution
rate of low-criticality tasks
in mixed-criticality system

Mathieu Jan, Lilia Zaourar
CEA LIST — LaSTRE
&
Maurice Pitel
Schneider Electric Industries

Motivation for this work

B Feedback from Schneider Electric on our Time-Triggered
based RTOS

B Sizing must be made using the Worst-Case Execution Time (WCET) of each
task and high margins are taken

B Very low probability to simultaneously have the WCET for each task

B Huge over-sizing of the CPU resources compared to what is needed in
average

B True...

B ... but worst-case situation is required by certification authorities for hard
real-time systems

B ... and economical constraints push for the use of these unused resources for
the execution of low-criticality tasks

© CEA. All rights reserved DACLE D|V|S|on| Dec 2013 I 2

B Medium voltage protection relays sies2010)
B Safety-function: detect and isolate faults in the electrical =~ > 1>>

network

of power faults and asking the tripping of circuit
breakers

B SIL2 certification level IEC 61508

N

Circuit breaker opene

B Embed less (or non) safety functionalities

B Display information, optimizing the distribution of energy, etc.

m Different levels of criticality: Mixed-Criticality (MC) systems
B We are only interested in the use of two levels of criticality

B Enable the design of MC systems where

B Taken separately high and low-criticality tasks are schedule but the union is not

uit breaker closed

B Slack should be used to optimize the execution rate of low-criticality tasks
B Should not be simply dropped

© CEA. All rights reserved DACLE D|V|S|On| Dec 2013 I 3

Related work and task model

B Well-known Vestal task model for MC systems

B But unused slack time for executing low-criticality tasks which are dropped

B Elastic MC task model

B Lowe-criticality tasks have a desired period, a max period and a set of possible early-
release points

B But how tasks can be « compressed » is based on their utilization

B For the low-criticality tasks, extend the periodic task model with ...

B Stretching period factors: deadline is a flexible parameter
B Set or range of possible (bounded) values specified off-line
B Applied when a deadline is going to be missed, in order to postpone it
B Importance level: which low-criticality task should be stretched first
B Sub-problems we consider
B Schedulability analysis extended for maximizing the use of CPU
B On-line algorithm to set stretching factor values, in particular in a Time-Triggered paradigm

© CEA. All rights reserved DACLE D|V|S|On| Dec 2013 I 4

Notations

B Aset of n independent synchronous, preemptible and
implicit-deadline periodic tasks: T' = {71, 72,....,7n}
B Thigh high-criticality task ([t) with a utilization noted Uhnigh
B Now low-criticality tasks (I+) with a utilization noted (7,
B Temporal parameters of a task 7; : (Pi, ;. Di)

B Low-criticality tasks have additional parameters
® Importance level: V;
B The higher the value, the higher is the importance of the task ...
B Maximum stretching factor that can be applied: Sijma,jj

m Defines low utilization bound that can be reached
E Atrun-time, the actual value is noted: Sz- and 1 < S; < Si,ma;r

B Total utilization noted U and m is the number of processors

© CEA. All rights reserved DACLE D|V|S|on| Dec 2013 I 5

Schedulability analysis

B Computation for each low-criticality task of the minimum
required stretching factor (Si.min)

B Which worst-case temporal behavior will be used on-line
B Assuming each task uses it WCET and by definition Si.min < Simax

B Constraints

B On the utilization that can generate the Iow-criticality tasks due to the

presence of the high-criticality task: U, = m — Up;gn
L ow < LT‘ ‘3 — [r
: < Z 53 X Pz'

B Bounds on the utlllzatlon value of a low-criticality task: u; . < —

B Objective

B Maximize the utilization of the resources, while stretching the less important
low-criticality tasks first

\[(IJZL SXP

i€l et
© CEA. All rights reserved DACLE D|V|S|On| Dec 2013 I 6

On-line decision algorithm

® When it is called?

B At the beginning of an overloaded situation
m Within an overloaded situation for other low-criticality tasks

B When it is called, the most important low-criticality task is
being executed

B Hierarchical scheduling within the low-criticality tasks (Alternative: use EDF-VD)

Algorithm 1 Decision algorithm for setting the stretching
factors of low-criticality tasks.

Require: 7; € I',,.;, and the current time ¢
I: S; < ComputeStretching(r;.t. D;, S;):
2. if S; = Si min then Stop 7; and log the error; end if
3 D; + S; = Py
4. UpdateReady(7;);
5: Call the scheduler;

B When a low-criticality task finishes, its stretching factor is
resetto 1

© CEA. All rights reserved DACLE D|V|S|on| Dec 2013 I 7

CCAtec ysing stretching factors within the TT paradigm

B In the Time-Triggered paradigm, the hypothesis of
independent task

B Can be made at the system level but not at the application level

B Visibility date of data: deadline of the producer
B To achieve determinism execution behavior
B A task may only use data whose visibility dates are equals or inferior to its release date

B The use of stretching factors change the visibility date

B Inconsistent with the statically defined triggering points

B Gather low-criticality tasks within groups

B That must be kept temporally consistent between them
B Use stretching factor and importance level parameters at the group level Tnctk
B Modification to our linear program: consider the utilization of each group

1 C
E X ZT’EEFHCE_IE Pi

© CEA. All rights reserved DACLE D|V|S|On| Dec 2013 I 8

Decision algorithm within the TT paradigm

Algorithm 2 Additionnal steps 1n the decision algorithm when
integrated in the TT paradigm, compared to algorithm 1.

Require: 1., with 7; € ['t
1: for all 7, € I'y, # 7; do
2: if 75 1s ready then RemoveFromReady(7;):
3 else RemovekFromSleeping(7;); end if
4: if S; = Sj min then Stop I'ye, , log the error; end if
6. if 7; 1s finished then SetFlag(Stretched); end if
7. InsertReady(7;);
8: end for

® Two constraints Py x Si =D

Y

B But not yet visible, therefore no data inconsistency is
possible T;

/

\
Change the visibility date of already produced data [\/\Y
Ti <§I\\
I
J

Maintain the initial offsets between the triggering \
points ij

© CEA. All rights reserved DACLE Division| Dec. 2013 I 9

Preliminary evaluations

B Task set generator

Random task set, utilization computed using UUniFast-Discard algorithm
Range of possible periods: 10 to 100 ms

Each task is either a high or a low-criticality task until Up;,5 reaches 50%
Simazr = 2

B 3 tasks sets are generated with 20% of high-criticality tasks

B From 50 — 70 tasks, with 5 — 14 high-criticality tasks
B Initial utilization set to 125% and 150% off a 2 processors system

B 3 metrics used for the evaluation

m Average stretching factor for all the low-criticality tasks: Aver
m Average stretching factor for the 25% most important low-criticality tasks: Aver25+
B Average stretching factor for the 75% less important low-criticality tasks: Aver75

© CEA. All rights reserved DACLE D|V|S|on| Dec 2013 I 10

Obtained stretching factors

U Aver Aver25+ Aver75 Aver wio V;
125 1.69/1.36/1.59 [/1/1 1.94/1.48/1.79 [.65/1.3/1.48
150 | 1.86/1.65/1.83 1.5/1/1.37 2/1.87/2 1.97/1.67/1.774

B Stretching factors
B Are reduced for the most important low-criticality tasks
B Much higher for the less important low-criticality tasks

B Without the importance level parameter

B Low-criticality must be stretched more when the importance level is used, but can
lead to almost unused stretching factors for important low-criticality tasks

2.2 T T T
. . . . Config. A ——
E Distribution of stretching s op Come B i
factors for two configurations < 51 |||| || |
B Config. A: random values for the E 1.6 F I i
importance level A || || || f |
m Config. B: 25% of the most E Ly b J|..|..l...\,f]
important tasks should have g |
g — 105 = 1k | U i
Mimin :
03 | | | | |
10 20 30 40 50

Tasks sorted by decreasing importance level

Conclusion and future work

Proposal of a task model and associated one-line decision
algorithm to maximize the execution rate of the low-

criticality task
B Inspired by the elastic task model and opposite approach to ER-EDF
B Off-line CPU maximization by computing minimum required stretching factors
B Algorithm to deal with stretching factors within the Time-Triggered paradigm

Future work
B Further evaluations: overhead of the different possible strategies for setting the
stretching factors
B Different approach for the execution part through the use of a generalized form of
the Time-Triggered approach (eXternal-Triggered)
B Apply this approach to lessen the deadline miss ratio of the low-criticality task
when setting a trade-off with energy consumption

B Our RTOS partner is evaluating the development of a prototype

© CEA. All rights reserved DACLE D|V|S|On| Dec 2013 I 12

	Maximizing the execution rate of low-criticality tasks in mixed-criticality system
	Motivation for this work
	Use case & problem statement
	Related work and task model
	Notations
	Schedulability analysis
	On-line decision algorithm
	Using stretching factors within the TT paradigm
	Decision algorithm within the TT paradigm
	Preliminary evaluations
	Obtained stretching factors
	Conclusion and future work

