
On the Expressiveness of Fixed-Priority Scheduling
Contexts for Mixed-Criticality Scheduling

Marcus Völp∗†
∗School of Computer Science, Logical Systems Lab

Carnegie Mellon University
Pittsburgh, PA, USA
mvoelp@cs.cmu.edu

Adam Lackorzynski†, Hermann Härtig†
†Institute for Systems Architecture, Operating Systems Group

Technische Universität Dresden
Dresden, Germany

{voelp, adam, haertig}@os.inf.tu-dresden.de

Abstract—Scheduling contexts allow flattening hierarchical
schedules in virtualized mixed-criticality setups. However, their
expressiveness in terms of supported higher-level scheduling
algorithms is not yet well understood. This paper makes a first
step in this direction by investigating how recently proposed
mixed-criticality algorithms can be mapped to fixed-priority
scheduling contexts and how scheduling contexts can be extended
to support these algorithms. We found that although the initial
implementation of scheduling contexts was rather limited, a few
practically feasible extensions broadened their applicability to all
investigated algorithms.

I. INTRODUCTION

In 2005, Steinberg, Wolter and Härtig [1] introduced
scheduling contexts as an elegant and simple way of imple-
menting priority inheritance in microkernel-based systems. In
these systems the majority of resources are threads executing
in application-level servers. The basic idea is to schedule time
quanta (described through scheduling contexts) instead of the
threads or jobs that correspond to them. This way, inheritance
is simply a matter of activating the recipient thread whenever
the quanta is selected.

The primary purpose of scheduling contexts was to improve
imprecise [2] and quality-assuring scheduling [3]. However, we
have seen examples that make use of scheduling contexts in a
much more general way, even when not donating them to other
threads. For example, Lackorzynski et al. [4] demonstrated
the flattening of hierarchical mixed-criticality schedules in
virtualized guest operating systems by exporting part of the
internal task structure to the hypervisor and by assigning guests
multiple scheduling contexts to choose from. But how general
are scheduling contexts and how can they be extended to
become more general?

As a first step in this direction, this paper investigates how
mixed-criticality scheduling can be mapped to a scheduling-
context-based fixed-priority scheduler in the hypervisor.

Mixed-criticality scheduling [5] seeks to consolidate tasks
of different importance (or criticality) into the same system.
Naturally, because tasks of higher criticality may cause more
severe damage when late, their analysis is taken more se-
riously and results in more pessimistic worst-case execution
time (WCET) estimates. Mixed-criticality scheduling is about
granting all tasks (lower and higher criticality) their optimistic
estimates while guaranteeing the completion of higher criti-

H

L

3 6

criticality inversion criticality decision point

τ

τ

Fig. 1. Schedule of τL = (LO , 3, 3, (1,−)T) and τH =
(HI , 6, 6, (3, 2)T). Shown is the criticality inversion of τLO,1 and the
criticality decision point after τHI ,1 received 3 time units.

cality tasks in the exceptional case where one of the more
optimistic WCET estimates ceases to hold.

As a side-effect of guaranteeing up to the optimistic WCET
estimates for all tasks in case all higher criticality jobs com-
plete within low bounds, a particularly puzzling situation called
criticality inversion may occur. Figure 1 gives an example of
such a situation for the two tasks τL and τH . Here, and in
the following, we denote the release of a job with an upward
arrow and its absolute deadline with a downward arrow. Darker
colors are used to mark the excess budget of a task, that
is the difference between the WCET estimate for the higher
criticality level and for the respective next lower. If we had
given τH priority over the first job of τL, the low criticality
job could miss its deadline if τH executes longer than two
time units. Latest at time 4, after τH received 3 time units,
we know whether τH exceeds its low WCET estimate. If so,
the scheduler drops the second job of τL and relocates its
resources to τH in order to guarantee the completion of high
criticality tasks in all situations. Otherwise, if τH stops within
the low bounds, sufficient time remains to complete τLO,2. We
call the point in time after which τH received its low budget
a criticality decision point of τH .

The contribution of this paper is an analysis of situa-
tions like the one in Figure 1 to identify whether and how
mixed-criticality schedulers can be mapped to a configuration
of scheduling contexts. More precisely, we shall look at
such mappings for the mixed-criticality schedulers: criticality
monotonic (CrMPO) [5], [6], own-criticality based priority
(OCBP) [5], [6] and several static mixed criticality variants
(SMC-*) [7], adaptive mixed criticality (AMC-*) [7], and
earliest deadline first with virtual deadlines (EDF-VD) [8].

After formally introducing mixed-criticality tasksets, their
feasibility criterion and scheduling contexts, we exemplify how
such a mapping works by reciting some of the results from
flattening. In Section III, we return to the question how to
map the above schedulers to a fixed-priority scheduler with
multiple scheduling contexts per task. Section IV reviews
related attempts. Section V summarizes what we achieved and
shows directions where to go from here.

II. MIXED CRITICALITY, SCHEDULING CONTEXTS AND
FLATTENING

A. Mixed Criticality

Although mixed-criticality scheduling is not limited to
sporadic tasks, let us focus in this paper on this specific type
of tasksets.

Let li ∈ L be the criticality level of the sporadic task τi
drawn from the totally ordered set of criticality levels L. We
characterize τi by the tuple τi = (li, δi, Pi, Ci) where δi is the
deadline relative to the release ri,j of τi’s current job τi,j and
Pi is the minimal interrelease time. We assume constrained
task sets, that is, δi ≤ Pi. The vector Ci denotes for each
criticality level l the WCET estimate Ci(l) at this level. We
assume WCET estimates are monotonically increasing with
increasing criticality level and constrain Ci by Ci(l) ≤ Ci(h)
for every l ≤ h. We generally assume that schedulers enforce
the execution budgets they grant. That is, once a job exceeds
Ci(li), the scheduler will reclaim all resources assigned to it (in
our case CPU-time). It is therefore safe to set Ci(h) = Ci(li)
for all criticality levels h ≥ li. The feasibility criterion for
mixed-criticality schedulers is:

Definition 1 (MC-Schedulability): A task set T is mixed-
criticality schedulable if all jobs τi,j receive Ci(li) time units
in between ri,j and ri,j + δi provided all jobs of higher
criticality tasks τh complete before Ch(li).

From Baruah and Vestal [9] we know that sporadic task
sets are MC-schedulable if they are MC-schedulable at their
synchronous arrival sequence. In this sequence, the first job of
all tasks arrives at time 0 and subsequent jobs follow Pi apart.
Also we know from Baruah et al. [10] that OCBP is optimal
among the class of fixed job-priority algorithms.

In this paper, we shall use the terms job and task (i.e.,
sequence of jobs) to refer to the entities considered by mixed-
criticality schedulers and scheduling contexts (SC) and thread
when we talk about mapping tasks and jobs to a SC-based
scheduler. We will introduce SCs in the next paragraph. We
shall also write x̂ to distinguish SC parameters from task pa-
rameters, which we denote by simple variables x. We assume
that threads signal completion after they finish executing a job
and that they then wait for a signal indicating the release of
the next job.

B. Scheduling Contexts

In the following we introduce scheduling contexts (SC)
and exemplify their use in previous work [4]. SCs are basic
operating system primitives that are used for driving schedul-
ing decisions. Traditionally, operating systems keep scheduling
information (such as a thread’s priority or budget) and all

other thread-specific information (such as the thread’s user-
level register content) in the same data structure called thread
control block (TCB). SC-based systems refactor TCBs into
two data structures: the scheduling context (SC), which keeps
all scheduling information plus the pointers to be linked into
the ready queue, and the execution context (EC), which keeps
all remaining state that is required to execute the thread.

Now by separating SCs and ECs, the first limitation of
TCBs that can easily be dropped is that threads can have
no more than one time quantum. For now we regard a time
quantum as a guarantee of the scheduler to provide CPU
time up to a given budget Ĉi (typically set to the task’s
WCET Ci) every P̂k time units whenever there is no thread
that is currently consuming higher prioritized time. Imprecise
computations [2] and quality assurance scheduling [3] made
use of this option to prioritize the mandatory work of all
threads over optional parts such as filters and other video post-
processing steps, which improve the result. The mechanism
that is required to implement these scenarios is the ability to
switch between SCs. That is, a thread executing on an SC must
be able to select another SC, possibly discarding the remaining
budget of the former.

A second application becomes possible by allowing also
incoming signals to choose SCs. When scheduling the virtual
CPUs (vCPUs) of multiple virtual machines (VM) one has
to frequently activate each to preserve the impression of
reactiveness although the VM may be off focus and running
non-interactive background load. By assigning one SC with
a small high priority time quantum and a second SC with a
larger quantum but lower priority, VMs can react quickly to
incoming signals activating the high priority SC and dropping
down to the low priority SC for non-interactive tasks or in other
situations determined by the VM-internal scheduler. Running
applications of different importance in a VM turns this setup
into a mixed-criticality system.

C. Flattening: Exemplifying SCs for Mixed Criticality

To obtain a deeper understanding how SCs can express
mixed-criticality systems and in particular to clarify some of
the properties we like to preserve when extending SC-based
scheduling, let us repeat some of the results from flattening
hierarchical mixed-criticality scheduling.

When considering VMs, time-slicing multiple vCPUs on
one physical CPU is a typical approach to progress tasks
scheduled by the VMs’ internal schedulers. However, when
VMs are mixed-criticality, time-slicing ceases to work. In [4],
we presented an example similar to the one depicted in
Figure 2(a). Assume two VMs (VMA and VMB) run the
two low criticality tasks τAL = (LO , 3, 3, (1, 1)T) and τ

′A
L =

(LO , 6, 6, (1, 1)T) in VMA and the high criticality task τBH =
(HI , 6, 6, (3, 4)T) in VMB on the same physical CPU. It is
easy to see that there is no single time quanta such that VMA’s
and VMB’s internal scheduler can guarantee that all tasks meet
their deadlines. Because CH(LO) = 3, we have to prioritize
τAL over τBH and invert criticality. But then, if we assign a single
budget of ĈA = 1.5 time units every P̂A = 3 (or even a budget
of 1 for the first 3 time units and of 2 for the second 3), VMB

can no longer guarantee the completion of τBH . However, if like
in Figure 2(b) we assign two distinct time quanta to VMA by

H

L

3 6

L

VMA

VMB
B

‘A

Aτ

τ

τ

(a) without SCs and flattening

H

L

L
VMA

VMB

VMA

3 6

B

‘A

Aτ

τ

τ

(b) with flattening

Fig. 2. Mixed-criticality schedule of the tasks τAL = (LO , 3, 3, (1, 1)T) and τ
′A
L = (LO , 6, 6, (1, 1)T) in VMA and τBH = (HI , 6, 6, (3, 4)T) in VMB .

linking to it one scheduling context SC1
A with Ĉ1

A = 1 every
P̂ 1
A = 3 and a second one SC2

A with Ĉ2
A = 1 every P̂ 2

A = 6,
the taskset becomes MC schedulable. The priority ordering for
this to work is that SC1

A is higher prioritized than SCB and
SC2

A lower than SCB .

In Figure 2(b), the scheduler inside VMA used the budget
of SC1

A to run τAL and SC2
A to run τ

′A
L . However, it is also

possible for VMA to use SC1
A at time 3 to complete τ

′A
L and

leave SC2
A for τAL ’s second job. There are two points why this

choice is important: First, although we will not further follow
this direction in this paper, we would like to allow VMs to
hide as much of their internal structure as possible. That is,
VM internal schedulers should be able to give guarantees to
the VM internal threads without having to expose all these
threads to the hypervisor scheduler, which in fact may be
different from the internal scheduler. However, unlike typical
hierarchical schedulers (see e.g., Regehr and Stankovic [11] or
Zhang and Burns [12]), SCs allow nested schedulers to work
with more than just a single time quantum.

The second important point is that we seek to build our sys-
tems such that guarantees are robust against failures in tasks,
nested schedulers or even the entire VM. As a consequence,
any operation that a VM or thread may perform on its assigned
SCs must not violate the timing guarantees offered to other
threads. Notice, we do not extend this control to the thread
as a whole because SCs provide us external control over the
timing behavior of a thread without having to worry about the
remainder of its state. An execution context without an SC
simply will never get the CPU.

III. MIXED-CRITICALITY SCHEDULING WITH
SCHEDULING CONTEXTS

We now turn our attention to the mapping of mixed
criticality schedulers to SCs.

A. Criticality-Monotonic and
Static Fixed Task-Priority Algorithms

The initial implementation described in Steinberg et al. [1]
equipped SCs with just a budget Ĉi, a period P̂i and a priority
πi. However, they already allowed restricting their release to
the point in time when both an inter-process communication
message was received and P̂i time units have passed since the
last release. SCs were scheduled by a fixed-priority scheduler
and only the single highest prioritized active SC was kept in
the scheduler’s ready queue.

It is easy to see that such a setting can support implicit
deadline constrained sporadic tasksets (i.e., tasks with δi = Pi)
and static-priority mixed-criticality schedulers. A scheduler is
static-priority if it assigns a fixed priority to each task and then
relies on this priority (and the enforcement of deadlines and
budgets) to ensure MC schedulability. Each task τi is assigned
exactly1 one SC with Ĉi = Ci(li) and P̂i = Pi.

Prominent examples of such a mixed-criticality scheduler
are the fixed task-priority instances of the Criticality Mono-
tonic Priority Ordering (CrMPO) [6] family. CrMPO assigns
priorities such that higher criticality tasks are strictly higher
prioritized than lower criticality tasks. Within the priority
strips of equally critical tasks, priorities are assigned following
a standard scheduling algorithm such as rate or deadline
monotonic.

H

H

VMA

VMB

3 6

L

A

B

A

τ

τ

τ

Fig. 3. Deadline overrun with side effect to task in other VM.

Standard SCs are not equipped for enforcing deadlines of
constrained tasksets. For example, the taskset comprised of
τAH = (HI , 4, 6, (2, 4)T), τAL = (LO , 3, 3, (1, 1)T) and τBH =
(HI , 6, 6, (1, 2)) is MC-feasible (e.g., with πA

H > πA
L > πB

H).
However, a bug in τAH causing a late start after its release may
result in τAH overrunning its deadline and in turn τBH missing
its deadline. Figure 3 illustrates this point.

To support constrained deadline sporadic tasks, our first
extension to SCs is a deadline δ̂i up to which budgets must
have been consumed to not interfere with other tasks in the
way we have just seen. Because our scheduler enforces budgets
by setting a timeout to the remaining budget Ĉi,remaining ,
enforcing deadlines comes almost for free. Instead of setting
this timeout to t + Ĉi,remaining when switching at time t to
τi,j , we set it to min(t + Ĉi,remaining , ri,j + δ̂i) where ri,j
is the release of τi,j . The only situation where constrained

1In case of hierarchical scheduling, multiple tasks of the same VM with
adjacent priorities and the same periods could be consolidated to the same
SC. However, as already mentioned, this line of argumentation is out of the
scope of this paper.

2

1

3 6

τ

τ

(a) classical EDF schedule

2

1

3 6

2

1

1

τ

τ

τ

τ

τ

(b) expansion with per-task SC queues containing one SC per
job

Fig. 4. Expansion of EDF schedule using SC queues and deadline-enforcing
SCs

deadline enforcement causes a scheduling overhead not present
in budget enforcing schedulers is when the activation signal of
the next sporadic job τi,j+1 arrives before ri,j+Pi. In this case
we have to set a second timer to ri,j + Pi, which will always
fire.

B. Own-Criticality Based Priority Ordering and
Static Fixed Job-Priority Algorithms

The extension to deadline-enforcing SCs and a feature that
was already present and required for imprecise computing [2]
and quality-assuring scheduling (QAS) [3] brings us a big step
closer to fixed job-priority algorithms such as own-criticality
based priority ordering [6].

In QAS, the idea is to drop to a lower priority once
the important part of work has completed. This gives other
threads the chance of completing their important work before
continuing to increase the quality of the result. The SC
mapping therefore involves one SC for the mandatory part
of the work, which must be completed, plus one additional
SC for each optional, quality improving step. Once a thread
completes its mandatory work, it steps ahead to the next SC,
which in the course discards the budget of the previous SC
and enables the new budget.

Although more efficient solutions exist for greedy fixed
job-priority algorithms such as EDF, it is “almost” possible
to use SCs and a fixed SC-priority scheduling algorithm to
implement arbitrary static fixed job-priority algorithms. Let us
first explain the idea and then fix the “almost” in the above
statement.

Figure 4 gives an example for EDF with a classic (i.e.,
single-criticality) taskset. Rather than using SCs to describe a
single recurring release of a task, we use it to describe the
release of a single job in the hyperperiod HP of the entire

taskset. A task τi executes n = HP
Pi

jobs in a hyperperiod.
For each task, we instantiate n SCs and combine them into a
list in the order of the release of these jobs. The parameters
of these SCs are P̂i = HP and Ĉi = Ci for all SCs and
δi,j = Pi · j for the SC representing the jth job τi,j (1 ≤ j ≤
n). We set the priority of the SCs according to the fixed job-
priority algorithm. For EDF, these are πo,p > πq,r whenever
ro,p + δo ≤ rq,r + δq (breaking ties if necessary).

Because SCs are ordered in lists, a thread executing on the
list of SCs will discard the remaining budget prior to executing
the next job. Also, no thread can extend the budget received for
executing a job τi,j beyond this job’s deadline. However, and
here comes the “almost” into play, there is so far no means of
preventing a thread from immediately switching to the next SC
and hence from consuming the budget of a not-yet released job.
Although this is not a problem for EDF where SC priority are
monotonically decreasing, it becomes an issue when allowing
priorities to increase.

To enforce the use of budgets only after the release of the
corresponding job, we propose to apply the same mechanism
for switching to the next job that Jean Wolter introduced to
cope with sporadic tasks in the first place. In addition to
P̂i, we therefore introduce a second inter-release time: the
refill time R̂i plus configuration options to determine whether
SCs are queued or loose (i.e., simultaneously available) and
whether switching to the next SC corresponds to the release
of the next sporadic job. To not confuse terminology with the
task parameters, we will use P̂i as before for the job-to-job
minimal inter-release time and set R̂i = HP to ensure the
job’s availability in the next hyperperiod.

Several variants of static mixed-criticality (SMC) algo-
rithms have been proposed that can all be mapped in the
above described way. For example, Vestal [5] suggested an
algorithm based on Audsley’s algorithm [13] to determine a
MC-feasible per job priority assignment called own-criticality
based priority assignment (OCBP). The basic idea is that if a
job τi still receives sufficient time in between its release and
deadline when it runs at the lowest priority and if we don’t care
about the order of or deadline misses of higher prioritized jobs,
then we can fix this job at this priority and search for a next
suitable job in the remaining set. Thereby, higher prioritized
jobs τh are assumed to require at most Ch(li). Lacking budget
enforcement, Vestal first assumed a complete analysis of lower
criticality tasks also at higher criticality levels leading to
Ci(h) > Ci(li) for h > li. Adding this additional constraint,
Baruah and Burns [14] could improve on the schedulability of
this algorithm. In [7], Baruah, Burns and Davis could finally
show that presenting OCBP with a limited choice (deadline
monotonic sorting of jobs within a criticality level and then for
each level the job with the largest absolute deadline) suffices
to obtain a feasible schedule.

Notice, although SC representations of all jobs in the
hyperperiod are possible, other representations may be more
appropriate for systems where it is feasible to support one
specific class of MC-scheduling algorithms. In these systems,
where the majority of all jobs follow a standard priority
assignment such as EDF, a third extension of SCs will be
helpful: to regard queued SCs as exceptions of one dedicated
SC yielding the regular behavior. For example, if all jobs but

the third and fifth follow the EDF priority assignment, an EDF
SC-scheduler could be used to schedule the dedicated SC with
the exception of those jobs that have alternatives queued. That
is, after finishing the first job, the scheduler awaits the second
release of the dedicated SC at which time it inserts it to the
ready queue based on the stored relative deadline. However, for
the third release it makes this decision based on the adjusted
deadline of the alternative SC.

C. Adaptive Mixed-Criticality Algorithms

So far we have only considered scheduling algorithms that
rely on the relative priority ordering of SCs to guarantee
MC-schedulability. However, with an appropriate monitor of
thread execution times, which is trivially given in the form of
the next scheduling-context signal, MC schedulers could also
react to tasks exceeding their low criticality WCET estimates.
This class of scheduling algorithms is called adaptive mixed-
criticality algorithms [7]. Whenever a job τi,j exceeds the
WCET estimate Ci(l) of a criticality level l, the scheduler
follows this transition from l to l + 1 and discontinues the
execution of all l-criticality tasks. To do so, with scheduling
contexts, a fourth extension is required: to disable a group
of scheduling contexts. Adding this extension requires an
indirection to an enabled token, which the scheduler can toggle
to disable at once all SCs that refer to this token.

Notice, to meet the demands of the MC-schedulability
criterion, lower criticality jobs need never be continued once
a higher criticality job has exceeded its low WCET estimate.
However, it is of course desirable to return to a fully opera-
tional system as quickly as possible. The challenge is therefore
in quickly re-enabling SCs once they have been disabled and
it is safe to re-enable low SCs. As low WCET overruns
are extremely rare events, we propose to simply deactivate
but not dequeue inactive SCs from the ready queue. This
way, re-enabling boils down to setting a bit in the enabled
token. The additional scheduling overhead when skipping over
disabled SCs is deterministic and can be considered for the
high criticality WCET estimates.

H

L,2

3 6

M

L,1

H, M, LH, M, L
H, M, L

τ

τ

τ

τ

¬
¬ ¬

Fig. 5. Use of enabled token to disable groups of SCs.

Figure 5 shows the structure of enabled tokens in an
example that is not schedulable with classical OCBP because
of the consideration of τL,1 for τH , although τL,1’s execution
time is hidden behind τM ’s medium-criticality excess budget.

Because τM and τH require together all 6 time units, none of
the low jobs τL,1 and τL,2 may be higher prioritized than both
of the higher criticality tasks. On the other hand, because τM ’s
low WCET estimate is 2 time units and τH ’s is 0.5, we cannot
run both of them at a higher priority than the first low job τL,1

because otherwise, if both the medium and the high criticality
task stay within their low budgets, τL,1’s completion could not
be guaranteed. The only priority assignments that remain are
therefore τL,1 at an intermediate priority between τM and τH .
However, OCBP considers CL(H) +CM (H) if τL,2 executes
at a lower priority than τH or 2CL(H) + CM (H) otherwise,
which both is not enough to complete τH at one of the two
lowest priorities.

Shown at the bottom of Figure 5 is the gradual increase of
the system’s criticality level, which has lead to the dropping
of τL’s jobs. Also shown is the enabled token.

We suggest implementing the enabled token as a small
bitfield complemented with a mask inside each SC. The mask
is used to determine which bits are significant for this SC. This
way, the first n criticality levels could be disabled by clearing
the bit of the nth criticality level and making all tasks of
criticality l significant on all bits of higher or equal criticality.

D. Earliest Deadline First — Virtual Deadlines

Realizing that fixed-job priority algorithms (such as OCBP)
are limited in their schedulable utilization, Baruah, Bonifaci
and D’Angelo [8] transitioned from single priority schemes
to a dual priority scheme (or more generally an n priority
scheme where n = |L| is the number of criticality levels). For
as long as no task exceeds its low WCET estimate, the schedule
follows the EDF algorithm with virtual deadlines to make room
for a potential criticality change. Once such a change happens,
low tasks are disabled and the high tasks transition to a second
priority scheme based on classical EDF.

Group enable and disable (as we have seen it in the
previous section) allow us to keep both priority settings
simultaneously (either explicit or implicit through deadlines
interpreted by a host EDF scheduler). Once a criticality change
happens, all low-criticality SCs are disabled by clearing their
significant low flag and high criticality SCs are enabled by
setting the formerly disabled high criticality flag in the enabled
token.

IV. RELATED WORK

Most closely related to our work, although not mixed-
criticality, is part of the work by Regehr and Stankovic in
the context of hierarchical scheduling of soft real-time tasks
(see Table 1 in [11]). As part of their hierarchical scheduling
framework they derived a map how guarantees provided by
one kind of scheduler translate into the guarantees that a nested
scheduler may give for its tasks. For example, a scheduler re-
ceiving X = 50% CPU share may translate this guarantee into
multiple proportional share guarantees up to the point where
the sum of shares Yi is at most X . A particularly interesting
case and direction of future work for this work is Surplus Fair
Scheduling (SFS) [15]. Given multiple shares, SFS is able to
produce a new set of shares carrying a combination of the
received guarantees.

Zhang and Burns [12] investigate the schedulability of
multiple earliest deadline first layers on top of a fixed-priority
scheduler. Although not per se mixed criticality, Zhang’s
analysis can easily be extended to criticality monotonic settings
where each nested EDF scheduler is responsible for tasks of
one criticality level. To decide MC-schedulability, all that has
to be done is to repeat the analysis for each criticality level l
assuming the tasks in all higher prioritized EDF schedulers do
not exceed Ci(l). SCs and the consideration of slack in Zhang’s
analysis would even allow for occasional criticality inversions
by raising selected tasks above higher criticality EDF levels
provided there is enough slack in these levels.

Queued SCs generalize dual priority scheduling [16] when
the transition to the next SC is not limited to thread-triggered
events but for example to the release of the thread in the first
place. In this case, P̂i serves as trigger to switch to the higher
band priority.

V. CONCLUSIONS AND FUTURE WORK

As a first step in the direction of evaluating fixed SC-
priority scheduling algorithms where tasks have multiple time
quanta to choose from, we have investigated the mapping
of five mixed-criticality algorithms. We found that although
initially not all algorithms could be supported, small changes to
the use and interface of SCs allowed us to map all investigated
algorithms to SC-based scheduling. These changes are deadline
enforcement, a separate refill period, support for sporadic
jobs in the form of queued SCs and group enable/disable
functionality through enabled tokens. Most of these exten-
sions appeared recurringly as demands in discussions about
Fiasco.OC’s SC-based scheduling interface and are feasible
to be implemented both in microkernel-based systems and
elsewhere. Proper integration in a microkernel-based system
regarding isolation and security characteristics are subject to
evaluation.

Directions for future work include a more elaborate and
formal handling of the question what scheduling guarantees
can be given from a combination of fixed-priority time quanta
and an investigation of further algorithms including and be-
yond mixed-criticality.

ACKNOWLEDGMENTS

This work was in part funded by the DFG through the
cluster of excellence “Center for Advancing Electronics Dres-
den”, by the EU and the state Saxony through the ESF
young researcher group “IMData” and by the national science
foundation through grant NSF CNS-0931985.

REFERENCES

[1] U. Steinberg, J. Wolter, and H. Härtig, “Fast Component Interaction
for Real-Time Systems,” in 17th Euromicro Conference on Real-Time
Systems, Palma de Mallorca, Spain, July 2005.

[2] J.-Y. Chung, J. W. S. Liu, and K.-J. Lin, “Scheduling periodic jobs that
allow imprecise results,” IEEE Transactions on Computers, vol. 39,
no. 9, pp. 1156–1173, Sep. 1990.

[3] C.-J. Hamann, J. Löser, L. Reuther, S. Schönberg, J. Wolter, and
H. Härtig, “Quality Assuring Scheduling - Deploying Stochastic Behav-
ior to Improve Resource Utilization,” in 22nd IEEE Real-Time Systems
Symposium (RTSS), London, UK, Dec. 2001.

[4] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig, “Flattening hi-
erarchical scheduling,” in Proceedings of the tenth ACM international
conference on Embedded software, ser. EMSOFT ’12. New York, NY,
USA: ACM, 2012, pp. 93–102.

[5] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium. Tucson, AZ, USA: IEEE, December 2007, pp. 239–243.

[6] H. Li and S. K. Baruah, “An Algorithm for Scheduling Certifiable
Mixed-Criticality Sporadic Task Systems,” in RTSS. IEEE Computer
Society, 2010, pp. 183–192.

[7] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in Real-Time Systems Symposium (RTSS), 2011
IEEE 32nd, 2011, pp. 34–43.

[8] S. K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie, “Mixed-criticality scheduling of
sporadic task systems,” in Proceedings of the 19th European conference
on Algorithms, ser. ESA’11. Springer-Verlag, 2011, pp. 555–566.

[9] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with
multiple criticality specifications,” in Proceedings of the 2008 Euromi-
cro Conference on Real-Time Systems, ser. ECRTS ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 147–155.

[10] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality
jobs,” Computers, IEEE Transactions on, vol. 61, no. 8, pp. 1140–1152,
2012.

[11] J. Regehr and J. A. Stankovic, “HLS: A framework for composing soft
real-time schedulers,” in RTSS ’01: Proceedings of the 22nd IEEE Real-
Time Systems Symposium (RTSS’01). Washington, DC, USA: IEEE
Computer Society, 2001.

[12] F. Zhang and A. Burns, “Analysis of hierarchical edf pre-emptive
scheduling,” in Real-Time Systems Symposium, 2007. RTSS 2007. 28th
IEEE International, 2007, pp. 423–434.

[13] N. Audsley, “On priority assignment in fixed priority scheduling,”
Information Processing Letters, vol. 79, no. 1, pp. 39–44, 2001.

[14] S. Baruah and A. Burns, “Implementing mixed-criticality systems in
ada,” in Reliable Software Technologies — Ada-Europe’11. Springer,
2011, pp. 174–188.

[15] A. Chandra, M. Adler, P. Goyal, and P. Shenoy, “Surplus fair schedul-
ing: A proportional-share cpu scheduling algorithm for symmetric
multiprocessors,” in 4th Symposium on Operating System Design and
Implementation (OSDI), San Diego, CA, USA, Oct. 2000, pp. 45–58.

[16] R. Davis and A. Wellings, “Dual priority scheduling,” in Real-Time
Systems Symposium, 1995. Proceedings., 16th IEEE, 1995, pp. 100–
109.

