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Abstract

Mixed criticality systems (MCS) allow software compo-
nents of differing criticalities to use the same physical re-
sources (ie. CPU, memory). MCS highlight the trade-off be-
tween partitioning components of different criticalities and effi-
cient resource usage. Components are partitioned due to safety
concerns, but physical partitioning requires more resources
than if components are unpartitioned and share resources.

Influential recent work in scheduling of MCS shows the
benefits of sharing resources between criticality levels. One
issue with this work is that allowing resource sharing within
MCS requires that sufficient partitioning and separation can
be provided by the architecture to ensure mixed criticality
components can share resources without compromising system
safety at the highest criticality levels.

This paper examines this issue from the perspective of the
memory hierarchy for Network-on-Chip architectures, consid-
ering memory system design for partitioning to support MCS
scheduling approaches for multiprocessor systems — without
the need for the resource expensive approaches of totally
separated (ie. federated) approaches.

I. INTRODUCTION

Mixed Criticality Systems (MCS) are becoming increas-
ingly important within the embedded real-time domain. Such
systems contain components with different levels of criticality
on a single platform. Domain motivation for MCS comes from
mainly from aerospace and automotive. The former embodies
the concept of components with different criticality levels
within domain safety standards (eg. IEC 61508, DO-178B).
Interestingly, the aerospace industry has also been developing
mixed criticality infrastructure (ie. platforms, OSs), allowing
components of different criticality levels to reside on the same
physical platform, for several over 20 years via IMA [1], [2],
[3], [4]. The automotive industry appears to be moving towards
MCS as the number and complexity of in-vehicle software
components increases.

In both aerospace and automotive domains, the main
motivation for considering MCS designs is to meet non-
functional requirements related to, for example, space, cost
and weight — and for aerospace especially, fault-tolerance'. By
allowing components of different criticalities to share physical
resources, potentially fewer resources are required. In con-
trast, traditional (federated) systems architectures dictate that

'In an IMA system in aerospace if a lane fails (e.g. one processor board
from three) functionality from the failed board can be re-assigned to one of the
other boards. This results in the possibility that software components of mixed
criticality levels would eventually be resident on the same board, even if the
original configuration placed functions of differing criticalities on physically
separate boards.

components of differing criticalities are allocated physically
separate resources.

Mixed criticality systems highlight the fundamental trade-
off between partitioning or separating components of different
criticalities and efficient resource usage. From a safety per-
spective, partitioning is required: high criticality components
must be protected from the interference and potential failure of
lower criticality components. To achieve adequate partitioning,
federated architectures can be used. These help when there is
a need to show that a single failure cannot lead to a complete
system failure — a typical requirement for safety-critical (fault-
tolerant) systems. However, the approach is expensive in terms
of physical resources needed.

In contrast, influential recent work in mixed criticality
scheduling has shown the benefits of sharing resources be-
tween criticality levels [S]. The work is motivated primarily by
resource efficiency, allowing software components of different
criticalities to be scheduled on the same CPU (either in a single
or multiprocessor system).

This paper examines MCS from the perspective of the
memory hierarchy, showing how memory systems can be
designed so that partitioning can be achieved to support MCS
scheduling approaches — without the need for the resource
expensive approaches of totally separated (ie. federated) ap-
proaches. The approach taken is to use a memory hierarchy
designed for a predictable multiprocessor Network-on-Chip
(NoC) system and enable support for multiple criticality levels
within that architecture. We note that this is in contrast
to conventional critical system design which seeks to use
unpredictable (commodity) components and constrain them to
be (almost) predictable.

The remainder of this paper is structured as follows.
Section II reviews memory architectures. In section III the
predictable memory architecture developed within the EU T-
CREST project is introduced, which is extended into an appro-
priate architecture for MCS systems in section I'V. Conclusions
are offered in section V.

II. MEMORY ARCHITECTURE REVIEW

Memory provides storage for state (data) and code (instruc-
tions) which must be delivered to the CPU when required,
within the time and resource constraints of the system. For
real-time systems, constraints are focussed upon time — in-
creasing memory latencies will increase worst-case execution
times (WCET) and reduce the overall schedulability of the
system. There are a number of issues for memory architectures



for realistic mixed criticality systems, including?:

1)  Performance — the increasing gap between CPU per-
formance and memory system performance (ie. the
“memory wall” [6]).

2)  Scalability — increasing numbers of CPUs sharing the
same memory hierarchy.

3)  Physical Separation — a memory architecture must
also provide sufficient physical separation between
software components using memory to meet system
safety requirements.

Performance and scalability requirements suggest moving to-
wards higher performance architectures — which is in direct
conflict towards the provision of physical separation needed
within safety-related systems. At the extreme, in safety-critical
systems a single failure cannot lead to a total system failure.
When applied to the system architecture this implies that
degrees of fault-tolerance are used (eg. redundancy). When ap-
plied to the memory architecture it implies protection between
memory used by different components (particularly if they are
of differing criticality levels). The simple method to achieve
protection is physically separated system components; or at
least to physically separate components of different criticality
levels. Otherwise, the method by which memory protection
is achieved becomes an important part of the safety argument
for the system. Unfortunately, conventional (commodity) CPUs
do not provide simple memory protection, but rather memory
protection based upon complex memory management units (eg.
virtual memory) which can be viewed as too complex to be
free of errors (and hence usable within safety-critical systems).

The conventional memory hierarchy for safety-critical sys-
tems is illustrated in Figure 1. Storage increases in volume,
but decreases in performance and cost (per byte), as the
hierarchy is descended [7]. The degree of potential sharing
between software components also increases as the hierarchy
is descended.

The remainder of this section discusses the memory hier-
archy, together with memory architectures for basic systems,
multicore systems and many core systems. Throughout, issues
in mixed criticality are highlighted.
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Fig. 1. Memory Hierarchy for Embedded Real-Time Systems

2 Application Complexity is also important in terms of the memory hierarchy,
as increasing complexity is being seen in terms of the amount of data being
input, accessed, processed and stored by a system, e.g. due to the use of high
bandwidth I/O devices within systems, and large scale persistent data storage
(eg. for storing maps in navigation). These issues are not discussed further in
this paper.

A. Basic Memory Architecture

Many systems have used simplistic memory architectures
— a single CPU is connected directly to a memory structure
consisting of some form of RAM, together with persistent
program / data storage, the latter used mainly during bootstrap.

Within this architecture, memory latencies consist of the
latency of the memory device itself; together with the bus
between CPU and memory. In simplistic architectures the
latter is minimal (a few cycles). Burst mode memory accesses
together with DMA (potentially from I/O devices) can increase
the latency of memory access as viewed by an application
executing upon the CPU (eg. as their memory access may be
delayed by the DMA burst instigated by an I/O device).

More complex CPUs may include caches to help per-
formance, particularly as CPU speeds increase compared
to available memory bandwidth. Worst-case execution time
(WCET) calculation becomes more complex in the presence
of cache [8], [9] as it is difficult to predict during analysis
the state of cache at any time. Other memory variants include
scratchpad memory (SPM), which make WCET calculation
easier and less pessimistic [10], [11].

Clearly, basic memory architectures can be used with more
complex high performance CPUs, with multi-level caches for
performance, and that support memory protection via Memory
Management Units (MMUs). We note the issue regarding the
complexity of MMUs raised above.

B. Multicore Memory Architecture

Multicore CPUs (within the context of this paper) refer to
the incorporation of several CPUs on the same chip, biased
towards a shared memory architecture [7]. The development
from the basic memory architecture to the multicore archi-
tecture is merely the presence of several (commonly upto 4)
accessing memory via the same shared bus.

One of the largest effects of CPUs sharing the bus is upon
memory latencies — a CPU may have to wait for the memory
transactions of other CPUs to finish before it is able to access
the bus. Similarly, a memory request reaching the physical
memory may be delayed by the completion of requests for
other CPUs (eg. when using DDR).

Within multicore architectures, there are many memory
design choices, two important ones being whether one or
more cache levels are shared between CPUs; whether to
use symmetric or non-symmetric memory architecture. Shared
caches are often used in high performance (eg. desktop)
architectures, needing hardware support for cache coherence
for obtain adequate performance [7]. In terms of real-time
systems, it is not clear that any performance advantage is
gained, given that execution times are extremely hard to model
and bound accurately with shared coherent caches, resulting
in pessimistic WCETs [8] (potentially removing any perfor-
mance gained). From a safety-critical perspective, it is unclear
whether the complexity of cache-coherence implementations
(at the hardware level within the CPU) are appropriate.

Non-Uniform Memory Architectures (NUMA) allow dif-
ferent physical views of memory for each CPU. Thus, the
addition of private memories to the CPUs within a sym-
metric architecture would make the architecture NUMA. We



can consider the non-uniform nature of the architecture at a
number of levels. At a physical level, access latencies will
be different depending upon whether the CPU addresses the
shared memory, or its own private memory. Access to the other
CPU’s private memory may well be provided at the physical
level (ie. within the address map of the CPU), or could require
OS, and/or application support.

NUMA architectures where CPUs have private memories
as well as access to shared (global) memory are an interesting
option for safety-critical systems. Private memories support re-
quirements for physical separation — assuming that components
of different criticalities were placed upon different physical
CPUs. If components changed criticality level however, there
is a requirement to then move to a different CPU, which raises
issues of migration overhead as well as schedulability of the
changed system configuration.

C. Many-Core Memory Architecture

Many-core architectures (within the context of this paper)
refer to approaches to scaling the number of CPUs within
a chip in a manner far exceeding conventional multicore. A
key difference in approach is to move away from a shared
bus approach to connecting CPUs to shared memory as this
approach is not scalable from the perspective of contention
delays [12]. In contrast, many-core architectures adopt a form
of communication mesh to connect CPUs and memories [13].
This results in many routes between a CPU and memory, so
that contention on the connections between CPUs and memory
can be reduced. We note that when requests actually arrive at
the memory, contention will still occur at the physical level.

The manycore approach is exemplified by the Network-
on-Chip (NoC) approach [14]. Typically a packet switched
communications mesh of regular Manhattan topology is used,
with arbiters at junctions routing traffic, and CPU tiles con-
nected to arbiters via a local link. Essentially, the NoC appears
as a distributed system, with separate CPUs connected by a
communications network. In terms of memory architecture,
external shared memory is attached to an arbiter at the edge
of the mesh (as is any I/O); CPU tiles can also contain
local memory. Alternatively, a second network can be used to
connect CPUs to shared external memory to remove memory
traffic from the mesh [15], [16].

This is essentially a non-symmetric approach. Each CPU
has a different view of the memory depending upon how many
hops are between it and the external memory, and other CPUs
(if a CPU is allowed to indirectly access other CPUs local
memory [17], [18]).

In terms of achieving adequate performance from the
memory architecture, the mapping of application components
to CPUs and memories within the many-core becomes crucial.
Code needs to be close to required data; application threads
that communicate should be placed on CPUs that are close.
Mapping approaches are an active research area [19], noting
that optimal solutions are NP-complete.

D. Summary: Memory Requirements for MCS

Mixed criticality systems highlight the fundamental trade-
off between partitioning or separating components of different

criticalities and efficient resource usage. Recent MCS research
(based upon [5]) considers scheduling CPUs between pro-
cesses of differing criticality levels, largely ignoring other
resources. For memory, available separation is defined by
the physical architecture. To facilitate recent MCS scheduling
approaches, memory architectures require software processes
of differing criticality levels to share physical memory, with
two areas of sharing to consider:

o  Shared route / connection between CPU and memory:
Shared connections imply the potential for interfer-
ence between competing memory transactions. This
can lead to race conditions between memory transac-
tions, and difficulties in bounding transaction latency.

o  Shared physical memory:
Where memory (and memory controller) are phys-
ically shared between many CPUs, the memory is
effectively multiplexed between the CPUs — hence
memory requests from one CPU may be delayed by
those of another.

One of the characteristics of MCS scheduling approaches is
that Worst-Case Execution Times (WCET) are dependent on
criticality level — more conservative (higher) values are used
if the process is assigned a higher criticality level. In terms
of memory access latencies (a part of WCET), there is a
fundamental requirement for predictability. However, different
assumptions regarding competing memory transactions can be
made to allow less pessimistic memory latency times to be
derived (see sections III and IV).

Q Bluetiles Router MicroBlaze Tile

Fig. 2. Blueshell Network-on-Chip with 16 CPU Tiles

III. PREDICITABLE MEMORY ARCHITECTURE

The EU T-CREST project® is developing NoC architectures
suitable for safety-critical systems requiring the highest levels
of predictability. In this section we discuss a shared memory
tree architecture (Bluetree) that has been developed within T-
CREST. Subsequently we show how this architecture supports
mixed criticality systems.

We note that the memory hierarchy that is discussed in
this section was designed to support timing predictability. This
paper contends that this is a more appropriate starting point
for a MCS memory architecture than adopting commodity
hardware approaches and attempting to restrict their behaviour
to being (nearly) predictable.

3T-CREST - Time Predictable Multicore Architecture for Embedded Sys-
tems: http://www.t-crest.org/
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Fig. 4. Bluetree Shared Memory Tree for 8 CPU Tiles

Each CPU tile in the Bluetiles NoC (see figure 2) also connects directly (via
cache) to the Bluetree shared memory (binary) tree to access external DDR
memory, shown above. There is no interference between CPU to CPU
messages across the NoC and CPU to memory transactions across the tree.

A. Bluetree Shared Memory Tree Architecture

Bluetree is a shared memory tree architecture developed for
NoC architectures [15], [16], [20] CPUs are arranged in a mesh
(Figure 2) to allow CPU to CPU communication. Each CPU
tile within the architecture has two main interfaces (Figure 3),
one to access the mesh (Home Interface) and one to access
shared memory (Server Interface). The separation of inter-CPU
communications from shared memory access (eg. for cache
misses) ensures that memory accesses do not interfere with
CPU to CPU communications — thus aiding predictability. The
shared memory tree architecture is illustrated in Figure 4:*

e  Routers: Routers are 32-bit bi-directional with X-
Y routing used (destination is contained in the first
word). We note that the choice of routing policy does
not impact upon the research presented in this paper,
since this research focuses on the communication over
Bluetree; Bluetiles is only used for simple synchroni-
sation.

o  Shared Memory Tree (Bluetree): 2-to-1 multiplexors
form a tree connecting CPUs to memory — CPUs
are the leaves of the tree, memory being at the root.
High-bandwidth memory requests do not impact the
performance of other CPUs — there is no interference
between CPU to CPU messages across the NoC and
CPU to memory transactions across the tree. Each

“4Bluetree has also been implemented with a pre-fetch unit between off-chip
and on-chip memory[15], [16], [20].

multiplexor port allows 128 bits of data (correspond-
ing to the cache line size).

e CPU Tiles [15], [16]: CPU tiles are built using the
Microblaze CPU. CPU configuration is 8kB split data
and instruction caches, and a 8kB shared scratchpad
used for fast local storage. The CPU accesses the
cache via Microblaze LMB interfaces; cache misses
being issued to external memory via Bluetree. The
CPU tile contains custom cache control is configured
to allow selective invalidation of cache lines and to
record prefetch related data on a per cache line basis
(the cache control unit also serves as the Microblaze’s
interrupt controller and provides a clock-cycle counter
facility). Cache control is accessed via Microblaze
Fast Simplex Links (FSL), utilising single-cycle FI-
FOs. Further details of the cache design are given
in [15], [16].

B. Off-chip Memory

The Bluetree shared memory tree is connected to off-
chip memory as shown in Figure 4. The key component
is the memory controller which interfaces between requests
originating from the CPU and passing over the shared memory
tree, and the external (off-chip) SDRAM (ie. DDR). The
controller is based upon the architecture in [21], but has
been developed with additional configuration infrastructure to
allow, effectively, several distinct channels. The motivation
for this is to allow, for example, separate memory access
bandwidths to be specified for each channel, thus providing a
degree of separation in the memory system — essentially each
channel forms a separate queue of memory requests which are
then multiplexed (according to remaining bandwidth) onto the
single SDRAM.

IV. PREDICTABLE MEMORY ARCHITECTURE FOR MCS

This section discusses the predictable memory architecture
described in section III in the context of MCS. Initially an
appropriate arbitration scheme is outlined for Bluetree. This is
then taken, together with definition of the worst-case latency
across the memory tree, to provide a worst-case timing of the
memory architecture. Finally, this is assessed to see whether
it supports MCS and MCS scheduling approaches.

A. Arbitration within Bluetree

The shared memory tree requires arbitration at each of the
multiplexors. A simple approach would be to adopt a first-
come-first-served approach. It could be argued that this could
lead to starvation, as one input (CPU) to a multiplexor could
monopolise — although this would require memory requests to
be generated on every clock cycle, which is unlikely. Another
approach would be to always favour one input over another, but
this could lead to, eg. priority inversion (in a priority scheduled
system). Another approach could be to ensure that turns were
taken at each multiplexor to eliminate starvation, but would
partially suffer from effects like priority inversion.

The approach taken within Bluetree is to allow run-time
programming of the arbiters. Essentially, each memory request
from a CPU is accompanied by some measure of importance
(eg. priority) so that the most important request always wins



arbitration at a multiplexor. We note that this easily maps onto
criticalities — at each multiplexor, if two requests arrive at the
same time (ie. same clock cycle) the request with the highest
criticality would be forwarded. In the event of a tie (i.e. equal
criticality) a secondary mechanism can be used, eg. turns.

The Bluetree arbitration approach provides separation be-
tween streams of memory requests originating from software
components of different memory criticalities. From a safety-
critical perspective it would be relatively straightforward to
show that there can be no interference between input channels
to the multiplexor (as they have separate latches) — and
therefore that separation is maintained (multiplexor logic is
simple, cf. MMU).

B. Worst-Case Latency

The worst-case time for a memory request issued Bluetree
is the sum of three components:

1)  Latency to cross Bluetree from CPU to memory con-
troller: The basic latency to cross a shared memory
tree multiplexor is two cycles (Bluetree uses a buffer
for both input and output) [16], hence total latency is
2 + (2 * the memory tree depth) — noting that there
is an extra latch stage used to link shared memory
tree to the memory controller.

2)  Latency to cross the memory controller and access the
SDRAM: This varies according to the exact configu-
ration and build of the controller, but typical figures
are around 25 cycles for a read (and 1 cycle for
subsequent reads in a burst), and 1 cycle for a write.
These figures refer the time needed before return can
be made to the CPU.

3)  Latency to cross Bluetree from memory controller to
CPU: This is 1 + the memory tree depth (as no
latching occurs within the tree on the return path).
For a burst, the first word returned would suffer the
full return path latency, successive bytes are delivered
in successive clock cycles.

Note that a burst read, which can be encapsulated within
a single 128 bit request to the memory controller (and is
therefore non-preemptable within the tree) is actually broken
into a series of successive memory requests to the SDRAM
— hence there is potential for pre-emption within the memory
controller if required.

C. Worst-Case Timing of Bluetree for MCS

The worst-case timing across the shared memory tree re-
quires the worst-case latency and MCS arbitration approaches
(above) to be combined.

Consider a CPU executing with a software component of
criticality level X. All memory requests from that CPU (whilst
that software component is executing) have the criticality of the
issuing software component. At each multiplexor a memory
request can be delayed by at most one request of equal
criticality; and by the maximum number of successive requests
of higher criticality memory requests.

When a memory request exits the multiplexor connected
to the memory controller and At the memory controller, there
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are three possibilities when considering memory request m of
criticality X:

1)  Single Memory Queue (Figure 5(a)) — account must
be taken for all other memory requests that arrive
ahead of m that are therefore ahead within the
memory controller queue.

2)  Multiple Memory Queue (Figure 5(b)) — where there
are separate queues for each criticality level. Here
account must be taken for all other memory requests
of the same criticality that arrive ahead of m that are
therefore ahead within the memory controller queue;
and of all other memory requests in higher criticality
queues.

3)  Multiple Memory Queue and Memory (Figure 6) —
where there are separate queues and physical mem-
ories for each criticality level. Here account must
be taken for all other memory requests of the same
criticality that arrive ahead of m that are therefore
ahead within the memory controller queue.

One issue remains, that of the effect of bursts. If they are not
pre-emptable (see discussion above) then allowance has to be
made for the total burst length when calculating maximum
delay at the memory controller. If this becomes dominant, it
may be appropriate to adopt more bandwidth oriented memory



controller approaches (eg. see [21]).

D. Mixed Criticality Timing Analysis Principles and Memory

The essential principle of MCS is that a software tasks’
WCET is dependent upon its criticality level. At a high level
of criticality code will have a higher WCET than if it is
assigned a lower criticality level. This reflects the degree of
pessimism that is required at different criticality levels — if
exceeding the WCET is deemed a failure, then at the highest
level of criticality (in aerospace systems) this failure has a
probability of no more than 1 in 10° occurrences. At lower
levels of criticality, the same code can be assigned lower
(less pessimisticy WCET bounds. Although the chances of
exceeding the WCET has increased, the effect on the system
is not as great — eg. system integrity is not compromised by
multiple failures of components at the lowest criticality level.

The essential principles outlined above applies equally well
to the analysis for the memory architecture defined within
this section. As the criticality level of a software component
increases, a more pessimistic view of the potential interference
of other tasks upon memory requests must be included in the
analysis. If assigned the highest criticality level, each memory
access of a task would assume worst-case interference upon
its memory requests as given above — potentially large. At
lower levels of criticality, la ess pessimistic view can be taken:
that accesses will suffer less interference. This is achieved by
considering the number of cycles assumed between successive
memory transactions from other CPUs — for high levels of
criticality the minimal number of cycles can be assumed; for
low levels of criticality longer intervals can be assumed (more
realistic in the average case).

V. CONCLUSIONS

This paper has considered the role of the memory hierarchy
within many core architectures (specifically Network-on-Chip)
proposing an appropriate memory hierarchy for MCS based
upon a predictable shared memory tree memory hierarchy.
The paper has shown that sufficient partitioning and separation
can be provided by the architecture to ensure mixed criticality
components can share resources without compromising system
safety at the highest criticality levels. Thus the approach
supports the MCS scheduling work within the real-time com-
munity which allows components of mixed criticality to share
resources.

The architecture includes an arbitration approach within
the memory tree that directly supports criticality levels. The
additional benefit of this is that if stricter memory separation
was needed to support safety-critical requirements, separate
memories can be included, one per criticality level. This is less
than normally required for federated architectures which would
dictate one memory per component (not criticality level).
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