
Time-Triggered Mixed-Critical Scheduler

Dario Socci, Peter Poplavko, Saddek Bensalem and Marius Bozga
UJF-Grenoble 1

CNRS VERIMAG UMR 5104,
Grenoble, F-38041, France

{Dario.Socci | Petro.Poplavko | Saddek.Bensalem | Marius.Bozga}@imag.fr

Abstract—Modern safety-critical systems, such as avionics,
tend to be mixed-critical, because integration of different tasks
with different assurance requirements can effectively reduce their
costs. Scheduling is one of the main challenges of such systems.
In this work we show that a generalization of the Time Triggered
(TT) scheduling paradigm, Single Time Table per Mode (STTM)
dominates other approaches like Fixed Priority or Fixed Priority
per Mode (FPM). We also propose an algorithm to transform any
FPM priority assignment to an equivalent set of STTM tables.

I. INTRODUCTION

Advances in technology is leading towards an increasing
trend in integration of multiple functionalities on a single chip.
Integration is an effective way of reducing cost and power
consumption of embedded systems. On the other hand, for
safety-critical domains, such as avionics, this is leading to
the integration of tasks with significantly asymmetric safety
requirements on a single assembly of processing resources.

Such system have called into existence a special Mixed-
Critical System (MCS) scheduling theory, that has been devel-
oped at least since 2007 [1]. This theory treats the asymmetric
safety requirements by adequate scheduling methods, which
leads to much more efficient resource usage compared to
classical scheduling approaches [2]. In particular, MCS-aware
scheduling methodologies were demonstrated in [3] to signif-
icantly outperform traditional approaches such as reservation-
based techniques.

A major branch of the MCS scheduling theory is the
certification-cognizant mixed-critical scheduling, which as-
sumes that all tasks are hard real-time and supports the
certification prescribed by safety-critical standards such as
DO−178B [4]. Although this approach follows these prescrip-
tions in a rather simple pragmatic way, it faces NP-complete
problems even under basic assumptions [3].

Following a significant volume of previous MC scheduling
work (e.g., [3], [5], [6], [7]) in this paper we consider the
basic problem of single-core scheduling for a finite set of jobs
whose exact arrival times are known a priori. As stated in [6],
this assumption applies without restrictions when generating
schedules for time-triggered architecture, in this case one
can just apply a finite job algorithm, like the one presented
in this paper, to a hyperperiod of periodic tasks. We also
restrict ourselves to dual-critical problems. This restriction
is often assumed in literature ([5], [6], [7], [8], [9]). Dual-
critical system are also of practical interest, such applications

The research leading to these results has received funding from
CERTAINTY – European Community’s Seventh Framework Programme
[FP7/2007-2013], grant agreement no. 288175.

as Unmanned aerial vehicles (UAVs) assume two criticality
levels: safety critical and mission critical.

The Own-Criticality Based Priority (OCBP) [5] is theoreti-
cally the best among all Fixed Priority per job (FP) scheduling
algorithms for MCS. Recent extensions of the fixed job priority
policy [8], [9] perform a switch between different priority
tables for different modes. This Fixed Priority per Mode per
job (FPM) policy can lead to better results due to their higher
flexibility. In particular Mixed-Critical Earliest Deadline First
(MCEDF) [10] has been proven to dominate OCBP, and hence
FP scheduling, for dual-critical problems.

In [6] Baruah et al. propose a Time Triggered (TT) version
of OCBP. This scheduling algorithm uses one static table
per criticality mode. We will call this approach Single Time
Table per Mode (STTM). The Time Triggered algorithms are
important because they are easy to certify, since the time
intervals in which each job executes are statically known a
priori, while in an approach like FPM the jobs can interact in
different ways depending on the execution times. The only
unknown variable in STTM scheduler is the time when a
switch will occur, but there are only a small number1 of
precomputed instants of time where this can happen, while
in FPM these are infinite. Thus, even if STTM is a dynamic
scheduler, all the possible executions can be easily enumerated,
making certification easier. Also some commercial systems
implement TT as default scheduling mechanism. In general, it
is NP-complete problem to decide whether optimal scheduling
policy (OPT) exists.

This work focuses on STTM algorithms, giving two main
contributions: we prove that STTM approach dominates FPM
and we give an algorithm that allows to transform an FPM
priority assignment into a set of STTM tables. The following
gives a relation between the sets of schedulable instances for
dual-critical problems:

FP
1
(MCEDF

2
(FPM

3
(STTM⊆OPT (1)

Inclusion 1 is proved by dominance of MCEDF over
OCBP [10]. Next, Inclusion 2 is true by definition of MCEDF.
We can easily prove that the inclusion is strict under the
hypothesis that P 6= NP . In fact under the restrictive hy-
pothesis that all arrival times are equal to zero, we have
that FPM is optimal, but the problem remains NP-complete
even under this assumption [3]. If we assume by contradiction
that MCEDF=FPM, then MCEDF could solve NP-complete
problems in polynomial time. Example A.1 shows an instance
that is FPM-schedulable but not MCEDF-schedulable.

1equal to the number of HI jobs in a dual-critical system

Inclusion 3 is the main contribution of this paper. We will
prove in Section IV that there exists an algorithm that can
transform any FPM priority assignment into STTM tables. The
strictness of the inclusion is shown by Example IV.1. Note that
since the FPM policy is completely defined by a finite set of
basic scenarios [3], such scenarios could be used as tables for
a TT-like scheduling. This is theoretically feasible, but it has
little practical interest, since it would potentially require a huge
number of tables, whereas we require only two tables. Hence
in this paper we actually propose a TT extension for MCEDF
or any other FPM policy.

II. BACKGROUND

Consider a set of hard real-time jobs having different
levels of criticality. It is common in literature to model
different criticality requirements by giving different worst-case
execution times (WCETs) for the same job. In dual-criticality
systems we have the highly level, denoted as ‘HI’, and the
low critical (normal) level, denoted as ‘LO’. Every job gets
a pair of WCET values: the LO WCET and the HI WCET.
One important remark is that both HI and LO jobs are hard
real-time, so both must terminate their executions before the
deadlines. But only HI jobs undergo certification. This means
that the designer is confident that the jobs will never exceed
their LO WCET, calculated by exhaustive measurements and
adding some practical margin. However, it is required to prove
to the certification authorities that the HI jobs will meet
the deadlines even under the unlikely event that some jobs
would execute at their HI WCET, calculated by more safe
and pessimistic formal WCET estimation tools, required for
certification.

A. Formalism

In a dual-criticality MCS, a job Jj is characterized by a
5-tuple Jj = (j, Aj , Dj , χj , Cj), where:

• j ∈ N+ is a unique index

• Aj ∈ Q is the arrival time, Aj ≥ 0

• Dj ∈ Q+ is the deadline, Dj > Aj

• χj ∈ {LO,HI} is job’s criticality level

• Cj ∈ Q2
+ is a vector (Cj(LO), Cj(HI)) where Cj(χ)

is the WCET at criticality level χ.

The index j is technically necessary to distinguish be-
tween the jobs with the same parameters. We assume that
Cj(LO) ≤ Cj(HI). We also assume that the LO-criticality jobs
are forced to terminate after Cj(LO) time units of execution,
so (χj = LO) ⇒ Cj(LO) = Cj(HI). An instance J of
the MC-scheduling problem is a set of K jobs. A scenario
of an instance J is a vector of execution times of all jobs:
(c1, c2, . . . , cK). If at least one cj exceeds Cj(HI), the scenario
is called erroneous. The criticality of scenario (c1, c2, . . . , cK)
is the least critical χ such that ∀j , cj ≤ Cj(χ). A scenario
is basic if for each j either cj = Cj(LO) or cj = Cj(HI).

A (preemptive) schedule is a mapping from physical time
to J∪{⊥}, where ⊥ denotes no job. Every job should start at
time Aj or later and run for no more than Cj(HI) time units.
The online state of a run-time scheduler at every time instance

consists of the set of terminated jobs, the set of ready jobs,
i.e., jobs that have arrived in the past and did not terminate
yet, the progress of ready jobs, i.e., how much each of them
has executed so far, and the current criticality mode, χmode,
initialized as χmode = LO and switched to ‘HI’ as soon as a
HI job exceeds Cj(LO). A schedule is feasible if the following
conditions are met:

Condition 1. If all jobs run at most for their LO WCET, then
both critical (HI) and non-critical (LO) jobs must terminate
before their deadline.

Condition 2. If at least one job runs for more then its LO
WCET, than all critical (HI) jobs must terminate before their
deadline, whereas non-critical (LO) jobs may be even dropped.

An instance J is clairvoyantly schedulable if for each
non-erroneous scenario, when it is known in advance (hence
clairvoyantly), one can specify a feasible schedule. By default,
the scheduling is non-clairvoyant.

Based on the online state, a scheduling policy determin-
istically decides which ready job is scheduled at every time
instant. A scheduling policy is optimal (or correct) for the
given instance J if for each non-erroneous scenario it generates
a feasible schedule. We assume without loss of generality that
the scheduling policies are monotonic per scenario, which
means one can check their optimality by simulating for
all basic scenarios [3]. A mode-switched scheduling policy
uses χmode in the scheduling decisions, e.g., to drop the
LO jobs, otherwise it is mode-ignorant. An instance J is
MC-schedulable if there exists an optimal scheduling policy
for it. A fixed-priority scheduling policy is a mode-ignorant
monotonic policy that can be defined by a priority table PT,
which is a K-sized vector specifying all jobs (or, optionally,
their indexes) in a certain order. The position of a job in PT
is its priority, the earlier a job is to occur in PT the higher
the priority it has. Among all ready jobs, the fixed-priority
scheduling policy always selects the highest-priority job in PT.
If a scheduling policy cannot be defined by a static priority
table, it is called dynamic-priority.

A Time-Triggered (TT) table is a static, pre-computed
table that defines at every instant of time which job must be
scheduled. We define a Single Time Table per Mode (STTM)
scheduling as an extension of TT scheduling that associates to
each mode a single TT table.

In this paper, we consider the construction of STTM table
starting from fixed priority per mode (FPM) policy, that is a
fixed-priority scheduling that has a different PT for each mode.
We assume that the scheduler is preemptive. For the given
job set J, this policy assumes two fixed-priority tables PTLO

before the mode switch and PTHI after the mode switch. We
assume that in the HI mode the LO jobs are dropped and hence
excluded from PTHI

2.

The basic scenario LO is the scenario where all jobs
execute for time C(LO). Under the FPM policy, the basic
scenario HI-J is the scenario where job J is the first job that
switches into HI mode after having executed for time C(LO).

2This assumption is legal according to Condition 2 and can only improve
the schedulability

After the switch, job J and all non terminated HI jobs execute
for time C(HI).

If we simulate the FPM policy for LO and all HI-J
scenarios, we obtain function ELO and EHI−J , defined as
ELO|HI−J : Time → {⊥} ∪ J that specify for every time
instance the job that runs at given time instance or ⊥ when the
processor is idle, when one job preempts another, or when a job
starts/terminates. Note that this leads to open intervals of job
activity and closed or single-point intervals of idle processor.
These functions could be used for time-triggered scheduling,
where we start in LO table defined by ELO and switch to HI-J
table defined by EHI−J whenever a given HI job J switches
to HI mode. But this would require an individual table per
HI job, which is of little practical value.

III. TRANSFORMATION ALGORITHM

Our goal is to obtain one single table HI* for the switch
to the HI mode by any HI job. In this section we will
show how to build such a table, while in Section IV we
will show its correctness. We propose a method to generate
this table by simulating fixed-priority for HI jobs with C(HI)
times using priority table PTHI and assuming that a HI job
can be disabled at any time when all three enabling rules
defined below are false. Whenever a non-terminated HI job
is (temporarily) disabled, a lower-priority HI job can execute
(priority inversion).

Before we give the rules, let us give some supplementary
definitions.

Let TLO
j (t) (resp. THI∗

j (t)) be the cumulative execution
progress of job Jj by time t in table LO (resp. HI*). We
call a HI job that has executed for more than its C(LO) a
switched job. We say that such a job switches at time t if
TLO
j (t) = CLO. It is non-switched otherwise.

The method to generate HI* is as follows:

• at any time t, we execute the highest priority (accord-
ing to PTHI) enabled HI job

• a job Jj is enabled at time t if:
◦ the job has arrived: t > Aj

◦ the job has not yet executed for its HI WCET:
THI∗
j (t) < Cj(HI)

◦ at least one of the following rules is true:

TLO
j (t) = Cj(LO) (2a)

THI∗
j (t) < TLO

j (t) (2b)

THI∗
j (t) = TLO

j (t) ∧ ELO(t) = j (2c)

Informally, Rule (2a) allows switched jobs to run as soon as
possible, while Rules (2b) and (2c) assure that a job will not
run in HI* for more time than in LO before the switch.

Example III.1. Let us consider the following instance as an
example:

Job A D χ C(LO) C(HI)
1 0 12 HI 3 5
2 6 11 HI 2 4
3 7 8 LO 1 1
4 1 4 HI 1 2

Fig. 1. Basic scenarios and TT tables

and assume the following FPM priority assignment3:

PTLO = J4 ≺ J1 ≺ J2 ≺ J3
PTHI = J4 ≺ J1 ≺ J2

Figure 1 presents all the basic scenarios and the table
HI*. Consider this table. At time 0, only J1 has arrived,
and it is enabled by Rule (2c). At time 1, J4 arrives, it has
higher priority then J1 and it is enabled by Rule (2c), so it
is chosen by the algorithm to be executed. At time 2 for job
J4 Rule (2c) will be false, but Rule (2a) will become true,
so we will continue execute it until time 3. At time 3 J4 will
terminate, so J1 will be enabled by Rule (2b) until time 5 and
by Rule (2a) from 5 on. So J1 will continue its execution till
time 6, when J2 arrives. J2 is enabled by Rule (2c), and it
has higher priority than J1, so it will be executed until time 7.
At this instant Rule (2c) becomes false for J2, disabling it. So
we execute J1. At time 8 J1 terminates and J2 is enabled by
Rule (2c). At time 9 Rule (2c) is false for J2, while Rule (2a)
becomes true. So J2 continues its execution until time 11, when
it terminates.

It is easy to verify the correctness of TT scheduling that
uses LO and HI* as tables. In fact in table LO all the jobs
meet the deadline. When there is a switch, at time t, from LO
to HI*, all HI job Jj must have from time t a quantity of time
reserved for them in HI* equal to Cj(HI)− TLO

j (t). In our
example, if there is a switch in the LO table at time 2, caused
by job J4, then J1, J4 and J2 will have enough remaining time
reserved in HI* (respectively 4 = C1(HI)− TLO

1 (2) = 5− 1,
1 = C4(HI)−1 and 4 = C2(HI)−0), and will terminate before
their deadlines. In this case we will drop job J3, since we do
not care about LO jobs when in HI mode. Similarly, in the case
of a switch at time 4, caused by J1, then J1 and J2 will have
respectively 3 = C1(HI) − 2 and 4 = C2(HI) − 0. Note that
in this case J1 will have one time unit more then it actually
needs. Finally, if there will be a switch at time 9, caused by
job J2, this job will have 2 other time units, terminating at
time 11, meeting its deadline.

IV. PROOF OF DOMINANCE

We will prove in this section the Inclusion 3 of Equa-
tion (1). At the same time we also provide an algorithm to
construct STTM tables from FPM priority tables, generated
by an algorithm such as MCEDF.

The following is the main claim of this paper:

3Can be computed using MCEDF [10]

Theorem IV.1. If the FPM policy leads to a feasible schedule,
then a switched time triggered schedule that uses LO and HI*
as, respectively, LO-mode and HI-mode table, is a feasible
schedule as well.

To prove it, we first show that:

Lemma IV.2. If at any time we switch from LO to HI*, then
all the unterminated jobs will have enough time reserved in
HI* to terminate their work.

First, let us comment that, according to our rules to con-
struct HI*, no HI jobs get disabled forever because eventually
Rule (2a) becomes true, since all LO jobs eventually terminate.
Thus, all HI jobs get a total time C(HI) reserved in HI*.
Consequently, if a job switches at time t, then this and any
other job is guaranteed to get C(HI)−THI∗

j (t) , but needs to
get at least C(HI)− TLO

j (t).

Therefore the lemma can be equivalently stated as follows:

no non-switched HI job makes more progress in HI* than
in LO.

Formally:

∀t , TLO
j (t) < Cj(LO)⇒ TLO

j (t) ≥ THI∗
j (t)

Proof of Lemma IV.2: At time t = 0 the lemma thesis is
obviously true, and with progress of time it can be invalidated
only during the time when a job is scheduled in HI*. However,
as long as TLO

j (t) < Cj(LO) job Jj can only be scheduled
when either (2b) or (2c) is true, but they both imply that we
have TLO

j (t) ≥ THI∗
j (t).

Let TTHI(LO|HI−J′)
J be the termination time of J in

HI* (respectively, LO, HI-J’).

Theorem IV.3. Let J least be the least priority job in PTHI ,
then ∃J ′ : TTHI∗

Jleast ≤ TTHI−J′
Jleast

Let us first give some definitions and support lemmas. A
busy interval in some table (be it LO, HI-J or HI* table) is
a maximal continuous interval of time where some jobs are
enabled for execution, where for table HI* we apply special
rules defined earlier which can disable a job temporarily. When
such rules are not applied, the busy intervals are obviously
open intervals, because they are composed of union of (in-
tersecting) open intervals between arrival and termination of
different jobs. We state without proof that even with the extra
rules we defined earlier for HI*, the busy intervals remain to
be open intervals.

For convenience, we use the term ‘busy interval’ also for
the set of jobs that are enabled at least once inside the busy
interval, and denote it BI , e.g., BIHI∗ for busy intervals in
HI*. Note that for this table, unlike the other tables, it is not
always so that the total interval duration is exactly equal to
the total work of jobs in BI , because there are rules that
can temporarily disable a job after its arrival and before its
termination. Therefore, the total work of jobs in BIHI∗ can
exceed the length of the busy interval. This also means that a
job may belong to several busy intervals of HI*.

In between BI , there are closed, sometimes single-point,
idle intervals. For HI*, we would like to distinguish an idle

interval as a hole if inside this interval there are HI jobs that
have arrived and not yet terminated, and are disabled because
neither of the rules (2a), (2b), (2c) is true. The idle intervals
that are not holes, are called empty intervals, i.e., those where
the job queue is empty.

For instance in Figure 1 in HI* there are two busy intervals:
(0,8) and (8,11), thus we have a hole of size 0 at time 8. This
happens because we have that immediately before time 8 J1 is
enabled by Rule (2a) while J2 is disabled. On the other hand,
at time 8 J1 is disabled (because it terminates) while J2 is
enabled by Rule (2c).

The following proposition is well-known for fixed-priority
policies, but needs to be re-established because we added the
rules that can disable jobs.

Lemma IV.4. If J least is the least priority job in PTHI then
it terminates at the end of some busy interval BIHI∗.

Proof: Let us assume by contradiction that J least termi-
nates inside a busy interval at time t. This means that at time
t there is another enabled job (by definition of busy interval).
If that is so, then J least, having the least priority, should not
be running at time t.

Lemma IV.5. Let BIHI∗ = (a, b) be a busy interval in HI*.
At time a, the set of non-terminated HI jobs is the same in
tables LO and HI*, and for all of them holds that at time
a the cumulative execution progress in LO is the same as in
HI*.

Proof: Consider time a. The lemma thesis is obvious for
any job that did not arrive yet, so in the sequel we consider
only those jobs that have arrived.

If a job J is non-terminated in LO then it is non-terminated
in HI* as well by Lemma IV.2. In addition, by the same lemma
we have:
(I) THI∗

J (a) ≤ TLO
J (a).

On the other hand, if job J is non-terminated in HI*
then the fact that it is not enabled at time a (by lemma
condition) implies that Rule (2a) is false and hence the job
is non-terminated in LO as well. Combined with the earlier
observations, we conclude that the sets of non-terminated jobs
at time a in these two tables are equal. In addition, also
Rule (2b) is false, which means:
(II) THI∗

J (a) ≥ TLO
J (a).

Combining (I) and (II) we have the equality of the cumulative
times.

Corollary IV.6. Let BIHI∗ = (a, b) be a busy interval in
which some job switches. Let Js be the first such job, and let
ts be the time at which the switch occurs.

Then during the interval (a, ts) tables HI*, HI-Js and LO
are identical

Proof: Notice that HI-Js and LO are equal by construc-
tion in (0, ts) and hence in (a, ts) as well. Let us compare LO
and HI*. At time a the set of non terminated jobs in these
two tables are equal. In interval (a, ts) no job switched yet,
therefore all the jobs that run in HI* should satisfy Rule (2c),
which is due to the fact that the other two rules require a switch

to have occurred. As long as Rule (2c) holds, the HI* table
replicates the LO table, and because it fills time interval (a, ts)
continuously, as ts ∈ BIHI∗, we have proved our thesis.

Proof of Theorem IV.3: Let BIHI∗ = (a, b) be the
busy interval in which J least terminates. By Lemma IV.4,
TTHI∗

Jleast = b. By Lemma IV.5, job J least is not yet switched
at start of this interval, and since this job terminates at the end
of BIHI∗, we know also that it switches inside this interval
as well, so Corollary IV.6 applies for this interval.

Let us assume that BIHI∗ = (a, b) is followed by an empty
interval, i.e., an idle interval which appears due to termination
of all HI jobs that have arrived so far. Because in this case all
the jobs of BIHI∗ have terminated by time b, we have:

b = a+
∑

j∈BIHI∗

(
Cj(HI)− THI∗

j (a)
)

Let Js be the first job to switch in BIHI∗, at time ts. By
Lemma IV.5 and Corollary IV.6, we have that the same jobs,
with the same remaining execution time as in HI* will run
from time a in HI-Js before the switch and, by construction
after the switch as well. Therefore BIHI∗ = BIHI−Js and
J least, being the least-priority job, will terminate at time b in
both tables.

Let us now examine the other case, in which BIHI∗ =
(a, b), the busy interval where J least terminates, is followed
by a hole, i.e., the idle interval which appears because at time b
the rules for table HI* have disabled the non-terminated jobs.
Also in this case J least by our hypothesis and Lemma IV.4
will terminate at time b, but in this case by construction not
all jobs of BIHI∗ terminate by time b:

b < a+
∑

j∈BIHI∗

(
Cj(HI)− THI∗

j (a)
)

(3)

Let Js be the first job to switch in BIHI∗, at time ts. Again
by Lemma IV.5 and Corollary IV.6 we observe the same initial
state and subsequent behavior in tables HI* and HI-Js of all
non-terminated HI jobs during the time interval (a, ts]. So we
conclude that all jobs of BIHI∗ run in HI-Js after time a
continuously, at time a their total remaining work is equal to:∑

j∈BIHI∗

(
Cj(HI)− THI∗

j (a)
)

In line with equation (3), in order to complete this workload,
table HI-Js has to continue execution after time b. New
jobs may arrive before the termination of the busy interval
BIHI−Js . this busy interval executes all these jobs, J least

being the last one to terminate. So we have:

BIHI∗ ⊆ BIHI−Js

and

TTHI−Js

Jleast ≥ a+
∑

j∈BIHI∗

(
Cj(HI)− THI∗

j (a)
)

(4)

Combining (3) and (4), and observing that TTHI∗
Jleast = b,

we have that also in this case in HI-Js the least-priority job
terminates no earlier than in HI*. This completes the proof of
Theorem IV.3.

Fig. 2. The TT tables for the instance of Example IV.1

Proof of Theorem IV.1: From Lemma IV.2 we know
that in any possible scenario all the HI jobs will have enough
processor resource to terminate. The termination time of J least

is guaranteed to meet the deadline due to the hypothesis that
it meets deadline in the FPM policy and Theorem IV.3. Now
let us prove that also the HI jobs with higher priority in PTHI

meet their deadlines. Let J least be the next least priority HI job
after J least in the PTHI table. Let J be the currently examined
problem instance and let J be the instance obtained from J
by reducing the criticality of J least to LO. It is easy to show
that the HI-mode table HI∗ obtained for this new instance
coincides with HI* except that the intervals where J least is
running are idled. So, J least will terminate in HI* at the same
time as in HI∗, where by Theorem IV.3 applied to instance J
it will terminate no later than the latest termination under FPM
policy. Obviously, also the latest termination of the FPM policy
for job J least is the same for both J and J. Because by our
hypothesis this policy is feasible we conclude that J least meets
its deadline. Iterating this reasoning recursively, we argue that
all HI jobs meet their deadline in HI*, and thus we have our
thesis.

Theorem IV.1 proves that FPM ⊆ STTM. To prove the
strictness of the inclusion, we give the following counter-
example:

Example IV.1. Let Jd be the following instance:

Job A D χ C(LO) C(HI)
1 0 5 HI 2 3
2 1 3 HI 1 2
3 0 3 LO 1 1

No FPM policy would schedule it. The only correct
scheduling policy for Jd is to execute J1 for 1 time unit, then
J2. If J2 terminates after 1 time unit, we execute J3 and then
J1 again, otherwise we drop J3 and execute J1. It is easy
to see that this is not an FPM schedule, as J1 changes its
priority w.r.t. J3 in the LO scenario. This scheduling policy
can be implemented using STTM tables as shown in Figure 2

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a method to transform any FPM
priority assignment into a set of STTM tables. This has a
practical importance since safety critical systems are designed
with a TT (also known as static) scheduler. A TT scheduler
has a behavior that is completely precomputed. This makes
certification of such system much easier. Although STTM is
not static, it has a finite number of switches that can be trivially

checked the same way as TT. From a theoretical point of view,
we proved that STTM dominates FPM.

In future work we plan to extend this algorithm for more
than two levels of criticality. Also, it is necessary to investigate
the mixed-critical scheduling of task graphs, where there are
data dependencies between jobs.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium, RTSS’07, pp. 239–243, IEEE, 2007.

[2] D. d. Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of
mixed-criticality real-time task sets,” in Real-Time Systems Symposium,
RTSS’09, pp. 291–300, IEEE, 2009.

[3] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality
jobs,” IEEE Trans. Comput., vol. 61, pp. 1140 –1152, aug. 2012.

[4] L. A. Johnson, “DO-178B: Software considerations in airborne sys-
tems and equipment certification.,” in Radio Technical Commission for
Aeronautics., RTCA, 1992.

[5] S. K. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Real-Time and Embedded Technology and
Applications Symposium, RTAS’10, pp. 13–22, IEEE, 2010.

[6] S. Baruah and G. Fohler, “Certification-cognizant time-triggered
scheduling of mixed-criticality systems,” in Real-Time Systems Sym-
posium (RTSS), 2011 IEEE 32nd, pp. 3–12, 2011.

[7] T. Park and S. Kim, “Dynamic scheduling algorithm and its schedula-
bility analysis for certifiable dual-criticality systems,” in Intern. Conf.
on Embedded software, EMSOFT ’11, pp. 253–262, ACM, 2011.

[8] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, “The preemptive uniprocessor schedul-
ing of mixed-criticality implicit-deadline sporadic task systems,” in
Euromicro Conf. on Real-Time Systems, ECRTS’12, pp. 145–154, IEEE,
2012.

[9] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic tasks,” in Euromicro Conf. on Real-Time Systems,
ECRTS’12, pp. 145–154, IEEE, 2012.

[10] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Mixed critical
earliest deadline first,” in Euromicro Conf. on Real-Time Systems,
ECRTS’13, pp. 93–102, IEEE, 2013.

APPENDIX

The following example proves that MCEDF FPM .

Example A.1. Consider the following instance:

Job A D χ C(LO) C(HI)
1 0 8 LO 5 5
2 0 10 HI 2 3
3 0 11 HI 2 5

applying MCEDF4 to it we will have the following FPM
priority assignment:

PTLO = J2 ≺ J1 ≺ J3
PTHI = J2 ≺ J3

It is easy to show that this priority assignment is not
correct. In fact, if J2 executes for C2(LO) and J3 executes for
C3(HI), then J3 will terminate at time 12, missing its deadline.

4refer to [10] to know how to compute these priorities

Fig. 3. Basic scenarios for Example A.1

On the other hand, the following FPM assignment:

PTLO = J3 ≺ J1 ≺ J2
PTHI = J3 ≺ J2

is correct. This can be checked on the charts of Figure 3, where
the basic scenarios are reported.

