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Abstract—The development of mixed-criticality systems that
integrate applications of different criticality levels (safety, secu-
rity, real-time and non real-time) can provide multiple benefits
such as product cost-size-weight reduction, reliability increase
and scalability. However, the integration of applications of dif-
ferent levels of criticality leads to several challenges with respect
to safety certification standards.

This paper defines a safety certification strategy for IEC-61508
compliant industrial mixed-criticality systems based on multicore
partitioning. The final objective is the certification of a wind-
turbine mixed-criticality control system according to IEC-61508
and ISO-13849 industrial safety standards. This approach is
illustrated with a simplification of the safety concept currently
under detailed review by a certification body.

Index Terms—mixed-criticality ; safety; IEC-61508; certifica-
tion; multicore; partition

I. INTRODUCTION

Conventional embedded system architectures in multiple
domains follow a federated architecture paradigm, in which the
system is composed of interconnected embedded subsystems
where each of them provides a well defined functionality. The
ever increasing demand for additional functionalities leads to
a considerable complexity growth [1] that in some cases limits
the scalability of the federated approach. For example, a mod-
ern off-shore wind turbine dependable control system manages
up to three thousand inputs / outputs, several hundreds of
functions are distributed over several hundred nodes grouped
into eight subsystems interconnected with a fieldbus and the
distributed software contains several hundred thousand lines
of code.

The integration of additional functionalities also leads to an
increase in the number of subsystems, connectors and wires
increasing the overall cost-size-weight and reducing the overall
reliability of the system. For example, in the automotive
domain, field data has shown that between 30-60% of electrical
failures are attributed to connector problems [2].

The integration of applications of different criticality (safety,
security, real-time and non-real time) in a single embedded
system is referred as mixed-criticality system. This integrated
approach can improve scalability, increase reliability reducing
the amount of systems-wires-connectors and reduce the overall
cost-size-weight factor. However, safety certification according
to industrial standards becomes a challenge because sufficient

evidence must be provided to demonstrate that the resulting
system is safe for its purpose. Higher safety integrity functions
must be interference free with respect to lower safety integrity
functions.

This paper contributes with the definition of a safety certi-
fication strategy for IEC-61508 compliant industrial mixed-
criticality systems based on multicore partitioning, and il-
lustrates it with a safety concept for a wind-turbine mixed-
criticality control system. Both the strategy and the example
safety concept consider the usage of Commercial off-the-shelf
(COTS) multicore processors.

The paper is organized as follows. Section II introduces
basic concepts and Section III analyses related work. Section
IV describes the proposed safety certification strategy and
Section V briefly describes the safety concept. Finally, Section
VI draws the overall conclusion and future work.

II. BACKGROUND

A. Certification standards

IEC-61508 [3], [4], [5] is an international standard for elec-
trical, electronic and programmable electronic safety related
systems. IEC-61508 is a generic safety standard from which
different domain specific standards have been derived for
industrial and transportation domains, e.g. machinery, industry
process, automotive, railway, etc.

Safety Integrity Level (SIL) is a discrete level corresponding
to a range of safety integrity values where 4 is the highest level
an 1 is the lowest. As a rule of thumb, the highest the SIL the
highest the certification cost.

B. Fail-safe and fail-operational

Safety systems can be classified as either fail-safe or fail-
operational. A system is fail-safe if there is a safe state in the
environment that can be reached in case of a system failure
either by the safety function or diagnostics, e.g., a process
plant can be safely stopped, a train can be stopped, a lift can
be stopped, etc. A system is fail operational if no safe state
can be reached in case of a system failure, e.g., a flight control
system aboard an airplane, drive by wire in a car, etc.



III. RELATED WORK

Multiple analyses [6], [7], [8], [9], [10], [11] and research
publications [12], [13], [14], [15], [16] indicate that is likely to
be a significant increase in the use of multicore devices over
the next years replacing applications that have traditionally
used single core processors. Multicore and virtualization tech-
nology can support the development of mixed-criticality sys-
tems by means of software partition, or partition for short.
Partitions provide functional separation of the applications and
fault containment, to prevent any partitioned application from
causing a failure in another partitioned application.

However, the development of safety critical embedded
systems based on multicore and virtualization technology
is a challenge [17], [18], [19], [20], [21], [22]. Providing
sufficient evidence of isolation, separation and independence
among safety and non-safety related functions distributed in a
multicore processor is not a trivial task [21], [22].

IEC-61508 safety standard does not directly support nor
restrict the certification of mixed-criticality systems. Whenever
a system integrates safety functions of different criticality,
sufficient independence of implementation must be shown
among these functions [3], [4]. If there is not sufficient
evidence, all integrated functions will need to meet the highest
integrity level. Sufficient independence of implementation is
established showing that the probability of a dependent failure
between the higher and lower integrity parts is sufficiently low
in comparison with the highest safety integrity level [4].

Therefore, spatial and temporal isolation are key require-
ments in mixed-criticality systems because otherwise low
criticality applications could interfere with those of high
criticality. While spatial isolation can be commonly achieved
using state of the art solutions (e.g., MMU), temporal isolation
at application level depends on the time guarantees provided
by the underlying multicore processor. The usage of time
deterministic architectures and processors [19] could simplify
the collection of evidences for a certification process because
determinism is a sufficient precondition for logical reasoning
required for time behaviour analysis [1]. However, most of the
existing COTS multicore processors were not designed with a
focus on hard-real time applications but towards the maximal
average performance. This is the source for multiple temporal
isolation challenges [21], [22].

The avionics industry has widely adopted the Integrated
Modular Avionics (IMA) [23] architecture, which allows in-
tegrating several applications on a single processing element.
Applications are encapsulated into partitions that are tempo-
rally and spatially isolated from one another, enforcing fault
containment [24].

However, the migration of an existing set of pre-certified
single-core avionics IMA systems into a multi-IMA multicore
system is not a trivial task. The fundamental challenge is to
ensure that the temporal and spatial isolation of the partitions
will be maintained without incurring huge recertification costs
[8], [9], [16], [25], [26], [27], [28], [29].

IV. SAFETY CERTIFICATION STRATEGY

This section describes an IEC-61508 compliant safety cer-
tification strategy for mixed-criticality systems based on mul-
ticore partitioning, based on the following assumptions:

• The IEC-61508 standard mainly targets fail-safe systems.
• The fault hypothesis defines overall safety assumptions
• An hypervisor ported to a given platform is provided as

a certified compliant item
• The hypervisor supports a static cyclic scheduling algo-

rithm with guaranteed time slots defined at design time
• A system level diagnosis strategy is defined
As multicore partitioning based solutions are still not com-

mon practice in industry, the strategy shown in Figure 1
considers a three step safety concept transformation from a
federated architecture to a multicore integrated architecture.

• Transform federated to multiprocessor: Transform the
safety concept of a federated architecture to a multipro-
cessor safety concept using well known techniques that
are common practice in industry

• Transform multiprocessor to multicore: Transform pre-
vious safety concept to multicore safety concept still
abstracted from detailed analysis of shared-resources.
Analyse and select the platform with regard to isolation

• Analyse multicore shared resources: Define, analyse and
asses in detail shared resources and their effect
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Fig. 1. Safety concept transformation strategy in consecutive steps.

A. IEC-61508 and fail-safe systems

IEC-61508 based safety-critical embedded systems must
be developed with a safety life-cycle that aims to reduce
the probability of systematic errors and ensure that sufficient
fault avoidance and fault control techniques are implemented.
Regarding temporal isolation, this means that isolation needs
to be systematically guaranteed (or give safe worst case
bounds) and diagnosis techniques must be used to detect
temporal isolation violations (e.g., watchdog, logic execution,
etc. ). If this unexpected violation occurs, diagnosis should
lead the system to safe-state (e.g., reset). Therefore, the lack
of complete temporal isolation would reduce the availability
of the system but should not jeopardize safety.

B. Fault hypothesis

The fault-hypothesis [30] of this strategy consists of the
following assumptions:



• FSM: All safety relevant systems are developed with an
IEC-61508 Functional Safety Management (FSM)

• Node: The node computer forms a single Fault-
Containment Region (FCR) that can fail in an arbitrary
failure mode. The permanent failure rate is assumed to
be in the order of 10-100 FIT (i.e., about one thousand
year) and the transient failure rate is assumed to be in
the order of 100.000 FIT (i.e., about one year)

• Processor: The multicore processor might not provide
complete temporal isolation (or not sufficient evidence
for certification), but bounded temporal interference can
be estimated and validated with measurements

• Hypervisor: The hypervisor provides interference free-
ness among partitions (bounded time and spatial isola-
tion), it is certified and fails in an arbitrary failure mode
when it is affected by a fault

• Partition: A partition can fail in an arbitrary failure mode,
both in the temporal as well as the spatial domain

C. Compliant item: Hypervisor and platform

Hypervisor is a layer of software (or a combination of
software / hardware) that allows running several independent
execution environments in a single computer platform. Hy-
pervisor solutions such as XtratuM [31] have to introduce a
very low overhead compared with other kind of virtualizations
(e.g., Java virtual machine); the throughput of the virtual
machines has to be very close to that of the native hardware.

The strategy assumes that a hypervisor and platform are
provided as a single certified compliant item according to
IEC-61508. The safety manual should state that the compliant
item provides the following techniques and properties:

• Startup, configuration and initialization: The hypervisor
must start up, configure and initialize in a known, repeat-
able and correct state within a bounded time (e.g., internal
data structures, virtualized resource initialization, etc.).
Configuration data is static and defined at design stage.

• Virtualization of resources: Provide a virtual environment
in a safe, transparent and efficient way (e.g., CPU,
memory and Input / Output (I/O) devices)

• Isolation, diagnosis and integrity:
– Spatial isolation: To prevent one partition from

overwriting data in another partition, or a memory
address not explicitly assigned to this partition

– Temporal isolation: To ensure that a partition has
sufficient processing time to complete its execution,
ensuring that partition cyclic schedule and time slots
are assigned as statically configured

– Health monitoring: To control random and system-
atic failures at hypervisor or partitions level. Actions
to handle these errors are statically defined.

– Exclusive access to peripherals: Protect access to
peripherals used by a safety partition

– Hypervisor Execution Integrity: The hypervisor ex-
ecution should be in privileged mode, isolated and
protected against external software faults.

• Communication and synchronization:

– Inter-partition communication: The hypervisor must
support mechanisms that allow safe data exchange
between two or more partitions

– Time Synchronization: Fault-tolerant time synchro-
nization that provides a global notion of time to the
hypervisor partition scheduler

D. Scheduling

The scheduling of partitions should follow a static cyclic
scheduling algorithm with pre-assigned guaranteed time slots
defined at design time. The scheduling of partitions among
cores should be synchronized based on the global notion of
time provided by the hypervisor.

E. Diagnosis strategy

In order to manage the complexity management [1] arising
from the safe integration of multiple mixed-criticality parti-
tions, a diagnosis strategy is defined taking into consideration
the following assumptions:

• Partitions are developed abstracted from the platform
• The hardware platform provides autonomous hardware

diagnosis an diagnosis to be commanded by software
• The execution platform (hardware and hypervisor) is

abstracted from the partitions to be executed. The hy-
pervisor provides health monitoring that might be com-
plemented with additional system diagnosis partition(s)

• The system architect is responsible for the architectural
design, safety integration and must take care of:

– Analysing safety manuals of integrated safety parti-
tions and compliant items

– Selection of partitions and diagnosis partitions
– Defining the design time static configuration,

e.g., scheduling and allocation of resources

Based on this assumptions, the recommended diagnosis
strategy is described below:

• The partition should be self contained and should provide
safety life-cycle related techniques (e.g., IEC-61508-3
Table A.4 defensive programming) and platform inde-
pendent diagnosis (e.g., IEC-61508-2 Table A.7 input
comparison voting) abstracted from the details of the
underlying platform

• The hardware provides autonomous diagnosis (e.g., IEC-
61508-2 Table A.9 Power Failure Monitor (PFM)) and
diagnosis components to be commanded by software
(e.g., IEC-61508-2 Table A.10 watchdog)

• The hypervisor and associated diagnosis partitions should
support platform related diagnosis (e.g., IEC-61508-2
Table A.5 signature of a double word)

• The system architect specifies and integrates additional
diagnosis partitions required to develop a safe product
taking into consideration all safety manuals



V. CASE STUDY

This section briefly describes a case-study where previously
defined safety certification strategy (Section IV) is applied for
the definition of a safety concept for a mixed-criticality wind
power control based on multicore partitioning.

A wind park is composed of interconnected wind turbines
and a centralized wind park control center as shown in Figure
2. As previously explained current wind turbine control unit
follows a federated architectural approach and provides three
major functionalities:

• ’Supervision’: Wind turbine real-time control and super-
vision.

• ’SCADA’: Non real-time Human Machine Interface
(HMI) and communication with SCADA system

• ’Safety Protection’: Safety functions that ensure that
design limits of the wind turbine are not exceeded
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Fig. 2. Simplified wind park diagram.

The safety protection system must ensure that design limits
of the wind turbine are not exceeded (e.g., over speed) and if
exceeded output safety-relays connected to the safety-chain
must be opened. As shown in Figure 3, there is a safety-
chain composed of safety-relays in serial that activates the
’pitch control’ safety function whenever the chain is opened.
The ’pitch control’ safety function leads the wind turbine to
a safe-state within a Process Safety Time (PST). The safety
protection system must meet ’PLd’ level of ISO-13849 [32]
and IEC-61508 SIL2/3.

Pitch control

Safety Chain

Fig. 3. Wind turbine safety chain.

A. Safety concept

This section describes the safety concept of a mixed-
criticality wind power system based on multicore and virtual-
ization partitioning.

1) Transformation (Federated to multiprocessor): The first
step is to transform a subset of the current federated archi-
tecture into an integrated architecture based on two or more
processors. The safety concept behind the architecture shown
in Figure 4 is common practice in industry: 1oo2(D) dual-
channel architecture based on two independent processors, two
shared diverse input sources (rotation speed) and two output-
relays connected in serial to the safety-chain.

The node has a Hardware Fault Tolerance (HFT) of one
(HFT = 1)) based on two independent processors. Each
processor controls one independent safety-relay that can be
de-activated (safe-state) either directly commanded by ’safety
protection’ or indirectly by ’diagnosis’. If the ’diagnosis’
detects a fatal error, it does not refresh the associated watchdog
and this leads to a reset of the node. As a summary:

• ’P0’ and ’P1’ are independent single core processors
• ’P0’ processor executes safety related partitions only:

’safety protection’ and ’diagnosis’
• ’P1’ processor executes all partitions
• Each processor controls one independent safety-relay
• EtherCAT ’communication stack’ is managed in P1 and

the safety-communication layer in ’safety protection’
• Local and cross-channel ’diagnosis’ in each processor
• An independent ’watchdog’ monitors each processor
• An IEC-61508 SIL2 system with HFT = 1 requires a

Safe Failure Fraction (SFF) of 90% > SFF >= 60%

SCPU

P0 P1

Speed Sensor(s)

ETHERCAT

watchdog[0] watchdog[1]

safety relay safety relay

diagnosis diagnosis

safety protection

safety protection

communication stack

SCADA supervision

Fig. 4. Safety concept(1oo2; 2 processors)

The future scalability of this approach is also limited. The
number of integrated functionalities will continue to increase,
but the usage of fans is not allowed in order to meet reliability
and availability requirements. The computation power of the
single core processor is limited and if processor ’P1’ does
not provide sufficient computation power new processors
will be need to be added. Adding new processors and their
associated communication buses leads to additional reliability
and availability issues (e.g., material reliability, EMC, etc. ).

2) Transformation (multiprocessor to multicore): Previous
multiprocessor based safety concept shown in Figure 4 is
transformed into a multicore architecture shown in Figure 5.



At this abstraction level, different platforms are analysed
taking into consideration features such as safety, computa-
tion, memory, communication, isolation, etc. The theoretical
analysis based on available documentation must be validated
with experimental evaluation. The mapping of partitions to
cores can also be modified according to platforms specific
constraints and properties. The selected platform shown in
Figure 5 is an heterogeneous quadcore processor (two ’x86’
cores and two ’LEON3 FT’ softcores), that meets application
requirements, application dependencies with ’x86’ architecture
and has been positively assessed [33].

In addition to this, the diagnosis strategy defined in the pre-
vious transformation needs to be reviewed taking into consid-
eration the details of the new platform. For example, a single
processor node requires a processor that meets IEC-61508-2
Annex E in order to claim a HFT = 1 and this is not common
for COTS processors. If this claim does not hold, a higher SFF
is required (a IEC-61508 SIL2 system with HFT = 0 requires
99% > SFF >= 90%), which implies additional diagnosis
techniques and updates in previously selected ones.
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communication stack
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Fig. 5. Simplified safety concept (1oo2), multicore).

3) Shared resources: Figure 6 shows the detailed processor
diagram taking into consideration major shared-resources. The
real platform is composed of two commercial nodes, a dual-
core Intel Atom processor connected via PCIe to an FPGA
that integrates two ’LEON3 FT’ softcores. For the purpose
of this analysis, they are considered to be a single silicon
rather than two independent silicon. ’LEON3 FT’ softcores
have associated a local memory for program and data (’LS
memory’) and use an external shared memory (’external shared
memory’) for inter-partition communication. ’x86’ cores have
L1/L2 cache and share and external memory (’external shared
memory 2’). Communication among partitions allocated in
’x86’ and ’LEON3 FT’ cores is implemented using an external
shared memory accessed by a shared bus (AHB bus - gateway
- PCIe). A periodic interrupt common to all cores is used for
hypervisor time synchronization purposes.

The extended safety concept includes FMEAs, error reaction
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Fig. 6. Safety concept (1oo2), multicore with shared resources).

definitions and it is complemented with a detailed assessment
of the platform [33]. Spatial isolation was positively assessed.
However, it was concluded that temporal characteristics of
partitions could be influenced by different loads scenarios in
other partitions due to shared resources. For example:

1) Shared memory: x86’ cores use shared-memory and
’LEON3 FT’ cores use shared memory for inter-partition
communication. Maximum temporal interference suf-
fered by a partition is estimated and measured

2) Shared cache: Atom processor (dual core ’x86’) does not
support temporal freeness in shared cache, the maximum
temporal interference suffered by a partition is measured

3) Interrupts: Some interrupts in the Atom processor can
not be rerouted and this can influence the timing be-
haviour of the hypervisor, the maximum temporal inter-
ference suffered by a partition is measured

4) Communication channel: Complete decoupling of sender
and receiver partitions connected with a communication
channel require temporal isolation

Different solutions are defined in order to avoid and control
failures due to previously described temporal interferences:

• Fault avoidance
– Shared-resources: ’Safety protection’ and ’diagnosis’

partition Worst Case Execution Time (WCET) are
measured for each core type (’x86’ and ’LEON3
FT’). Both partitions are scheduled at the beginning
of each periodic cycle with a pre-assigned time-
slot bigger than the maximum estimated execution
time, which considers both the WCET and maximum
estimated time interference due to shared resources

– Interrupts: All unused interrupts are routed to ’diag-
nosis’ or health monitoring

– Communication channel: The communication among
’safety protection’ and ’diagnosis’ partitions in dif-
ferent cores is delayed one execution cycle, which



it is considered sufficient to diminish temporal inter-
ferences due to shared resources.

• Fault control:
– Shared-resources: Safety partitions are executed in

two diverse cores (’x86’ and ’LEON3 FT’) with dif-
ferent hypervisor configuration. Each ’diagnosis’ par-
tition refresh an independent watchdog if monitored-
time constraints are met.

– Interrupts: ’Diagnosis’ partition traps unused inter-
rupts and decides whether to refresh an independent
watchdog based on the severity of the error

– Communication channel: Safety partitions monitor
communication channel time-outs.

VI. CONCLUSION AND FUTURE WORK

While mixed-criticality paradigm based on multicore and
partitioning provides multiple potential benefits, it is clear
that the safety certification of such systems based on COTS
multiprocessors not designed for safety is a challenge.

This paper has contributed with a safety-certification strat-
egy for IEC-61508 based safety systems based on COTS
multiprocessors that have been illustrated with a safety con-
cept currently under detailed review by a certification body.
The assumptions and analysis considered at this stage will be
reviewed in the following design stages and validated at the
final stage of the case-study within FP7 MultiPARTES project.
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