Safety Assurance Driven Problem Formulation
for Mixed-Criticality Scheduling

Patrick Graydon? and lain Bate'-?
IDepartment of Computer Science, University of York, York, UK
?Milardalen Real-Time Research Centre, Milardalen University, Visterds, Sweden
email: patrick.graydon@mdh.se and iain.bate @cs.york.ac.uk

Abstract—In 2007, Vestal proposed Mixed-Criticality Schedul-
ing (MCS) to increase utilisation despite imperfect timing evi-
dence. Others have since refined the MCS problem formulation,
proposed alternative scheduling approaches, and evaluated their
performance. We assess existing MCS problem formulations
from a safety assurance perspective and report problems found.
Among these is the use of the word ‘criticality’ to mean several
related but distinctly different things such as Safety Integrity
Levels (SIL), importance, and confidence. We conclude with
suggestions for addressing the problems found.

I. INTRODUCTION

In 2007, Vestal proposed Mixed Criticality Scheduling
(MCS) as a way to achieve high utilisation despite imperfect
timing evidence [|1]. He observes that (a) increased confidence
in WCET limits comes at the expense of increased pessimism
and (b) tasks vary in criticality. MCS schedules a system so
that all tasks can run if they adhere to a low-confidence WCET
limit. Failing that, the most critical tasks can run if they adhere
to a larger, higher-confidence WCET limit. Later work ex-
panded the problem definition, proposed alternative scheduling
algorithms, and demonstrated superior utilisation [2]—[10].

But existing definitions of the MCS problem are presented
primarily from a scheduling perspective. We report an analysis
of the MCS problem from a safety assurance perspective.
Amongst other findings, we show that current formulations use
the word ‘criticality’ to represent several related but distinct
concepts, including Safety Integrity Level (SIL), importance,
and confidence. We discuss how this affects safety assurance
and present suggestions for addressing the problems found.

In we survey formulations of the MCS prob-
lem. We discuss confidence in execution time assessments in
section [II] and the MCS-related demands of safety assurance
in [section IV] In [section V| we critically examine existing
problem formulations and suggest improvements. We discuss

future work in [section VI and conclude in [section VI

II. EXISTING PROBLEM FORMULATIONS

Vestal was the first to publish a formulation of the MCS
problem [1]]. Others, including Baruah and Yi, have extended
the problem formulation to account for more parameters
changing with criticality and to generalise criticality modes.

A. The Vestal Formulation

Vestal’s 2007 formulation of the MCS problem begins with
the ‘conjecture that the higher the degree of assurance required

that actual task execution times will never exceed the WCET
parameters used for analysis, the larger and more conservative
the latter values will become in practice’ [[1]. In his model, a
system has tasks 7i ...7,, each with period T; and deadline
D,. System development adheres to ‘an ordered set of design
assurance levels’ £ = {A, B, C, D} with A being the highest.
C;, gives the compute time for task 7; at assurance level [,
with C; 4 > C; g > C; ¢ > C; p for all i. The goal is ‘to
assure to level L;’ that each task 7; ‘never misses a deadline’.

B. The Baruah and Burns Formulation

Baruah and Burns extend Vestal’s formulation [2], [5]. A
system is ‘defined as a finite set of components K’, each with
level of criticality L [5]). As in Vestal’s formulation, each task
7; is defined by (Ti,DZ-,C:-,L,-). 6‘2 ‘will be derived by a
process dictated by the criticality level’ and ‘the higher the
criticality level, the more conservative the verification process
and hence the greater will be the value of C;’. However,
noting that ‘the higher the criticality level, the greater the
need for the task to complete well before any safety-critical
timing constraint’, the model permits different deadlines at
different criticality levels so long as L} > L? = D} < D2.
Moreover, noting that ‘the higher the criticality level, the
tighter the level of control that may be needed’, Baruah and
Burns allow different periods at different criticality levels so
long as L} > L? = T} < T?. If a task at criticality level
¢ overruns C} ¢, tasks at criticality levels ¢ and lower are
prevented from running again until the processor is idle [2].

Baruah and Burns identify two ‘issues’ that MCS must
address: static verification and run-time robustness [5]]. By the
former, they mean that ‘for each criticality level ¢, all jobs of
all tasks with criticality > ¢ will complete by their deadlines in
any criticality-¢ behavior’. By the latter, they mean that after
a transient overload, ‘a robust scheduling algorithm would,
informally speaking, be able to “recover” ... and go back to
meeting the deadlines of lower-criticality jobs as well’.

C. The Ekberg and Yi Formulation

Ekberg and Yi extend Vestal’s formulation further [7].
Previous formulations defined criticality modes purely as a
mechanism for preserving timing guarantees. Noting that ‘it
should be up to the system designer to decide what it means
for the system to be in any one particular criticality mode’,
they propose using criticality modes to reconfigure systems in



response to events such as hardware failures. (General models
for such reconfiguration have been proposed elsewhere [11]];
the contribution of Ekberg and Yi lies in combining MCS with
more general notions of reconfiguration.) In their model, a
system is defined by a set of tasks 7 and a DAG G. The vertex
set V(G) defines the criticality modes and the edge set E(G)
specifies the permissible changes between them. Each task is
defined by the set of criticality modes in which it is active, £,
and for each m € £; a tuple (C;(m), D;(m), T;(m)). During
a criticality level switch from m to m’:

o Where m € £; and m’ ¢ £;, the system suspends 7.

o Where m ¢ £; and m’ € £;, the system activates 7;.

o Where m € £; and m' € £;, the system changes 7;’s

parameters to those specified for m/.

These changes take immediate effect. For example, if the
system suspends T;, it discards any active jobs.

Note that G is a DAG: if the system switches to a higher-
criticality mode, it will never switch back. Ekberg and Yi
observe in a footnote that ‘one could easily find a time point
where it is safe to switch back’, but leave this to future work.

III. CONFIDENCE IN EXECUTION TIME ASSESSMENTS

A key assumption behind all three MCS problem for-
mulations is WCET confidence monotonicity: that the de-
gree to which a WCET limit overestimates true WCET in-
creases monotonically with confidence. WCET assessment
approaches can be classified as (a) dynamic (measurement-
based), (b) static (analysis-based), or (c) hybrid [12]]. We
consider the WCET confidence monotonicity assumption with
respect to each WCET assessment approach in turn.

A. Dynamic Approaches to WCET Assessment

The simplest dynamic WCET assessment approach is High
Water Mark testing (HWM). In HWM, analysts use the longest
execution time observed in testing as a WCET estimate [12].
The primary source of uncertainty in WCET limits derived
from HWM testing is imperfect test coverage. Secondary
sources include the correctness of any tools, the integrity of
data gathering, any differences between the test system and
the deployed system. These sources are epistemic, i.e. related
to what we do not know rather than arising from chance.

Developers sometimes analyse execution paths and choose
test cases in an attempt to stimulate the worst case [1]. If a
and b are sets of test cases and a C b, then HWM testing
using b inspires more confidence than the same testing using
a. Unfortunately, it is not generally possible to quantify either
the likelihood or degree of underestimate using this tech-
nique [12]. Two examples of why are as follows. Firstly, the
tasks are analysed for their WCET in isolation with the cache
flushed, however the cache is not flushed before the task starts
executing. Cache-related anomalies exist which mean that this
situation can lead to a higher execution than the measured
WCET [13]. Secondly, the WCET is measured during system
integration testing however this cannot for instance cover all
initial cache states and preemptions scenarios.

In probabilistic approaches, analysts use Extremal Value
Theory (EVT) to fit observed execution times to a distribu-
tion [12], [14]. By selecting a WCET estimate from further to
the right of the distribution, a developer can reduce the uncer-
tainty from test coverage at the cost of increased pessimism.
Because the distributions do not model epistemic uncertainty,
probability figures taken from them are not complete descrip-
tions of the confidence testing should inspire. However, we
know of no reason to think that total confidence does not rise
monotonically with distribution-derived probabilities.

B. Static Approaches to WCET Assessment

Static WCET analysis considers all possible paths through
analysed code. Thus, it is not affected by the main source of
uncertainty in dynamic approaches. However, static analysis
does not produce perfect confidence [12]]. User inputs such as
loop bound limits might be wrong, tools might be buggy, and
processor models may be wrong.

Because primary sources of uncertainty in static approaches
are epistemic, there is no clear relationship between confidence
and overestimate amongst static approaches. Consider two
static analysis tools A; and A and a program p for which
Ay produces a greater WCET figure than A,. The extra
overestimate might mask some tool defects (if any), but if
the tool qualification evidence for Ay is more comprehensive
than that for A;, we might justifiably have more confidence
that A5 does not underestimate true WCET.

We can’t quantify test coverage uncertainty in HWM-based
approaches. But all other issues (e.g. developer competence,
tool qualification evidence) being equal, static approaches
produce greater confidence. Since a static analysis approach
(if it is sound, given correct inputs, etc.) never underesti-
mates WCET and HWM testing never overestimates, static
approaches will overestimate more. The degree of overesti-
mate will depend on the target CPU’s complexity and the
analysis tool’s sophistication. Analysis results within 20% of
the highest observed execution time have been achieved [15],
but complex features such as multi-level caches can result in
overestimates of 100% or more [16]. Analysis of software on
multicore platforms is particularly challenging [|12].

It is not clear how confidence and overestimation compare
between static approaches and probabilistic approaches, at
least at the high end of the distribution.

C. Hybrid Approaches to Determining WCET

Hybrid approaches combine static analysis and measure-
ment [[12f, [[17]. These approaches divide the software into
blocks, dynamically measure the runtime of each, statically
analyse the software structure, then combines block timing
figures into a complete WCET estimate. The simplest form
of hybrid approach uses a HWM time for each block, but
more complex analyses take inter-block dependencies into ac-
count [18]. For a given test suite, hybrid approaches should be
less likely to underestimate WCET than simple HWM testing:
many test cases might provoke a given block’s worst perfor-
mance, but only one case yields the worst performance for the



task being tested. However, the basic sources of uncertainty
are the same as with dynamic methods. Underestimation and
overestimation are possible and their likelihood unknown [12].
It is less clear how either the confidence inspired by hybrid
approaches or the degree of overestimate compares to those
of static approaches. In addition, no proof of safeness exists
for the hybrid approaches.

D. The WCET Confidence Monotonicity Assumption

Between the HWM testing approach and any sound, well-
constructed static analysis approach, the WCET confidence
monotonicity assumption almost certainly holds. With other
approaches, it is less clear that this assumption holds. We

return to this issue and its implications in [subsection V-Al
IV. THE DEMANDS OF SAFETY ASSURANCE

Successful instantiations of MCS in safety critical systems
must provide the properties and evidence needed for safety and
safety assurance. In this section, we outline the timing-related
demands of typical safety assurance approaches.

Standards for software for use in safety critical systems vary.
For example, software for use on commercial air transports is
constructed in conformance to RTCA DO-178B [19] or its
successor DO-178C [20]. Software for general safety-related
systems is often developed in conformance to IEC 61508 [21]].
Software for road vehicles is developed in conformance with
ISO 26262 [22]. There are standards for rail applications [23]]
and other specific domains. In yet other domains, standards
dictate a systems safety approach but no specific approach to
software [24]. In this section, we consider typical safety assur-
ance approaches, referring to common standards for concrete
examples where appropriate.

A. Derivation of Timing-Related Safety Requirements

Engineers typically derive timing-related safety require-
ments from hazard and risk analyses. For example, engineers
following IEC 61508 (1) define the system concept and scope,
(2) perform hazard and risk analysis, (3) define overall safety
requirements, and (4) allocate safety requirements to particular
functions and subsystemsﬂ [21]. The aim of hazard and risk
analysis is to determine (a) the system hazards, (b) the event
sequences that could lead to those, and (c) the risks related to
the identified hazards. The overall safety requirements detail
risk reduction measures meant to achieve functional safety
targets. Engineers allocating safety requirements specify an
appropriate SILE] for each function and then for the sub-
systems implementing those functions. Timing-related safety
requirements capture when these functions must be activated,
performed, completed, etc. if the system is to meet its safety
targets. Most standards for software in safety critical systems
use some variant of this process. (RTCA DO-178B [19]] and
DO-178C [20] do not: they exclude system safety engineering
from their scope. These standards are used with SAE ARP
4754A [25], which does follow a broadly similar pattern.)

'TEC 61508 uses the term ‘system’ here, but this process applies to multiple
interacting ‘systems’ and considers over-arching safety goals.
2SILs go by different names (e.g. ASIL, DAL, SWDAL) in other standards.

B. The Meaning and Role of Safety Integrity Levels

SILs play a complex and frequently misunderstood role in
safety standards that use them [26]. SIL is not a measure of
target reliability generally: if failure of a subsystem would
have little effect on safety but a disastrous effect on business
objectives, that subsystem might have a low SIL. SIL is nor a
measure of the importance of any particular property: a high-
SIL function might cause harm if not performed correctly but
not if completed late. SIL is also not a measure of achieved
reliability. In IEC 61508 [21] (and also in ISO 26262 [_22]),
SIL drives which techniques (e.g. use of formal methods or
dynamic reconfiguration) the standard recommends. However,
developers are not obligated to use even highly recommended
techniques: they may instead explain their reasoning to an
assessor and agree an alternative process [21]]. Even if software
development process was a strong predictor of reliability —
there is little or no direct evidence showing that it is —
standards don’t strictly dictate development practiceﬂ

The role of SILs is best viewed as part of a process of
deriving an appropriate development process from the hazard
and risk analysis [26]]. For example, consider IEC 61508,
which applies to control systems meant to mitigate risks
posed by equipment under control (e.g. an industrial metal
fabrication tool) [21]. During hazard and risk assessment,
engineers work out both the consequences (i.e. severity) and
likelihood of harm (assuming no mitigation from the control
system). These factors determine risk, which is compared with
tolerable risk thresholds to determine the need for mitigation.
From this, engineers derive a tolerable rate of failure for each
mitigation function. This failure rate is converted into a SIL
and used to drive development of appropriate development
process. While other standards that use SIL do so in a broadly
similar way, there are substantial differences and these can be
a source of confusion [26].

C. Fartitioning and Integrity

Software running on one microprocessor frequently imple-
ments multiple functions. These functions might have different
safety integrity needs and developers might want to save
money by using less-rigourous processes to implement lower-
SIL functions. However, software implementing one function
could interfere with software implementing another, for ex-
ample by writing to a random memory address. Standards
typically address this by assigning to software the highest SIL
of any function it implements unless developers demonstrate
partitioning integrity. For example, IEC 61508 allows allocat-
ing different SILs to different parts of the software only when
developers show that ‘there is sufficient independence of im-
plementation between these particular safety functions’ [21]].

D. Adequate Confidence in Timing Claims

None of the common standards for software in safety critical
applications clearly defines what constitutes adequate confi-

3Not even DO-178B [[19] or DO-178C [20]. Developers and assessors agree
a Plan for Software Aspects of Certification that details the specific activities
undertaken to achieve the standard’s SWDAL-specific objectives.



dence in a claim about task execution time [[12]]. For example,
RTCA DO-178B requires ‘review and analysis’ to ‘determine
the correctness and consistency of the source code, including

. worst-case execution timing’ [19]. This objective applies
at all but the least-critical SILs. A companion document
clarifies that dynamic approaches to determining WCET are
sometimes appropriate but does not discuss which approaches
are appropriate and not appropriate at each SIL [27].

E. Survivability and Graceful Degradation

Common standards for software in safety critical applica-
tions focus mainly on preventing or detecting defects. But it is
not generally possible to ensure that software-based systems
will never fail. Recognising this, some standards, researchers,
and authorities advocate building software so as to achieve
survivability [28]]. Survivability can be broadly defined as the
ability of a system to provide essential services in the face
of attacks and failures. To achieve this resilience, engineers
build systems to reconfigure themselves in response to defined
failure and attack conditions [11]]. Such reconfiguration is one
way to achieve the ‘graceful degradation’ that IEC 61508
recommends at low SILs and highly recommends at high
SILs [21]]. Researchers have formalised the definition of a
survivability specification as {S, F, D, V, T, P} where:

« S specifies acceptable forms of service from the system

(e.g. full service, limp-home mode)
o E gives permitted values for each aspect of service value
(e.g. {mass air flow sensor — {working, failed},...})

e D defines legal combinations of the values in £

e V:5x D — Nj gives the relative value that each con-

figuration supplies under each environmental condition

e T'C S xS x D defines the legal mode transitions
P : S — {p:R|0<p<1} specifies the proba-
bility with which the implementation of each service
mode must meet its dependability requirements (e.g.
{full_service — 0.999, limp_home > 0.99999}) [28]

Achieving graceful degradation always requires understand-
ing how a system reacts to adverse events but does not
always require explicit mode transitions. For example, graceful
degradation might mean avoiding a design that causes a system
that receives one too many requests to service none of them.

F. Modes of Operation

Standards use the word ‘mode’ to mean different things.
Each configuration in a survivability architecture can be called
a mode. But when IEC 61508 directs engineers conducting
hazard and risk analysis to ‘give particular attention to abnor-
mal or infrequent modes of operation of the [equipment under
control]’ [21], it means something different. The modes in this
case are the ways in which the system is used (e.g. continuous
production, prototyping/piecework, maintenance, etc.).

V. CRITIQUE OF EXISTING PROBLEM FORMULATIONS

Most published work on MCS is from a scheduling per-
spective. In this section, we criticise the MCS problem for-
mulations outlined in and suggest improvements.

A. Impact of the WCET Confidence Monotonicity Assumption

As we showed in |section 11} it is not clear that the WCET
confidence monotonicity assumption holds over all WCET
assessment approaches. Static analysis approaches generally
produce both greater confidence and greater overestimate than
HWM testing approaches, but the issue is less clear where
statistical approaches or hybrid approaches are concerned.

However, it might not matter that the WCET confidence
monotonicity assumption does not hold universally. Suppose
that, for a given task in a given system, a high-confidence
WCET assessment approach yields a lower WCET limit than
a low-confidence approach. Developers could simply use the
high-confidence WCET limit for both Cy; and Cpp.

When judging the risk associated with a design that includes
MCS, developers need to reason about the confidence inspired
by the WCET assessment approach used. This is compli-
cated by our general inability to precisely quantify the total
confidence / uncertainty associated with WCET assessment
techniques. But this difficulty is not unique to MCS; it applies
even when other scheduling approaches are used [12].

1) Suggestion: Confidence in WCET limit figures is in-
completely understood and MCS might not provide benefit in
cases where the WCET confidence monotonicity assumption
does not hold. But there are important cases where it does,
chief among them between HWM testing and static analysis.
For the most critical functions, engineers and regulators might
agree that only a technique that significantly overestimates
true WCET provides sufficient confidence. Standard safety
processes dictate that developers must either demonstrate
partitioning integrity or use the same technique for all parts of
the software. The MCS problem formulation should position
MCS as a way to demonstrate partitioning integrity despite
using less-conservative techniques such as HWM testing for
functions that can tolerate greater uncertainty.

B. Multiple Meanings of ‘Criticality’

Vestal’s formulation [1]] used ‘criticality’ synonymously
with SIL (or ‘Design Assurance Level’ in RTCA’s DO-178B
nomenclature [[19]]). That formulation uses criticality to indi-
cate both the consequence of a task missing its deadline and
confidence in the WCET limit figures used in timing analysis.
As we noted in[subsection IV-B} SIL is at best a crude indicator
of these things. A high-SIL task overrunning its deadline might
cause little or no safety impact and SIL is only the starting
point for a negotiation between developers and assessors (if
any) over which WCET assessment approach is appropriate.
Moreover, engineers using a standard that defines five SILs are
unlikely to use five different WCET assessment techniques.

The Baruah and Burns formulation [2], [5] extends the
Vestal formulation [1] but uses the word criticality in much
the same way. The Ekberg and Yi formulation [7] goes
further, extending the Vestal formulation to combine MCS
with reconfiguration for survivability. In doing so, it uses the
word criticality as a label for what the survivability literature
calls an ‘acceptable form of service’ [28]. This meaning is not
interchangeable with either of the first two. Shifting to a new



form of service might increase the consequences of some tasks
missing their deadlines and decrease the consequences for
others. For example, suppose that a combat UAV is engaged
in aerial combat and reconfigures into a dogfighting mode. In
that mode, timely vision and control actuation might become
more important than in normal flight while automatic de-icing
becomes less important. But while the importance of a task
might change when reconfiguring for survivability, confidence
in WCET limits will not.

1) Suggestion: The MCS problem formulation should use
different terms for each of the different concepts now being
referred to as criticality. We suggest the following definitions:

e ‘Importance’ should be used to describe the consequence
of a task overrunning its deadline. Importance varies
with service mode and might be lower than the SIL(s)
associated with the tasks’ service would indicate.

o ‘Confidence’ should be used to describe confidence in a
WCET limit or WCRT figure. Uncertainty is the lack of
confidence (e.g. for the reasons discussed in [section III).

e ‘Mode’ should only be used as part of a complete term
that describes a specific mode. Service mode should
describe a mode used in reconfiguration for survivability.
Mode of operation should describe the way in which a
system is being used by its operators. Scheduler mode
should be used to describe whether a scheduler is exclud-
ing low-importance tasks in order to help high-importance
tasks meet their deadlines.

Because SILs are defined and used differently in different
standards [26], the MCS problem should not be described
in terms of SIL. Where helpful, documents giving advice for
building systems using MCS can explain how importance and
confidence map to a specific standard’s definition of SIL.

C. There Are Modes, and Then There Are Modes

The Ekberg and Yi MCS problem formulation [[7] includes
a single reconfiguration mechanism meant to facilitate both
(a) surviving equipment failure and (b) recovering from an
overrun of a low-confidence WCET figure. This is meant to
promote generality (for its own sake) and reuse of validated
approaches. They write, ‘we would like the task model to be
as general as possible. ... It is not unlikely that some existing
solutions regarding the scheduling of regular mode switching
systems can be adapted for mixed-criticality scheduling’ [/7]].
However, it is not clear that (i) the Ekberg and Yi recon-
figuration model is general enough for general survivability
purposes, (ii) that a sufficiently general model would be suited
to tolerating overruns, or (iii) that a combined model would
be practical from a safety assurance standpoint.

In we described a formal model of reconfig-
uration for survivability [28]]. Such reconfigurations might take
much longer than simply setting a mode variable to a different
value. For example, a system migrating a task to a different
computing node might need to load object code and initial
state into that node’s memory [29]. Clearly, the time budget for
such reconfigurations cannot be included in the time budget for
normal task execution. To accommodate such reconfigurations,

reconfiguration architectures include special procedures that
are executed to accomplish the reconfiguration [11]].

As Baruah and Burns point out, MCS is meant to protect im-
portant services from a task failing to meet its low-confidence
WCET limits due to a transient overload [5]. Achieving this
requires reacting within a period. It is doubtful that one
mechanism would be suitable for such reconfigurations and
those that take many periods to complete.

As we described in many standards re-
quire developers to demonstrate temporal partitioning integrity.
Where such integrity relies in part on MCS, demonstrating
it requires demonstrating that reconfiguration protects impor-
tant services from overruns of low-confidence WCET limits.
Graceful degradation, on the other hand, is validated through
architectural review, testing and analysis of the implemen-
tation, and analysis of how mode transitions could lead to
hazards. Using a single mechanism to implement both mixes
goals and concepts usually kept separate in the standards’
process and might complicate the safety assurance effort. If
tolerating overruns requires z distinct modes and tolerating
hardware failures requires y distinct modes, a unified system
might implement x X y modes and corresponding mode tran-
sitions. Because each of these must be tested, the combined
implementation might significantly increase testing effort.

1) Suggestion: While reconfiguration in response to low-
confidence WCET limit overruns and reconfiguration in re-
sponse to hardware failure share some features, these recon-
figurations are different and should be handled by separate
reconfiguration mechanisms. However, as discussed in
some tasks might be more important in some
service modes than in others. The MCS problem formulation
should be given in terms of task importance rather than SIL
to facilitate graceful degradation.

D. To Kill or Not to Kill?

The Partitioned Criticality (PC) scheduling scheme assigns
priorities so as to preserve temporal isolation without the need
for a special monitoring and intervention mechanism [J5]. In
contrast, Static Mixed Criticality (SMC) uses run-time moni-
toring to restrict tasks to their run-time limits. Adaptive Mixed
Criticality (AMC) goes further, using run-time monitoring to
halt all criticality ¢ tasks whenever a criticality ¢ or higher
task overruns its WCET limit. Unfortunately, some definitions
of this monitoring are inappropriate for many applications.

It strains credulity to think that some tasks are so unim-
portant that they need never be executed following a transient
overload. Indeed, anecdotes told to us in confidence reveal
that some developers create high-SIL functions that depend
on input from low-SIL functions, justifying this arrangement
by designing the high-SIL task to tolerate bad or missing
input until health monitoring restarts the low-SIL task. A
reasonable MCS approach must restart halted tasks when it
is safe to do so. Baruah and Burns do this when the processor
is next idle [2]]. The Ekberg and Yi MCS problem formulation
kills unimportant tasks permanently, but a footnote raises the
possibility of restarting halted tasks [7].



1) Suggestion: MCS problem formulations should explic-
itly define when they will restart tasks following an overrun.
It would also help to explain what will happen when an
important task overruns a high-confidence WCET limit.

VI. FUTURE WORK: AN MCS ASSURANCE ARGUMENT

A safety argument for a given system explains how evidence
in a safety case shows satisfaction of safety requirements and,
ultimately, the operational definition of ‘adequately safe to
operate’ in use in that system [30]. Other forms of assurance
argument, such as conformance argument, can be used to show
conformance with a safety standard [31].

Timing evidence, scheduling policy, and task allocation have
a complex relationship with risk and safety standards. We
have described some of that complexity in this paper. Such
complexity makes it difficult to determine by ad hoc review
whether a given formulation of the MCS problem captures the
properties and evidence needed for safety assurance.

In prior work, we created an assurance argument to facilitate
criticism of timing-related safety evidence and processes [12].
In this work, we suggested improvements to existing MCS
problem formulations. We further suggest creating and criticis-
ing a safety argument for the revised formulation as a means of
assessing its completeness and utility. Conformance arguments
would likewise help to assess the problem formulation’s fitness
for use with a given standard and type of system.

VII. CONCLUSIONS

In some safety-critical software systems, adequate risk
reduction requires meeting deadlines. Unfortunately, some
WCET assessment approaches that yield high confidence
might substantially overestimate WCET. MCS promises to
always permit important services to run for up to some high-
confident system while delivering the utilisation that less-
conservative WCET limits would allow.

In this paper, we reviewed three MCS problem formulations
from a safety assurance perspective. We found four issues:
(1) reliance on a questionable assumption about confidence in
WCET limits, (2) use of the word ‘criticality’ to mean several
different things, (3) flawed support for survivability-related
reconfiguration, and (4) a haphazard treatment of recovery
from transient overloads. We suggested improvements in the
model formulation to address these issues. We further suggest
the development of an assurance argument for MCS as a
means of exploring the complex assurance issues and tradeoffs
surrounding scheduling policy, task allocation, confidence in
timing evidence, partitioning, and graceful degradation.

ACKNOWLEDGEMENT

We acknowledge the Swedish Foundation for Strategic
Research (SSF) SYNOPSIS Project and EPSRC (UK) grant
MCC (EP/KO1 1626/1) for supporting this work.

REFERENCES

[1]1 S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Proc. Int’l Real-Time
Systems Symp. (RTSS), 2007.

[2]
[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]
[12]

(13]

[14]
[15]

[16]

(17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]
[25]
[26]
(271

(28]

[29]
[30]

[31]

S. Baruah and A. Burns, “Implementing mixed criticality systems in
Ada,” in Proc. Reliable Software Tech. (Ada-Europe), 2011.

S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis
for mixed criticality systems,” in Proc. Int’l Real-Time Systems Symp.
(RTSS), 2011.

S. Baruah, “Certification-cognizant scheduling of tasks with pessimistic
frequency specification,” in Proc. Int’l Symp. Industrial Embedded
Systems (SIES), 2012.

A. Burns and S. Baruah, “Timing faults and mixed criticality systems,”
in Dependable and Historic Computing, ser. LNCS. Springer Berlin
Heidelberg, 2011, vol. 6875, pp. 147-166.

A. Burns and R. Davis, “Mixed criticality systems: A review,” Depart-
ment of Computer Science, University of York, York, UK, Tech. Rep.
MCC-1(b), July 2013.

P. Ekberg and W. Yi, “Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,” Real-Time Syst., 2013, in press.
N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Improving the scheduling of
certifiable mixed-criticality sporadic task systems,” Uppsala University,
Uppsala, Sweden, Tech. Rep., 2012.

H.-M. Huang, C. Gill, and C. Lu, “Implementation and evaluation of
mixed-criticality scheduling approaches for periodic tasks,” in Proc.
Real-Time and Embedded Tech. and Applications Symp. (RTAS), 2012.
M. Neukirchner, S. Stein, H. Schrom, J. Schlatow, and R. Ernst,
“Contract-based dynamic task management for mixed-criticality sys-
tems,” in Proc. Int’l Symp. Industrial Embedded Systems (SIES), 2011.
E. A. Strunk, “Reconfiguration assurance in embedded system software,”
Ph.D. dissertation, University of Virginia, Charlottesville, USA, 2005.
P. Graydon and I. Bate, “Realistic safety cases for the timing of systems,”
The Computer Journal, 2013, in press.

I. Bate, P. Conmy, T. Kelly, and J. McDermid, “Use of modern pro-
cessors in safety-critical applications,” The Computer Journal, vol. 44,
no. 6, pp. 531-543, 2001.

S. Edgar and A. Burns, “Statistical analysis of WCET for scheduling,”
in Proc. Int’l Real-Time Systems Symp. (RTSS), 2001.

R. Chapman, “Static timing analysis and program proof,” DPhil Thesis,
University of York, York, UK, 1995.

S. Chattopadhyay and A. Roychoudhury, “Unified cache modeling for
WCET analysis and layout optimizations,” in Proc. Int’l Real-Time
Systems Symp. (RTSS), 2009.

Rapita Systems, “RapiTime explained,” http://www.rapitasystems.com/
downloads/rapitime_explained_white_paper, July 2011.

G. Bernat, A. Burns, and M. Newby, “Probabilistic timing analysis: An
approach using copulas,” Journal of Embedded Computing, vol. 1, no. 2,
pp. 179-194, April 2005.

RTCA DO-178B, Software Considerations in Airborne Systems and
Equipment Certification. RTCA, Inc., 1992.

RTCA DO-178C, Software Considerations in Airborne Systems and
Equipment Certification. RTCA, Inc., 2011.

IEC 61508:2010, Functional Safety of Electrical/Electronic/Programma-
ble Electronic Safety-Related Systems, 2nd ed. International Electro-
technical Commission, 2010.

ISO 26262:2011, Road Vehicles — Functional Safety.
Organization for Standardization, 2011.

CENELEC 50128:2001, Railway Applications — Communications, Sig-
nalling and Processing Systems — Software for Railway Control and
Protection Systems. European Committee for Electrotechnical Stan-
dardization (CENELEC), 2001.

Defence Standard 00-56, Safety Management Requirements for Defence
Systems, Issue 4. UK Ministry of Defence, 2007.

SAE ARPA754A, Guidelines for Development of Civil Aircraft and
Systems. SAE, 2010.

F. Redmill, “Understanding the use, misuse and abuse of safety integrity
levels,” Redmill Consultancy, Tech. Rep., 2005.

RTCA DO-248B, Final Report For Clarification Of DO-178B. RTCA,
Inc., 2001.

J. C. Knight, E. A. Strunk, and K. J. Sullivan, “Towards a rigorous defi-
nition of information system survivability,” in Proc. DARPA Information
Survivability Conf. and Expo., 2003.

N. C. Audsley and M. Burke, “Distributed fault-tolerant avionic systems
— A real-time perspective,” in Proc. IEEE Aerospace Conference, 1998.
T. P. Kelly, “Arguing safety — A systematic approach to managing
safety cases,” DPhil Thesis, University of York, York, UK, 1998.

P. Graydon, 1. Habli, R. Hawkins, T. Kelly, and J. Knight, “Arguing
conformance,” IEEE Software, vol. 29, no. 3, pp. 50-57, May 2012.

International


http://www.rapitasystems.com/downloads/rapitime_explained_white_paper
http://www.rapitasystems.com/downloads/rapitime_explained_white_paper

	Introduction
	Existing Problem Formulations
	The Vestal Formulation
	The Baruah and Burns Formulation
	The Ekberg and Yi Formulation

	Confidence in Execution Time Assessments
	Dynamic Approaches to WCET Assessment
	Static Approaches to WCET Assessment
	Hybrid Approaches to Determining WCET
	The WCET Confidence Monotonicity Assumption

	The Demands of Safety Assurance
	Derivation of Timing-Related Safety Requirements
	The Meaning and Role of Safety Integrity Levels
	Partitioning and Integrity
	Adequate Confidence in Timing Claims
	Survivability and Graceful Degradation
	Modes of Operation

	Critique of Existing Problem Formulations
	Impact of the WCET Confidence Monotonicity Assumption
	Suggestion

	Multiple Meanings of `Criticality'
	Suggestion

	There Are Modes, and Then There Are Modes
	Suggestion

	To Kill or Not to Kill?
	Suggestion


	Future Work: An MCS Assurance Argument
	Conclusions
	References

