
Towards A More Practical Model for Mixed
Criticality Systems

A. Burns
Department of Computer Science,

University of York, UK.
Email: alan.burns@york.ac.uk

S.K. Baruah
Department of Computer Science,
University of North Carolina, US.

Email: baruah@cs.unc.edu

Abstract—Mixed Criticality Systems (MCSs) have been the
focus of considerable study over the last six years. This work has
lead to the definition of a standard model that allows processors
to be shared efficiently between tasks of different criticality levels.
Key aspects of this model are that a system is deemed to execute
in one of a small number of criticality modes; initially the system
is in the lowest criticality mode, but if any task executes for more
than its predefined budget for this criticality level then a mode
change is made to a higher criticality mode and all tasks of
the lowest criticality level are abandoned (aborted). The initial
criticality level is never revisited. This model has been useful in
defining key properties of MCSs, but it does not form a useful
basis for an actual implementation of a MCS. In this paper we
consider the tradeoffs stemming from a consideration of what
systems engineers require at run-time and the actual properties
of the model that scheduling analysis guarantees. Alternative
models are defined that allow low criticality tasks to continue to
execute after a criticality mode change. The paper also addresses
robust priority assignment.

I. INTRODUCTION

Although the formal study of mixed criticality systems
(MCSs) is a relatively new endeavor, starting with the paper
by Vestal (of Honeywell Aerospace) in 2007 [24], a standard
model has emerged (see for example [4], [5], [13], [14],
[19]). For dual criticality systems this standard model has the
following properties:
• A mixed criticality system is defined to execute in either

of two modes: a HI-crit mode and a LO-crit mode.
• Each task is characterised by the minimum inter-arrival

time of its jobs (period denoted by T ), deadline (relative
to the release of each job, denoted by D) and worst-
case execution time (one per criticality level), denoted by
C(HI) and C(LO). A key aspect of the standard MCS
model is that C(HI) ≥ C(LO).

• The system starts in the LO-crit mode, and remains in
that mode as long as all jobs execute within their low
criticality computation times (C(LO)).

• If any job executes for its C(LO) execution time without
completing then the system immediately moves to the HI-
crit mode.

• As the system moves to the HI-crit mode all LO-crit tasks
are abandoned. No further LO-crit jobs are executed.

• The system remains in the HI-crit mode.
• Tasks are assumed to be independent of each other (they

do not share any resource other than the processor).

This abstract behavioural model has been very useful in allow-
ing key properties of mixed criticality systems to be derived,
but it has met with some criticism from systems engineers1

that it does not match their expectations. In particular:
• In the HI-crit mode LO-crit tasks should not be aban-

doned but be allowed to make some progress, as long as
they are not interfering with HI-crit tasks.

• For systems which operate for long periods of time it
should be possible for the system to return to the LO-crit
mode when the conditions are appropriate.

• Whereas a HI-crit job executing for more than its C(LO)
execution time must induce a mode change, a LO-crit job
should be constrained so that it cannot execute for more
than C(LO) (so no a mode change).

Some of these criticisms are partly misplaced as any high
integrity system should remain in the LO-crit mode for its
entire execution: the transition to HI-crit mode is only a
theoretical possibility that the scheduling analysis can ex-
ploit [4]. Nevertheless, in less critical applications (such as
those envisaged in the automotive industry) actual criticality
mode changes may be experienced during operation and the
above criticisms should be addressed.
Our contributions. In this paper we address all of the con-
cerns listed above. First, we present alternative implementation
models that (a) do not abandon LO-crit tasks upon transition-
ing to HI-crit mode; and (b) define conditions for the system
to transition back to LO-crit mode. And second, we propose
priority-assignment techniques for fixed-priority mixed-crit
schemes that are more robust than previously-proposed tech-
niques in the sense that systems assigned priorities according
to these robust priority-assignment schemes are less likely to
undergo a mode change to HI-crit mode. In other work [9]
we have discussed (and removed) a further criticism of the
standard model – that tasks are independent. This was done
by revisiting and adapting the original priority ceiling protocol.
Other proposals comes from Lakshmanan et al. [15] They
define two protocols: PCIP (Priority and Criticality Inheritance
Protocol) and PCCP (Priority and Criticality Ceiling Protocol).
Both of these contain the notion of criticality inheritance. This

1For example at the tutorial presented at the 2012 Embedded System
Week http://www.esweek.org/ and at the workshop that was part of the
2013 HiPEAC conference http://www.hipeac.net/conference/berlin/workshop/
integration-mixed-criticality-subsystems-multi-core-processors.



notion is also used by Zhao et al. [25] in their HLC-PCP
(Highest-Locker Criticality Priority Ceiling Protocol).
Related work. Background material on MCS research can be
obtained from the following papers [2], [4], [5], [12]–[14],
[24]). A survey on MCS research is available from the MCC
(Mixed Criticality Systems on Many-core Platforms) project’s
web site2 Santy et al. [19] attempt to remove some of the
strictness of the standard model; however, they largely focus
on a different set of issues.

II. LIMITATIONS IMPOSED BY SCHEDULING ANALYSIS

The standard model requires an immediate change to the
HI-crit mode and the consequent abandonment of all active
LO-crit jobs upon a change to HI-crit mode. Despite this
simplifying assumption, it has been shown [2] that the mixed
criticality schedulability problem is strongly NP-hard even if
there are only two criticality levels. Hence only sufficient
rather than exact analysis is computationally feasible. One of
the consequences of this intractability is that a significant pro-
portion of the available (sufficient rather than exact) analysis
that has been produced for MCSs actually assumes that any
LO-crit job that has been released at the time of the mode
change will complete, rather than being aborted – this is the
case with, e.g., the analysis in [2], [4], [24] (although not the
analysis of the EDF-VD algorithm [3]).

For example, for constrained deadlines tasks, the Adaptive
Mixed Criticality (AMC Method 1 or AMC-rtb) approach
presented at RTSS in 2011 [4] first computes the worst-case
response times for all tasks in the LO-crit mode (denoted by
Ri(LO)). This is accomplished by solving, via fixed point
iteration, the following response-time equation for each task:

Ri(LO) = Ci(LO) +
∑

j∈hp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO) (1)

where hp(i) is the set of all tasks with priority higher than
that of task τi.

During the criticality change we are only concerned with
HI-crit tasks, so for these tasks:

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) +

∑
τk∈hpL(i)

⌈
Ri(HI)

Tk

⌉
Ck(LO) (2)

where hpH(i) is the set of HI-crit tasks with priority higher
than that of task τi and hpL(i) is the set of LO-crit tasks with
priority higher than that of task τi. So hp(i) is the union of
hpH(i) and hpL(i). Note Ri(HI) is only defined for HI-crit
tasks.

This equation is conservative for AMC as it does not take
into account the fact that LO-crit tasks cannot execute for the
entire busy period of a high criticality task in the HI-crit mode.

2http://www.cs.york.ac.uk/research/research-groups/rts/mcc/.

A change to HI-crit must occur before Ri(LO) and hence (2)
can be modified as follows:

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) +

∑
τk∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck(LO) (3)

which ‘caps’ the interference from LO-crit tasks as Ri(HI)
must be greater than Ri(LO).

The cap is however at its maximum level. The maximum
number of LO-crit jobs are assumed to interfere and each
of these jobs is assumed to complete – each inducing the
maximum interference of Ck(LO).

Finally in this section we note that if, for any HI-crit task,
Ri(HI) ≤ Di during the transition to the HI-crit mode then
this task will remain schedulable once the HI-critically mode
is fully established, and there is no execution from LO-crit
tasks.

III. ALTERNATIVE MODELS

Notice that one of the consequences of the limitations
imposed by the schedulability analysis that we described in
Section II above is that any LO-crit job, once released, is
assumed to complete. This “limitation” can be exploited in an
implementation model by only allowing the status of LO-crit
tasks to be changed when they are suspended between jobs.

To accommodate the requirement to allow some progress
for LO-crit tasks after the move to HI-crit mode, and to allow
a mode change back to LO-crit mode, LO-crit tasks must not
be abandoned. Rather they must remain runnable but in a way
that cannot impact on HI-crit jobs. For a fixed priority system
this means: (i) changing the priority of these tasks to be below
the lowest priority of any HI-crit task, or (ii) reducing the
execution time requirements of these tasks so that both HI
and LO criticality tasks can execute successfully in the HI-
crit mode, or (iii) extending the period of the LO-crit tasks to
achieve the same result.

In the rest of this paper we will concentrate on single proces-
sor systems scheduled using fixed priorities. We consider three
complimentary schemes. In the first LO-crit tasks have their
priorities reduced, in the second they have their execution-time
requirements reduced, and in the third they have their periods
extended.

A. Reducing LO-crit Tasks’ Priorities

Although with fixed priority scheduling priorities are
‘fixed’, to accommodate the requirements identified above,
it must be possible to dynamically change the priority of a
LO-crit task. Such tasks will have two priorities, Pi(LO) and
Pi(HI); with the constraints that Pi(HI) ≤ Pi(LO) and
Pi(HI) < minj∈HI (Pj) where HI is the set of all HI-crit
tasks. We note that most RTOSs and programming languages
allow the base priority of a task to be altered. For optimal
performance the relative ordering of the priorities of LO-crit
tasks will be the same in both criticality modes.



At run-time the overhead cost of changing the priority
of a runnable task can be relatively high as the task must
be taken out of the run queue and then reinserted at the
place appropriate for its new priority. Fortunately due to the
limitations of the analysis, which not only assumes all LO-
crit jobs complete but also assumes they do so at their current
priority, it is acceptable to only modify the priority of a task
(from Pi(LO) to Pi(HI)) when the task is suspended.

To return the system from HI-crit to LO-crit requires that a
further mode change is undertaken. This is a more extensive
mode change as new work (the LO-crit tasks) needs to be
reintegrated with the HI-crit work. Although there is analysis
that attempts to deal with complex mode change protocols
(eg. [17]), the most straightforward and easily verified protocol
to use is one that simply waits for a system idle tick and then
makes the mode change [23]. As the system is idle at that
point there can be no behavioural impact on the new LO-crit
mode from the previous HI-crit mode. This issue has been
further investigated in two recent papers [16], [20].

All but the simplest models of MCS require that the execu-
tion times of all jobs are monitored. Most RTOSs will allow
this to be done for single processor systems (although the
problem for multi-core platforms with shared buses remains
an open issue). For LO-crit tasks, an adequate behaviour
is for them to be prevented from executing for more than
their C(LO) budget. For HI-crit jobs there is no run-time
benefit to be gained from capping their execution times, but
the criticality mode switch must be made if any HI-crit job
executes for its C(LO) value without signaling completion.

B. Reducing LO-crit Tasks’ Execution Time Budgets

One possible criticism of the above scheme is that if LO-crit
tasks can have their priorities changed, this capability could
be exploited in a security breach to undermine the assurances
given to the HI criticality tasks. Another problem with the
approach is that no guarantees can be given to short deadline
LO-crit jobs executing after the mode change. In practice
there is likely to be spare capacity available (once the HI-
crit tasks have been scheduled in the high criticality mode)
and this capacity could be used to guarantee at least some
level of service to some of the LO-crit tasks. In this section
we introduce a different mixed criticality model that explicitly
retains (some) LO-crit work in the HI-crit mode.

We first introduce the model under the assumption that there
is a specific level of LO-crit work that must be guaranteed;
i.e. there is a schedulability test that will either accept, or
not, a given task set. This test is then used, in the context
of sensitivity analysis, to explore what levels of service are
possible whilst retaining schedulability.

The modified system model is as follows. Each task, τi is
defined by the parameters: Ti, Di, Li, Ci(LO) and Ci(HI).
For HI-crit tasks Ci(HI) ≥ Ci(LO), for LO-crit tasks
Ci(LO) ≥ Ci(HI). Note, for some LO-crit tasks Ci(HI) may
be zero meaning that no jobs of such tasks start their execution
once the system is in the HI-crit mode. Static priorities (Pi) are
assigned to the tasks according to Audsley’s Optimal Priority

Assignment algorithm [1] (as explained in [4], [24]). The
system model is now defined by the following behaviours:
• The system starts in the LO-crit mode, and remains in that

mode as long as all HI-crit tasks execute within their low
criticality computation times (C(LO)).

• If any job of a HI-crit task τi executes for its Ci(LO)
value without completing then the system immediately
moves to the HI-crit mode.

• The priorities of tasks are never modified.
• No job of a LO-crit task τk is allowed to execute for

more than its Ck(LO) parameter in the LO-crit mode or
its Ck(HI) parameter in the HI-crit mode; any attempt
to do so will result in the task being suspended until its
next release (at least Tk after its last release).

• There is no bound on the execution time of HI-crit tasks.
• If the system is in the HI-crit mode and there is an

idle tick then the system can move back to the LO-crit
mode and all LO-crit tasks can have their execution time
budgets restored to their original C(LO) values.

Note that a LO-crit job released in the LO-crit mode is
not guaranteed to receive processing time of C(LO) by its
deadline, if there is a mode change during its execution and
its budget is reduced. It is however guaranteed to receive
processing time of C(HI) by its deadline.

We can now give the schedulability test for this model, using
the AMC-rtb (Method 1) approach. Equation (1) is again used
to compute the worst-case response time of all tasks in the LO-
crit mode. Considering the HI-crit mode, the starting point is
(3). This equation assumes that no LO-crit job released after
Ri(LO) can interfere with a HI-crit task τi. Now we allow
interference, but at a lower level. This is easily accommodated;
firstly for HI-crit tasks:

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) +

∑
τk∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck(LO) +

∑
τk∈hpL(i)

(⌈
Ri(HI)

Tk

⌉
−
⌈
Ri(LO)

Tk

⌉)
Ck(HI) (4)

Note that as Ri(HI) is always greater than or equal to Ri(LO)
the final term in (4) is never negative. Equation (4) thus
assumes the maximum possible number of releases of LO-crit
tasks with the higher execution time.

An alternative form for (4) is available by simply rearrang-
ing the terms:

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) +

∑
τk∈hpL(i)

⌈
Ri(LO)

Tk

⌉
(Ck(LO)− Ck(HI)) +



∑
τk∈hpL(i)

⌈
Ri(HI)

Tk

⌉
Ck(HI)

to give:

Ri(HI) = Ci(HI) +
∑

τj∈hp(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) +

∑
τk∈hpL(i)

⌈
Ri(LO)

Tk

⌉
(Ck(LO)− Ck(HI)). (5)

For a LO-crit task τi, which now continues after the mode
change, but with a reduced execution time requirement of
Ci(HI), the above equation also applies; however, a tighter
formulation is also possible. We note that if the task has
already executed for Ci(HI) in the LO-crit mode, then it has
trivially met its requirements in the HI-crit mode. Therefore
we need only consider the case where the mode change occurs
before it has executed for Ci(HI). Equation (1) computes the
worst-case response-time for LO-crit tasks assuming that the
task’s own requirement is Ci(LO), but here the only scenario
of interest is when the mode change occurs before it has
executed for Ci(HI) which must be earlier as Ci(HI) ≤
Ci(LO). Hence (1) can be modified for LO-crit tasks to give:

R∗i (LO) = Ci(HI) +
∑

j∈hp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO) (6)

and (4) then becomes:

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) +

∑
τk∈hpL(i)

⌈
R∗i (LO)

Tk

⌉
Ck(LO) +

∑
τk∈hpL(i)

(⌈
Ri(HI)

Tk

⌉
−
⌈
R∗i (LO)

Tk

⌉)
Ck(HI) (7)

again this can be rearranged to give:

Ri(HI) = Ci(HI) +
∑

τj∈hp(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) +

∑
τk∈hpL(i)

⌈
R∗i (LO)

Tk

⌉
(Ck(LO)− Ck(HI)). (8)

As indicated earlier, (4) and (7) (or (5) and (8)) could
be used to test a specific application’s requirements. More
practically, they would be used to explore the design space
– how much guaranteed capacity is available once all HI-crit
tasks are validated? Sensitivity analysis [8], [18] could be used
to explore this space. Possible questions to consider are:
• How many LO-crit tasks can have their full capacity (i.e.
C(HI) = C(LO)) with the rest having C(HI) = 0?

• By how much must all the C(LO) of LO-crit tasks be
reduced (i.e. C(HI) = α ·C(LO)) with α < 1 to give a
schedulable system?

• Can some or all LO-crit tasks employ alternative versions
that take less resources?

With this implementation model the mode change back to
LO-crit is straightforward. Again a low priority ‘background’
task can be used to implement the change back to LO-crit
mode; however, now the only action of this task is to return
the budgets for each LO-crit task to their larger LO-crit values
(C(LO) rather than C(HI)). This should be done atomically
to avoid any potential race condition.

C. Increasing LO-crit Tasks’ Periods

The elastic scheduling model [10] has been applied [22]
to EDF scheduled mixed criticality systems to allow a LO-
crit task to have its period extended after a mode change. We
can apply this idea to fixed priority systems by allowing a
LO-crit task to have two period values: Ti(LO) and Ti(HI)
with Ti(LO) ≤ Ti(HI). After a mode change the task can
be released again but with an extended period (and perhaps
also a reduced budget). The equations of the previous section
can be extended to include a revised period after the mode
change. But as space is restricted this is left as an exercise for
the reader.

D. Capacity Inheritance with the Budget Reduction Scheme

The previous subsections have introduced three different
schemes for dealing with LO-crit tasks following a mode
change to HI-crit. One reduces LO-crit tasks to, in effect,
the background level; here they can utilise all available spare
capacity, but the schedulability of LO-crit tasks after the
criticality mode change is seriously undermined. The other
schemes guarantees some level of service, but does not utilise
spare capacity. This is a significant drawback as there is likely
to be considerable spare capacity in the HI-crit mode. A HI-
crit job may execute for more than C(LO), but will most
likely complete well before it has used its full C(HI) budget
– most of

(
C(HI)− C(LO)

)
could be available for LO-crit

jobs.
To improve the effectiveness of the second scheme two

strategies are possible:
1) Use the schemes together – once a low criticality job

has used up its C(HI) budget its priority is lowered to
its background level (Pi(HI)) where it can continue to
execute.

2) The spare capacity from HI-crit jobs is directly assigned
to LO-crit jobs.

The second strategy can exploit previously published tech-
niques such as Extended Priority Exchange [21], Capacity
Sharing [7] and History Rewriting [6] that were developed
for combined hard and soft real-time fixed priority task sets.
Within the context of mixed criticality systems these tech-
niques would work as follows. Assume the system is in the
HI-crit mode.



• All HI-crit tasks have a budget equal to their maximum,
guaranteed, execution time C(HI).

• At run-time the actual execution time of each HI-crit job
is monitored;

• When a job with release time s and absolute deadline d
(with d = s+D) completes, its actual execution time is
noted (e) and its gain time (g) is computed (g = C(HI)−
e); g is assumed to be non-negative.

• The gain time is available to be allocated to lower priority
jobs.

• The gain time must be used by d (its expiry time).
The three techniques referenced above allocate the gain time
in different ways. For Extended Priority Exchange [21]:
• The gain time is allocated to the budget of the next

highest priority task that is ready to execute. (Note if
there is no ready task, then the gain time is lost).

For Capacity Sharing [7]:
• An executing job first uses its own budget of C(HI).
• When this budget is exhausted it ‘pulls down’ extra

capacity from any available higher priority gain time.
• The LO-crit job is said to be plugged to the budget of

the host HI-crit job.
• The plug is broken when the expiry time is reached, the

capacity is exhausted or the job completes.
If there are a number of higher priority gain times available
then any can be chosen and indeed more than one can be
utilised, though only one at a time. Useful heuristics to use are:
use the biggest g first, or use the earliest d first. An analysis
of these heuristics and the implementation efficiency of the
Capacity Sharing scheme is described in [7].

For History Rewriting [6] a retrospective reallocation of
budgets is undertaken. The problem with Capacity Sharing
is that the gain time has to be used before its expiry time or
it is lost. This is not the case with History Rewriting which
has the following characteristics:
• At the deadline (d) of a job the gain time is noted (g).
• A lower priority task that has executed for e before d is

chosen and its budget is increased by max (g, e− g), g
is reduced by this amount.

• Any remaining gain time is further allocated to lower
priority tasks.

In effect, a job that was executing from its own budget is
deemed to have been executing from the gain time of a higher
priority job, and hence its own budget is intact and can be
used to further the execution of the job. Further details of this
approach are given in [6].

Job Crit C(LO) C(HI) s d e g
τ1 HI 1 4 0 8 2 2
τ2 LO 6 4 4 12 - -

TABLE I
TWO JOB EXAMPLE

For an example of History Rewriting consider the simple
system of two jobs as defined in Table I. In the HI-crit

mode both jobs are guaranteed 4 units of execution (although
the LO-crit job would prefer 6). As τ1 only executes for
2 units there is a gain time of 2 at time 2. But τ2 is not
active at time 2 and so the gain time cannot be utilised with
Extended Priority Exchange or Capacity Sharing. With History
Rewriting, however, the gain time of 2 becomes available at
the deadline of τ1 at time 8 after τ2 has executed for 4 units.
Two of these units can now be considered to be gain time
and hence τ2 can execute at time 8 for 2 more units thereby
satisfying its full requirement.

IV. ROBUST PRIORITY ASSIGNMENT

For a dual-crit system C(LO) values must, of course, be
known. Once schedulability has been established however, it
is possible to derive [19], using sensitivity analysis, a scaling
factor f (f > 1) such that the system remains schedulable
with all C(LO) values replaced by f · C(LO). Using these
scaled values at run-time will increase the robustness of the
system, as LO-crit tasks will be able to execute for longer
before they are suspended. Further, HI-crit tasks will be able
to execute for longer without inducing a mode change.

Although the work of Santy et al. [19] allows the com-
putation time of tasks to be increased it does this without
modification to the priority ordering of the tasks. Here, we
note that as the use of Audsley’s Optimal Priority Assignment
algorithm takes into account task computation times, a scheme
that looks to increase robustness by extending the allowed
execution times, will perform better if it also considers priority
assignment.

In their work on Robust Priority Assignment algorithms,
Davis and Burns [11] showed that for a general class of
additional interference functions, Deadline Monotonic (DM)
is both an optimal and a robust partial ordering for any
subset of tasks that would on their own have DM as their
optimal priority ordering. In this way, HI-crit tasks may be
viewed as the subset of tasks which have DM as their optimal
partial order with the LO-crit tasks constituting additional
interference, and also vice-versa (assuming that all of the tasks
have constrained deadlines). Hence an overall optimal and
robust priority ordering can be achieved via a merge of the
DM partial order of HI-crit tasks with the DM partial order of
LO-crit tasks as described in [4]. This requires at most 2n−1
task schedulability tests for a system of n tasks.

We note that changes to execution times will not affect the
separate DM partial orderings of the two groups of tasks, but
will potentially change the merge and hence the overall priority
ordering. For example, if all C(LO) values are close to zero
but all C(HI) values for HI-crit tasks are at their maximum
level for schedulability then a total priority ordering in which
all HI-crit tasks have higher priorities than all LO-crit tasks
is optimal; however, if we increase the budgets for LO-crit
execution and make C(LO) equal to C(HI) for all tasks then
the optimal and robust priority ordering has the complete set
of tasks in DM order.

Given the benefits that priority reassignment provides, we
recommend this straightforward extension to Santy et al.’s



approach [19].

V. CONCLUSIONS

This paper has addressed some of the issues that have been
raised with what has become the standard analysis model for
mixed criticality systems. As the tightest available analysis
often assumes any released LO-crit job completes, there is no
benefit for the actual run-time behaviour to require that LO-
crit jobs are immediately abandoned. There is, however, a need
for a real implementation to incorporate a means of returning
the mode of the system to the initial mode if conditions are
acceptable for this to occur. These needs are satisfied by the
model presented in this paper. Other topics covered in this
paper include allowing reduced but still guaranteed behaviour
for low criticality tasks after a criticality mode change, and
the use of robust priority assignment to reduce the likelihood
of such mode changes.

This paper, like many on mixed criticality, is limited to only
addressing dual criticality systems. This restriction helps to
clarify descriptions. However, it is important that protocols do
generalise to a realistic number of criticality levels. Perhaps
up to five levels may be needed (see, for example, the IEC
61508, DO-178B, DO-254 and ISO 26262 standards). In
the models presented in this paper, HI-crit tasks have the
particular property that they are not themselves abandoned
if they execute for more than their budgets. As they have
the highest criticality level the best run-time behaviour is
always to allow them to continue to execute. When more than
two levels are present then only the highest criticality level
retains this ‘privilege’. All the others must be monitored and
criticality mode changes affected where necessary. The models
developed in this paper are easily extended to a small number
of levels. With, say, five levels of criticality it is unlikely that
a task will have five levels of service defined. Nevertheless the
models defined do have the capability to be used in this way.

Taken together, the contributions of this paper aim to define
a model for mixed criticality systems that has practical utility.
It aims to ease the movement of the wealth of theoretical
results that have appeared since 2007 into industrial practice.

Acknowledgements

This research has been supported in part by NSF grants
CNS 0834270, CNS 0834132, and CNS 1016954; ARO
grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-0549;
AFRL grant FA8750-11-1-0033 and EPSRC(UK) grant MCC
(EP/K01 1626/1). We thank Rob Davis for this assistance.

REFERENCES

[1] N.C. Audsley. On priority assignment in fixed priority scheduling.
Information Processing Letters, 79(1):39–44, 2001.

[2] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie. Scheduling real-time mixed-criticality jobs.
IEEE Transactions on Computers, 61(8):1140–1152, 2012.

[3] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie. The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems. In Proc. of
ECRTS, Pisa, pages 145–154, 2012.

[4] S.K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for
mixed criticality systems. In IEEE Real-Time Systems Symposium
(RTSS), pages 34–43, 2011.

[5] S.K. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with
multiple criticality specifications. In ECRTS, pages 147–155, 2008.

[6] G. Bernat, I. Broster, and A. Burns. Rewriting history to exploit gain
time. In Proc. Real-time Systems Symposium, pages 328–335, Lisbon,
Portugal, 2004. Computer Society, IEEE.

[7] G. Bernat and A. Burns. Multiple servers and capacity sharing for
implementing flexible scheduling. Real-Time Systems Journal, 22:49–
75, 2002.

[8] E. Bini, M. Di Natale, and G.C. Buttazzo. Sensitivity analysis for fixed-
priority real-time systems. In Proc. ECRTS, pages 13–22, 2006.

[9] A. Burns. The application of the original priority ceiling protocol to
mixed criticality systems. In L. George and G. Lipari, editors, Proc.
ReTiMiCS, RTCSA, pages 7–11, 2013.

[10] G. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive
rate control. In IEEE Real-Time Systems Symposium, pages 286–295,
1998.

[11] R.I. Davis and A. Burns. Robust priority assignment for fixed priority
real-time systems. In Proc. of IEEE Real-Time Systems Symposium
(RTSS), 2007.

[12] F. Dorin, P. Richard, M. Richard, and J. Goossens. Schedulability
and sensitivity analysis of multiple criticality tasks with fixed-priorities.
Real-Time Systems Journal, 46(3):305–331, 2010.

[13] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-
criticality sporadic task systems. In ECRTS, pages 135–144, 2012.

[14] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems. In IEEE
RTSS, pages 13–23, 2011.

[15] K. Lakshmanan, D. de Niz, and R. Rajkumar. Mixed-criticality task
synchronization in zero-slack scheduling. In IEEE RTAS, pages 47–56,
2011.

[16] M. Neukirchner, S. Quinton, and K. Lampka. Multi-mode monitoring for
mixed-criticality real-time systems. In Int’l Conf. on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2013.

[17] P. Pedro and A. Burns. Schedulability analysis for mode changes in
flexible real-time systems. In 10th Euromicro Workshop on Real-Time
Systems, pages 172–179. IEEE Computer Society, 1998.

[18] S. Punnekkat, R. Davis, and A. Burns. Sensitivity analysis of real-time
task sets. In Proc. of the Conference of Advances in Computing Science
- ASIAN ’97, pages 72–82. Springer, 1997.

[19] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP. In Proc.
of the Euromicro Conference on Real-Time Systems, pages 155–165,
2012.

[20] F. Santy, G. Raravi, G. Nelissen, V. Nelis, P. Kumar, J. Goossens, and
E. Tovar. Two protocols to reduce the criticality level of multiprocessor
mixed-criticality systems. In Proc. RTNS, pages 183–192. ACM, 2013.

[21] B. Sprunt, J. Lehoczky, and L. Sha. Exploiting unused periodic time
for aperiodic service using the extended priority exchange algorithm. In
Proc. 9th IEEE Real-Time Systems Symposium, pages 251–258, 1988.

[22] H. Su and D. Zhu. An elastic mixed-criticality task model and its
scheduling algorithm. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE, pages 147–152, 2013.

[23] K. Tindell and A Alonso. A very simple protocol for mode changes in
priority preemptive systems. Technical report, Universidad Politecnica
de Madrid, 1996.

[24] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. of the IEEE
Real-Time Systems Symposium (RTSS), pages 239–243, 2007.

[25] Q. Zhao, Z. Gu, and H. Zeng. HLC-PCP: A resource synchronization
protocol for certifiable mixed criticality scheduling. Embedded Systems
Letters, IEEE, PP(99), 2013.


