

A safety concept for a wind power mixed-criticality embedded system based on multicore partitioning

Jon Perez¹, David Gonzalez¹ (<u>dgonzalez@ikerlan.es</u>), Salvador Trujillo¹, Jose Miguel Gárate², Ton Trapman²

1st International Workshop on Mixed Criticality Systems

Vancouver, Dec. 3th, 2013

- This paper presents a safety certification strategy for IEC-61508 compliant industrial mixed-criticality systems based on multicore and virtualization.
- The safety concept of a wind power case-study is currently under review by a certification body.

Definitions and problem statement

- Criticality level of an application is a classification of how severe a
 deviation of the intended behavior is.
- Criticality level of a system is defined as the highest criticality of the jobs executed within it.
- Today's embedded systems typically integrate functionalities with different criticality levels.
- Without appropriate preconditions, the integration of mixed-criticality subsystems can lead to a significant and potentially unacceptable increase of certification efforts.

Towards mixed-criticality systems

- Federated architectures have limitations:
 - Complexity.
 - Scalability.
 - Number of subsystems, connectors and wires impacts on overall reliability.
 - Cost-size-weight.
- Mixed-criticality systems overcome these limitations.
- Safety certification according to industrial standards becomes a challenge.

IEC-61508 and derived standards

- IEC-61508 is an international standard for electrical, electronic and programmable electronic safety related systems.
- IEC-61508 is a generic safety standard from which different domain specific standards have been derived for industrial and transportation domains.
- It defines Safety Integrity Level (SIL) 1 .. 4
- It is intended for fail-safe systems.
 - Fail-safe: there is a safe-state
 - Fail-operational: there is no safe-sate

Multicore and virtualization

- Multicore and virtualization technology can support the development of mixed-criticality systems.
- Partitions provide functional separation of the applications and fault containment.
- The **challenge** is to provide **sufficient evidence of isolation**, separation and independence among safety and non-safety related functions.
- IEC-61508 safety standard does not directly support nor restrict the certification of mixed-criticality systems, but:
 - Sufficient independence must be shown.
 - Otherwise, all integrated functions will need to meet the highest integrity level.

Temporal and spatial isolation

- Sufficient independence implies temporal and spatial isolation:
 - The temporal isolation is achieved if the duration of every single action performed by applications in one partition is independent from actions performed by all other partitions.
 - Spatial isolation (inter partition) must prevent all partitions from accessing memory or interfaces that are not in their a-priori known scope.
- If temporal and spatial isolation is achieved, subsystems with different levels of criticality can be placed in different partitions and can be verified and validated in isolation.

Safety certification strategy

- IEC-61508 and **fail-safe** systems:
 - Diagnosis techniques must be used to detect temporal isolation violations.
 - Thus, the lack of complete temporal isolation does not compromise safety, but availability.
- Hypervisor and platform as a compliant item:
 - Startup, configuration and initialization
 - Virtualization of resources
 - Isolation, diagnosis and integrity
 - Communication and synchronization
- Static cyclic scheduling of partitions with guaranteed timeslots defined at design time.
- Diagnosis strategy

- Wind turbine supervision and control system provides three major functionalities:
 - Supervision: wind turbine real-time control and supervision.
 - Communications and HMI: non real-time Human Machine Interface (HMI) and communication with SCADA system.
 - Protection: safety functions to ensure that the design limits of the wind turbine are not exceeded (e.g. overspeed, ISO-13849 PLd).
- These functionalities are currently deployed in different platforms.

Safety Concept in two steps

Two transformations

- From a federated architecture to multiprocessor
- From multiprocessor to multicore

Safety Concept: Multiprocessor

Limitation: scalability

Safety Concept: Multicore with virtualization

Conclusions and future work

- Safety certification of mixed-criticality systems based on COTS multicore processors is challenging, but feasible.
- This paper presents a safety-certification strategy for IEC-61508 compliant safety systems based on COTS multicore processors.
- The safety concept of a wind power case-study is currently under detailed review by a certification body.
- The assumptions and analysis considered at this stage will be reviewed in the following design stages and validated at the final stage of the casestudy within FP7 MultiPARTES project.

IKERLAN IKEBTYN

Eskerrik asko

Muchas gracias

Thank you

Merci beaucoup

P.º J.M. Arizmendiarrieta, 2

20500 Arrasate-Mondragón (Gipuzkoa)

Tel.: 943 71 24 00

Fax: 943 79 69 44

www.ikerlan.es

