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Abstract—As Mixed Criticality work has progressed it has be-
come increasingly clear that considering only 2 levels of criticality
will not suffice. Many industrial standards such as IEC 61508
and DO-178B define 4 or 5 levels, whereas the majority of current
analytical approaches consider just 2. In this work we evaluate
the performance of several fixed priority approaches and how
they might be extended to facilitate more than 2 criticality
levels. A well-established scheme, Period Transformation is also
considered and extended. The effectiveness of the extensions is
assessed by way of an evaluation. We show that the schemes
maintain their performance relative to each other as the number
of criticality levels increases.

I. INTRODUCTION

The field of Mixed Criticality systems is advancing rapidly.
Driven by industrial pressure to support new and complex
hardware, attention is turning away from the more simplistic
uni-processor case. However, in order to further the case for
implementation, such systems must be certified and standards
must be met. When considering the number of criticality levels
that a system might be required to manage it becomes clear
that just 2 levels will not suffice. Standards such as IEC 61508
and DO-178B define 4 or 5 Safety Integrity Levels (SIL). It
is reasonable to assume that mixed criticality implementations
will be required to support at least 5 levels.

Before consideration can be given to an increased number
of criticality levels on complex hardware, it seems logical to
begin with a single processor approach. Much of the work
since Vestal’s [4] seminal paper in 2007 has revolved around
2 levels of criticality. Approaches such as AMC (Adaptive
Mixed Criticality), presented by Baruah et al. [2] have fo-
cused on 2 criticality levels while claiming extendability to
many. We focus on single processor analysis and extend both
approaches suggested in [2], AMCrtb (Response Time Bound)
& AMCmax, to facilitate n potential levels. Additionally we
consider Period Transformation [3] as proposed by Vestal [4].
We provide some improvements on the initial analysis and
compare its performance with other approaches.

The remainder of the document is organised as follows;
Section II considers the original Dual Criticality approaches,
Section III considers how such approaches can be extended
to include a greater number of criticality levels, Section IV
provides an evaluation and Section V closes the work with
some concluding remarks.

II. DUAL CRITICALITY ANALYSIS

Baruah et al. [2] present a dual-criticality scheme known
as Adaptive Mixed Criticality (AMC). AMC monitors, at run-
time, the execution of each task and ensures that it remains
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within its budget for the current criticality level. If a job
exceeds its allocated budget, a criticality change is triggered,
AMC permanently suspends all tasks at the current criticality
level when a change occurs. Two methods are presented in

[2]:

A. AMCrtb

The original analysis presented by Baruah et al. [2] is shown
in Equations (1), (2) and (3), for a sporadic task model using
standard notation (C, T, D, R with D < T'), LO-crit & Hl-crit.
There are two stages to the approach, the first is to consider the
LO and HI criticality levels individually and ensure they are
schedulable. The second stage is to consider the schedulability
of the criticality change from LO to HI.

Stage 1A: Check the schedulability of the LO mode for all

tasks.
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Stage 1B: Check the schedulability of the HI mode for HI
tasks.
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Where hpH is the set of all higher priority HI criticality
tasks.
The next step is to assess the schedulability of any HTI
criticality task executing during a criticality level change.

Stage 2A: Calculate the schedulability of the criticality change
for HI tasks.
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Where hpL is the set of all higher priority LO criticality
tasks. R;(LO) represents a static value for higher priority but
lower criticality tasks, this allows AMC to place an upper
bound upon any potential low-criticality interference during
a criticality change. R;(HI) is the value replaced into the
equation with each iteration. This is appropriate due to the
way in which AMC handles a criticality level change. Under



AMC, all LO criticality tasks are suspended when a criticality
change occurs, as such during this time their ability to interfere
with the high-criticality tasks is limited. This limit is the LO
response time of the Hl-crit task as after that time the system
will be running in the HI criticality mode, or the task will
have completed and no criticality change need occur.

B. AMCmax

There are a finite number of points in time at which a
criticality change might take place. It is possible to bound
these points as the criticality change must occur sometime
between the start of execution, time O and the LO response
time (R;(LO)). AMCmax uses these points and seeks to
determine the point at which the worst-case phasing for a
HT criticality task might occur.
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Fig. 1. Example AMCmax criticality change.

Figure 1 shows a criticality change occurring and the system
moving into the HI mode. The diagram also shows the
Interference suffered in both the LO and HI modes. Baruah
et al. [2] illustrate this change with Equation (4), showing the
calculations required to determine the response time of a H 1
criticality task if the change occurs at time s.

Ri(HI)=Ciy(HI) + IL(s) + Iu(s) “4)

From Equation (4) it is easy to see the two segments of
interference we must assess, I, and Ig. These sections are
also shown in Figure 1.

The technique used to assess the response time of low-
criticality tasks is straightforward, it can be seen in Equation

5):
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The floor function is used to ensure that all tasks are accounted
for immediately upon release. This algorithm is also used
when calculating the LO response times of all tasks, in this
case R?(LO) is used rather than s.

Baruah et al. [2] consider high-criticality response times
Iy (s). They consider the high mode as an interval of ¢t — s
where ¢t > s. t is the response time of the task and is the
value that is replaced in each iteration. The number of releases
in this interval, ¢ — s, for a HI criticality task 7, can be
calculated:

This can be extended for cases where Dy < Tj:
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The full calculation is shown in Equation (6) presented in the
form of a function M. With input parameters k, s and ¢, where
k is the task, s is time s and ¢ is time ¢ (or the response time
replaced into the equation).

Mk, 5,1) = min{ P‘ s = i ‘D’ﬂ 1, WH ©)

Ty Ty

Equation (6), accounts for all completions of task 73, within
the interval s... R;(HI). Rare cases are possible where the
calculation is overly pessimistic, the function ensures that the
value returned is no greater than the total number of releases.

The number of releases in the LO criticality mode is easily
calculable by removing the results of Equation (6) from the
total number of releases.
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Finally they look at which points of s, within 0. .. R;(LO)
require consideration. Baruah et al. [2] note that the amount
of low-criticality interference increases (as a step function),
as the value of time s increases. Similarly the high-criticality
interference decreases as the low increases. Therefore the
response time changes only at the release of a low-criticality
job, thus we can limit our search to points of s where a LO
criticality job is released.

C. Period Transformation

Vestal [4] proposed a Mixed Criticality Period Transforma-
tion (PT) approach. He used PT, not to create a harmonic task
set, but to allow for a Criticality and Rate Monotonic based
priority ordering. The approach proposes that only those H 1
criticality tasks with periods greater than that of the shortest



LO criticality period be transformed. This will allow all HI
criticality tasks to attain a higher priority than the LO and
thus avoid the problem of criticality inversion and allow for
criticality monotonic assignment.

This gives us 3 groups of tasks. Those of a LO criticality,
these do not need transformation. Those with a H I criticality
but a period shorter than the shortest LO criticality task, these
do not need transformation. Finally those with a H I criticality
with a period greater than that of the shortest LO criticality
task, these are the tasks that must be transformed.

The analysis of HI criticality tasks, in the HI mode is
calculated via standard response time techniques [1]. The
analysis for the LO criticality mode is detailed as follows:

Tasks are transformed by a factor, m.

T
n=[z]
Where 7; is the LO criticality task with the shortest period
and 7; is a HI criticality task that must be transformed.

At runtime, transformed tasks are expected to execute up
to their C;(HI)/m until they reach their untransformed,
C;(LO), only then can we determine if a task will overrun
its LO execution bounds and a mode change would need to
occur. Transformed tasks, running in the LO mode execute in
C;(HI)/m time slices until C;(LO).

The number of transformed dispatches that might interfere
with 7; could be calculated as follows:

5a]

The number calculated above will contain several complete
executions of C;(LO) and a remainder, this remainder can
execute for no longer than C';(LO), Vestal assumes this value.
He calculates the number of transformed executions which
complete to C;(LO):

R;
— |C,;(LO
{TEJ 5(£0)
So including the added pessimism of those transformed ex-
ecutions that do not complete, the total interference from 7;
can be summed as follows.

PJ C;(LO) + C4(L.0)

T;

Clearly there are several disadvantages to Vestal’s technique.
The use of C;(LO) to account for transformed releases which
do not constitute an entire C;(LO) is overly pessimistic.
Vestal’s approach also loses one of the key properties of Period
Transformation, the ability to create harmonic task sets and,
by proxy, the < 1 utilisation bound for RM schedulability.
Although not all tasks are transformed it is likely that by
transforming the HI tasks the number of context switches
will increase significantly. This coupled with the need for
additional run-time monitoring causes PT overheads to remain
high.

III. EXTEND TO n CRITICALITY LEVELS

A. AMCrtb

When considering n possible criticality levels for AMCrtb
we re-examine the two stages of the analysis. In stage one we
examine each level, up to n, and determine schedulability. In
stage two we consider the feasability of n — 1 criticality level
changes.

1) Stage Ome: Consider a system containing 5 distinct
criticality levels, L1...L5 where L1 > L5. The analysis
for L5 must consider the potential interference of all higher
priority tasks, regardless of criticality level (as L5 is the lowest
level). To calculate the interference suffered from higher
priority L4 tasks we use the following term:

T [Rz‘(L )
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The algorithm looks for those higher priority tasks, 7;, where
the criticality level (L;) is equal to L4. This considers any
interference suffered from a task at L4, but uses their L5
values. The calculation can be completed to account for levels
L3...L1 as shown in Equation (9).
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This process is repeated for each of the remaining criticality
levels to check their schedulability. It is possible to generalise
these equations to one that can deal with 2 — n criticality
levels. We must consider the schedulability of n criticality
levels individually.

For each criticality level.

VLel...n

For all tasks where the criticality level is greater than or equal
to L.

Calculate the response times for that level.

Ri(L)=Ci(L)+ > {R;EP)]Cj(L) (10)
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Equation (10) considers the response time of task 7;
at criticality level L by accounting for any interference
from higher priority tasks with a criticality level greater
than or equal to L. This test is repeated for each of the n
criticality modes. Equations (1) and (2) are the dual criticality
application of Equation (10).



2) Stage Two: When assessing the interference suffered
during a criticality change we must consider two groups of
tasks. The first group are those tasks of a higher priority
and with a criticality level greater than or equal to the task
in question. This has been considered in Stage One. The
second group are those tasks with a higher priority but a lower
criticality level. It is clear that under AMC, those tasks with a
higher priority but lower criticality will have a bounded effect
on a higher criticality task if a criticality change occurs.

The interference suffered by higher criticality task, 7; from
higher priority but lower criticality task, 75 during a criticality
change is bounded by 7;’s response time at 73’s criticality
level, R;(Ly).

>

kehp(i)| Li<Li
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For all tasks with a higher priority than 7, where the
criticality level is lower. R;(Ly) is the response time of 7;
at the criticality level of 7. These values are static bounds
and do not change upon each iteration.

If we combine the analysis for the higher priority tasks with
a criticality level greater than or equal to L; and the analysis
for the higher priority tasks with a criticality level less than
L; we can produce an algorithm to assess the feasibility of
the criticality level changes in a system. In a system with
n criticality levels we must consider n — 1 criticality level
changes.

For each criticality level.

VLel...n

For all tasks where the criticality level is greater than or equal
to L
VT ilLi Z L

Beginning at the lowest criticality level, calculate the schedu-
lability of each criticality change.

2.
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Equation (11) assesses the schedulability of criticality changes
for 2 — n criticality levels. This combined with the
algorithm in Equation (10) provides an AMCrtb schedulability
test generalised to n levels of criticality.

B. AMCmax

Consider the case of two criticality levels A and B, where
A 1is the lowest criticality level in the system, (B > A). We
would use the dual criticality analysis shown in Equation 8.

In order to determine the response time of a level B task,
AMCmax considers points of s where the criticality change
might occur. These points are bounded by the R;(A) response
time of the task in question. If this system were also to include

a criticality level C, such that C' > B > A then a criticality
change might occur at any point (s3) between the original
change from A to B, point s;, and the task’s response time
in criticality mode B, R;(B).

A Execution }

BExecution ‘ |

C Execution ‘ ‘

Fig. 2. The system with modes A and B with an additional level, C added.

To calculate the interference suffered between two points
of s we define a new function, N:
sy — 51— (T, — Dy,)
Ty,
Function N provides the interference suffered between times

s1 and so. In this case, this function is used to assess the
response time of tasks at criticality level B.

N(k,sl,SQ) = \‘ J +1 (12)

The calculation for the A criticality tasks is similar to
the LO calculation, we use s; rather than s in order to
differentiate between criticality changes.

S
> QTlJ + 1) Ci(A)
jehpA(i) N7
The calculation for the B criticality tasks changes to make
use of the function N (see Equation (12)) as it is now used
to determine the interference suffered between two points of
s. The criticality A interference is calculated by removing the
number of releases, as calculated by function N from the total
number of releases.

S vt oo ([22] Moo )i
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Finally we may consider the calculation for criticality level
C. Functions M and N are used in order to calculate the
interference a criticality C task might suffer in modes C and
B respectively. Both functions M and N are removed from the
total number of releases to calculate the criticality A response
time.

5 { M52 B(C)GUC) + N1 51,501 (B)+
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Where hpC refers to all higher priority tasks of criticality level
C. The complete calculation for 7;(C') is shown in Equation




(13).
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Where:

R;(C) = max(R;(C))Vsy

Equation (13) shows how R;(C') can be calculated by consid-
ering points of s; where the change from A to B might occur
and points of s where the change from B to C might occur.

If we were to extend this system to introduce a 4th
criticality level, D, we would follow the same steps as we
did for criticality level C. Consider points for the criticality
change from C to D at time s3 bounded by the criticality C
response time, R;(C'). It is important to note that the function
N is always used to calculate the number of releases between
two points of s and the function M is always used to calculate
the response time at the highest criticality level currently being
considered.

The process of adding another set of points to check for
each criticality level may be repeated to account for as many
criticality levels as desired. However, the computational load
increases almost exponentially as the number of criticality
levels increases.

C. Period Transformation

In his analysis, Vestal [4] assumes a value of C;(LO)
for the remaining transformed executions, C;(HI)/m that do
not constitute a complete execution of C;(LO). This value,
although an effective upper bound, is undesirably pessimistic.
The work below considers a more accurate approach to finding
the interference from transformed executions that do not
constitute a complete untransformed execution.

We calculate the number of complete executions of C;(LO)
that might interfere with 7;:

R;
— | C;(LO
Rather than assuming the value of C;(LO) for all remaining
transformed executions, we seek to determine the size of the

incomplete interval. To find the size of the remaining interval,
P, we do the following:

R;
P=R;,— |—|T;
{TjJ !
And thus we use the value P, to calculate the number of

transformed executions within the remaining interval, x:
P 1 C;(HI)
T = —_
T;/m m
Therefore the complete calculation will include the trans-

formed tasks within the incomplete interval and the complete
executions of C;(LO). This is shown in Equation [14].

min{z,C;(LO)} + {?J C;(LO) (14)
J
The interference suffered from the transformed tasks within
the incomplete interval will be the minimum of x or C;(LO).
In keeping with the nature of this work we then considered
how the more accurate analysis presented above might be
adapted to work in a system with more than two criticality
levels. The analysis itself is applicable with little alteration.
The number of complete executions of C;(L;) within the
interval can be calculated.

RiJ

= | Ci(Li)

{Tj

And therefore we calculate the interference in the remaining
time period from the transformed executions.

R;

The complete calculation for n criticality levels is shown in
Equation [15].

. R;
minfo, Cy(L0} + | 12|50
J
As can be seen, the analysis is almost directly applicable. The
key challenge is the transformation of the tasks in such a way
that a criticality monotonic order is created.

15)

Rather than transforming all higher criticality tasks, with
a period greater than the shortest period of any LO task,
the process for n criticality levels must be iterative. Consider
Table I where HI > M E > LO.

T | L
| 80 | HI
o | 110 | ME
75 | 100 | LO
TABLE 1

3 CRITICALITY LEVEL PT EXAMPLE, UNTRANSFORMED

Of the three tasks shown in Table I, 75 is the only one
requiring transformation as it has a period greater than that of
73. We can calculate the transformation factor, n, as follows:

110

m=|—

100
Thus m = 2, this will give 75 a transformed period of 55, less
than the period of 7;. The set is not criticality monotonic and,

as such, it is clear that this calculation will not suffice. Rather
71 must also be transformed to give it a period of 40.



IV. EVALUATION

We tested the algorithms above on randomly generated task
sets. The task sets were generated the same way as in [2]. We
generated 5000 sets of 10 tasks per 2% total utilisation. As MC
tasks might have multiple WCETs, we consider the WCET
value generated for each task to be at the highest criticality
level in the system. The lowest level in the system is half the
highest, each additional level is evenly distributed between the
highest and lowest.

Our experimental data uses Criticality Dependant Utili-
sation to assess the percentage of tasks schedulable at any
particular utilisation.

(16)

In order to provide a thorough comparison we considered
the performance of AMCrtb, AMCmax and PT (ignoring the
inherent overheads). Alongside SMC [2], SMC-NO(Vestal’s)
[4] and Criticality Monotonic ordering (CrMPO).
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Fig. 3. Two Criticality Levels

Figure 3 shows the performance, at two criticality levels, of
each technique at varying utilisations (Criticality Dependant).
It is clear that AMCrtb out-performs SMC, CrMPO and SMC-
NO. AMCmax performs slightly better than AMCrtb and PT
performs well if overheads are ignored.
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Fig. 4. Three Criticality Levels

As the number of criticality levels is increased each of the
algorithms, apart from PT, maintain their performance relative
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Fig. 5. Five Criticality Levels

to each other. Period Transformation’s performance degrades
due to the increasing complexity of the transformations re-
quired as the number of criticality levels is increased. Figures
3,4 and 5 are typical of the relative results obtained for task
sets with different characteristics.

V. CONCLUSION

It is clear that both AMC methods perform well compared
to other techniques as the number of criticality levels is
increased. Importantly both AMCrtb and AMCmax maintain
their strong dominance over SMC. Although AMCmax does
out-perform AMCrtb, AMCrtb remains an excellent approxi-
mation of AMCmax while keeping computational costs rela-
tively low. As Mixed Criticality systems move forward it may
become important to support even greater than 5 levels of
criticality. In this case AMCrtb’s relatively low computational
cost would allow its application.

Period Transformation performs as expected. It provides
a schedulability boost and avoids criticality inversion at the
cost of vastly increased overheads and the requirement for
additional runtime monitoring.

In short, AMCrtb remains dominant over SMC and provides
a good approximation of AMCmax at any number of criticality
levels. In practice AMCrtb will out perform PT.
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