Multi-Criteria Evaluation of Partitioned EDF-VD for
Mixed-Criticality Systems Upon Identical Processors

Paul Rodriguez
Université Libre de Bruxelles
ECE Paris
paurodri@ulb.ac.be

Laurent George
University of Paris-Est
LIGM / ECE Paris
lgeorge @ieee.org

Abstract—In this paper, we consider the partitioned EDF-VD
scheduling problem of mixed critical systems with two criticality
levels (LO and HI) on identical multiprocessors. Partitioned
scheduling is an NP-hard problem that has been widely studied
in the literature. The most common metaheuristic to solve
partitioning problems consists in ordering tasks by a given
criteria (such as task utilization) then assign tasks to processors
in that order, choosing which processor using a heuristic rule
such as First Fit or Best Fit. The current state of the art results
show that First Fit Decreasing Density provides the best success
ratio for single-criticality scheduling. In the context of mixed-
criticality, we would like to investigate whether this is also true
for assigning LO and HI critical tasks to processors. We consider
two cases, one called “criticality aware” that first tries to assign
HI tasks to processors and then LO tasks separately and the
other one called “criticality unaware” that assigns tasks without
taking their criticality into account. We test the performance of
all combinations of sorting/partitioning heuristics in both cases,
which leads to 1024 different heuristics in the aware case and 32
in the unaware case. We define two search algorithms to efficiently
find which of these heuristics obtains the best success ratio. In
addition, a new mixed-criticality multiprocessor random task set
generation algorithm is proposed.

I. INTRODUCTION

In this paper, we consider the problem of multiprocessor
scheduling of mixed critical periodic tasks in the dual criti-
cality case (LO and HI). In the multiprocessor case, two main
paradigms have been considered for the scheduling of real-time
tasks: the global scheduling and the partitioning approaches.

The global scheduling approach allows a job to migrate during
its execution. At any time, a job is run only by one processor
but the scheduler can decide to migrate it to another processor.
The global scheduling approach provides better feasibility
bounds but does not take into account job migrations costs.

In this paper, we consider the Partitioned scheduling problem.
With the partitioning approach, the feasibility analysis on a
multiprocessor requires to solve two problems:

e First, find a partitioning algorithm according to a
partitioning heuristic.

e Second, use a uniprocessor feasibility condition on
each processor to decide on the schedulability of the
task set.

The partitioning approach therefore consists in statically as-
signing tasks to processors and then in solving the feasibility
problem for a given partitioning on each processor. The

University of Paris-Est

Yasmina Abdeddaim Joél Goossens
Université Libre de Bruxelles

LIGM / ESIEE joel.goossens @ulb.ac.be

yasmina.abdeddaim @esiee.fr

problem of finding a feasible partitioning is a bin packing
problem known to be NP-hard in the strong sense [1].

The partitioned approach received much more attention in
the industry than the global one as it is a natural extension
of uniprocessor scheduling. Partitioning has the advantage of
utilizing all the feasibility results of uniprocessor scheduling
[2] but also introduces some pessimism. In pathological cases,
a partitioned system could be unfeasible with utilization just
above 50% of the platform’s capacity but simulation results
[3] show that partitioned scheduling offers good success
ratio (the ratio of successfully scheduled task sets over all
task sets considered) even for high utilization. Furthermore,
partitioned scheduling remains the industry standard in
multiprocessor real-time systems and is for this reason still
an important research subject, especially when all tasks do
not have the same criticality. This means that the system may
be subject to various certification processes, which are only
concerned with the validation of a subset of the functionalities.

Furthermore, the certification processes are carried out
using analysis methods whose rigor depends on the criticality
of the tasks that need to be certified. Mixed-criticality systems
are an attempt to model systems that need to be certified
at various levels of assurance. In practice, a task that is
subject to multiple certification processes will be characterized
by multiple estimations of its Worst-Case Execution Time
(WCET), some of which are more pessimistic than others. This
reflects the differences in rigor adopted by the certification
authorities.

The more a certification authority wants to ensure a task
will never exceed its WCET, the more conservative its estima-
tion will be. Nevertheless, when certifying that a task will meet
its constraints, the assurance level that is used for other tasks
is equal to the criticality of that particular task. This means
that when running the system, if another task is run at a level
of assurance that is higher (w.r.t. to its execution duration)
than the criticality of the initial task, then this task will be
suspended, since the conditions that guarantee its feasibility
are no longer met.

A. This paper

In this paper we want to compare a set of criticality aware
and unaware partitioned heuristics using experimental success
ratio measurements based on task sets created through a new
random system generator. As the large number of contesting
heuristics introduces a considerable workload, special evalua-
tion techniques based on a race approach are used to find the

best performing heuristic in the least amount of tests. These
methods are also described in this paper through pseudocode.

B. Organisation

In Section II a brief review of other works in mixed-
criticality uniprocessor and multiprocessor scheduling is given.
In Section III the mixed-criticality task set model and notations
are recalled. Section IV covers the description of the parti-
tioning problem and a definition of the partitioning heuristics
that are used in this paper and Section V covers our methods
to evaluate the average success ratios of these heuristics.
In Section VI our random task set generation algorithm is
explained in detail as well as the results of our experiments.

II. RELATED WORK

Mixed-Criticality scheduling is an emerging research do-
main which has gained a lot of interest in the past years.
This approach was first introduced by Vestal [4]. In his work,
he highlighted the difficulty in computing exact WCETs, and
observed that in practice, the higher the degree of assurance
required that a task will never exceed its WCET, the more
conservative the approximation of the latter becomes. This
degree of assurance is characterized by a level of criticality.
He also suggested a fixed-task-priority strategy based on the
Audsley priority assignment scheme [5]. Dorin et al. [6] proved
that under the restricted case of independent task systems with
constrained-deadlines, Vestal’s modified Audsley’s approach
was optimal in the class of fixed-task priority algorithms.
Nowadays, the Mixed-Ceriticality (MC)-Schedulability problem
is commonly known to arise in two different contexts. The
first one is concerned with applications that are subject to
multiple certification requirements. In this context, different
Certification Authorities (CA) need to validate the application
functionalities. Nevertheless, the more critical a functionality
is, the more pessimistic the CA will be in the estimation
of the WCET. Baruah et al. [7] studied mixed-criticality
systems in this context, but restricted their work to a set of
mixed-criticality jobs. In particular, Baruah [8] pointed out the
intractability of the MC-Schedulability problem, and quantified
the fundamental limitations of MC-Scheduling for certification
considerations. To tackle the intractability of MC-Scheduling,
they suggest two sufficient schedulability conditions, referred
to as the WCR-schedulability and OCBP-schedulability con-
ditions. Later, Baruah and Li [9] extended their previous
work and suggested a fixed-job-priority scheduling strategy
based on their OCBP-schedulability condition. Baruah et al.
also adapted the Earliest Deadline First algorithm to mixed-
criticality systems, by modifying the deadlines of tasks. This
approach is known as EDF-VD and is the one under study
in this paper. More recently, Guan et al. [10] presented a
new approach for scheduling mixed-criticality systems, which
relies on an offline fixed-job-priority ordering computation,
which is then used on-line by the scheduler. At the same time,
Baruah et al. [11] formalized the response time analysis for
mixed-criticality tasks. In [12] an overview of mixed-criticality
scheduling on multiprocessors is proposed.

III. MODEL AND NOTATIONS

This paper is set in the context of constrained deadline
periodic synchronous dual-criticality real-time task systems on

a discrete timeline model. Each system is represented by a
task set 7 = {71, 72, ... T,} where each task 7; is a 4-uple
(CEO CHI D;,T;) where CL© is the worst case execution
time (WCET) in LO mode, CZ»H I is the WCET in HI mode,
D; is the relative deadline (the maximum allowed amount of
time between an arrival and the corresponding end of this task)
and T; is the inter-arrival time (the period). All tasks satisfy
the conditions 0 < CFC < D; < T;. If CHL > 0, 7; is said to
be a HI criticality task and additionally CL©¢ < CHI < D,.
A few additional notations are defined :

e The set of HI tasks : 757 = {r; € 7| CH! > 0}
e The set of LO tasks : 7.0 = {r; € 7| CHI =0}

e Task 7; utilization in LO and HI modes : Uro(7;) =

clto cHI
T, and UH](T,;): T,

e Task 7; density in LO and HI modes : Apo(7) =
LO

CHI

and A 1(7i) = b

&
min(Di,Ti)
e LO mode system utilization : Uro(7) = > Uro(mi)

T, €T

e HI mode system utilization : Ugr(7) = Y. Ugny(7:)
TiET
e nro and npyy are (respectively) the size of 710
(respectively) 71

e n=ngr+nro

1V. PARTITIONED EDF-VD
A. EDF-VD Feasibility Condition

EDF-VD is a mixed-criticality uniprocessor scheduling
algorithm [13]. It has later been extended to multiprocessor
platforms [14] by using the same concept as fpEDF [15], a
multiprocessor single-criticality scheduling algorithm. EDF-
VD performs by applying EDF on a set of tasks where the
HI criticality tasks have smaller relative deadlines when the
system is in LO mode. In [13] all such virtual deadlines (VD)
are the product of a unique factor (the value is the same for
all tasks in the system) with each of their original deadlines.
A improvement over EDF-VD is made in [16] by defining an
heuristic algorithm (tuneSystem) that reduces virtual deadlines
on a per-task basis. The schedulability test corresponding
to tuneSystem is also defined in [16]. This finer grained
uniprocessor test is the one used by the partitioning heuristics
in this paper, as it displays among the best average success
ratio in the current uniprocessor mixed-criticality scheduling
state of the art.

Ekberg and Yi [16] extend the common definition of the
demand bound function (DBF) to mixed-criticality systems.
For a dual-criticality task set 7, two demand bound functions
are defined : dbfro(t) and dbf;(t). These two functions have
the properties of a single-criticality DBF. This means that we
have the EDF feasiblity condition :

Vit >0: dbfLo(t) < tand dbe[(t) <t
<= the system is schedulable

To verify schedulability using these conditions, the tuneSystem
algorithm (see Algorithm 1) is run [16]. tuneSystem like
EDF-VD will shift the load of the HI mode DBF towards

the LO mode DBF by reducing the virtual LO mode
deadlines of HI tasks. However, tuneSystem makes accurate
modifications to single tasks instead of multiplying all of
them by a factor, which makes it more complex but also
more powerful than EDF-VD [16]. Each time some t that
does not satisfy the condition is found, a deadline is changed
to fix the problem if possible. When the virtual deadlines
of multiple tasks have been reduced, the algorithm can also
backtrack some of these changes in order to maintain the
condition on the LO mode DBF. This continues until either
the condition is satisfied or no deadline changes can be
made anymore, in which case the system is not schedulable
using tuneSystem. This algorithm achieves much higher
success ratio than EDF-VD for utilization above 80% as
EDF-VD starts to fail the scheduling of some systems at
around 70% utilization [16]. Before running the algorithm,
a bound (tBound) on the latest time instant for which
the dbf condition must be verified is computed using the
technique in [17]. Doing this in HI and LO mode results in
two different bounds, out of which the highest must be chosen.

Algorithm 1: tuneSystem

Require: tBound as defined in text

1 candidates < gy

2 changed « false

3 modTask < €

4 while changed do

5 changed < false

6 for t =0 to tBound do

7 if dbfro(t) >t then

8 if modT ask = ¢ then

9 return false

10 end if
11 increment the virtual deadline of modT ask
12 if modT ask € candidates then

13 candidates < candidates \ modT ask
14 end if

15 modT ask <+ €

16 changed < true
17 break

18 end if

19 if dbe[(t) > t then
20 if candidates = ¢ then
21 return false
22 end if
23 modT ask < task in candidates which HI dbf

increases the most between ¢ and ¢t — 1
24 decrement the virtual deadline of modT ask
25 if the WCET in LO mode of modT ask is equal
to its virtual deadline then

26 candidates < candidates \ modT ask
27 end if
28 changed <+ true
29 break
30 end if
31 end for

32 end while

B. PFartitioning heuristics

The problem of finding an assignment of tasks to proces-
sors that fits a given platform is similar to the Bin-Packing

problem (BPP) which is known to be NP-hard. Variants of
BPP frequently occur in computer science problems and this
resulted in various heuristics being developped in the literature
[18]. In this paper the focus will be put on heuristics following
a strict framework (which can be thought as a metaheuristic) :
items (tasks) are sorted given a specific criteria then they are
assigned to bins in that order. The choice of which bin a given
item will be assigned to is specified by an assignment rule.
Together, the sorting criteria and assignment rule unequivocally
describe the heuristic [19]. A total of four possible task
ordering criteria are considered : utilization, period, deadline
and density (U, P, L and D for short) and two possible orders
for each of them (increasing or decreasing, respectively I and
D). Additionally, the most frequent assignement rules are First
Fit, Next Fit, Best Fit and Worst Fit (F, N, B and W). In the
single-criticality partitioning literature, Best Fit and First Fit
with Decreasing Utilization or Decreasing Density are found
to display the best success ratio [19].

All variants considered, there is a total of 32 possible
heuristics following this “criticality unaware” framework. In
this paper a new type of heuristic (“criticality aware”) is
defined specifically for mixed-criticality systems. In this new
kind of heuristic, the task set 7 is split into HI and LO
task sets, 7 and 7. First, tasks in 77 are partitioned
on all processors following one of the heuristics described
above. Then, tasks in 770 are partitioned on the remaining
space on the platform following another (possibly the same)
heuristic. There are 1024 different heuristics following this
new structure. In criticality aware heuristics, Worst Fit and
Best Fit behave a little differently, as it makes more sense to
use the utilization in HI mode during the assignment of tasks
in 7z and the utilization in LO mode during the assignment of
tasks in 77,0. Following the same principle, in all heuristics LO
criticality tasks of are ordered using their CX value as WCET
(which is needed to calculate utilization and density) and HI
criticality tasks with their CH! value as WCET. Heuristics are
noted using their assignement rule followed by the two letters
code of their ordering criteria. For example, Best Fit Increasing
Period will be noted B;p. Criticality aware heuristics are noted
by giving the heuristic for the LO tasks followed by a slash
then the heuristic for the HI tasks, such as Byp/Nyy,.

V. PARTITIONING HEURISTICS SELECTION

One of the goals of this paper is to assess which heuristic
has the best success ratio by experimentation or to what extent
the kind of tested system can influence which heuristic is best.
The results of such experiments heavily rely on which system
generation algorithm was used (described in Section VI-A)
but also on its parameters. Both heuristic evaluation methods
use the same system generation parameters, which can be
described as follows :

e System tailored for 4 processors
e 20 tasks, out which 8 are HI criticality tasks

e Both Urp(7) and Upyy(7) randomly (and indepen-
dently) distributed between O and the number of
processors

e The minimum period tMin = 5 and the maximum
period tMax = 50

A. Racing between heuristics

The large number of possible heuristics and long compu-
tation time required to test systems on many heuristics leads
to a need for efficiency. In Algorithm 2, the search of the best
heuristic is concentrated towards those that showed a good
success ratio in past experiments. Such selection algorithms
are usually called racing algorithms and are used in machine
learning for model selection and parameter tuning [20]. In
our context this approach enables us to quickly eliminate non
significant heuristics. The search algorithm itself uses three
parameters :

e nRounds is the number of times the outer loop (called
round) of the algorithm is executed, corresponding to
the number of times the working set of heuristics is
shrunk.

e nTests is the number of systems generated and tested
during the first round.

e cxploration is the factor (between 0 and 1) of re-
duction of the size of the working set of heuristics.
Additionally the number of tested systems is multi-
plied by 1 each round.

exploration

Algorithm 2: Racing for heuristics

Require: nRounds, nTests and exploration as defined
previously.
1 heuristics < all possible heuristics
2 curTests <~ nTests
3 for r =1 to nRounds do
4 for t =1 to curTests do
5 system <— randomly generated system
6 for all & € curHeuristics do
7 partition system with h
8 update success ratio of h with the result
9 end for
0 end for
1 cur Heuristics < the exploration” portion of
heuristics with highest success ratio
12 curTests «+ curTests/exploration
13 end for
14 return heuristics sorted by success ratio

1
1

The time complexity of Algorithm 2 in terms of number of
partitionings is in O(nRounds - nTests - |heuristics|). Note
that the number of partitionings per round does not change. In
later rounds, fewer heuristics are tested on a larger number of
systems.

B. Direct elimination

Direct elimination is a slightly different form of racing. In
Algorithm 3 heuristics are selected for further testing based
on their ability to dominate other heuristics rather than simply
success ratio. Each run begins with all heuristics being tested
on one system. If at least one heuristic could schedule the
system, all the heuristics that were unable to schedule it are
discarded. This is repeated until only one heuristic remains in
the set of heuristics (or if we have reasonable evidence that
stability has been reached, see stability), then the whole set
of heuristics is reset and the operation is repeated.

e nRuns determines the number of times the complete
operation (starting with all heuristics and reducing
until stability) is done.

e stability is the maximum amount of systems that will
be tested without eliminating heuristics.

Algorithm 3: Direct heuristic elimination

Require: nRuns and stability as defined previously.

1 for r =1 to nRuns do
2 heuristics < all possible heuristics
3 while ¢ < stability and |heuristics| > 1 do
4 system <— randomly generated system
5 schedules <— mapping of all heuristics to false
6 for all h € heuristics do
7 partition system with h
8 if h can partition system then
9 schedules|h] < true
10 end if
11 update success ratio of h with the result
12 end for
13 if 3i | schedules[i] and 3j | ~schedules[j] then
14 t=20
15 for all i € heuristics do
16 if ~schedules[h] then
17 remove h from heuristics
18 end if
19 end for
20 else
21 t=t+1
22 end if
23 end while
24 end for

25 return heuristics sorted by success ratio

The worst case number of tests of Algorithm 3 is in
O(nRuns - stability - |heuristics|) as it will take a maximum
of nTest — 1 tests to eliminate each heuristic individually. In
practice Algorithm 3 is faster than Algorithm 2 because the
actual number of tests depends on the generated systems for
Algorithm 3 but not for Algorithm 2. One system is very often
enough to eliminate a large portion of the set of heuristics,
which means stability - |heuristics| is a very pessimistic
estimate of the time required for one round.

VI. EXPERIMENTS
A. Task set generation

Widely used standard random task set generation algo-
rithms exist for uniprocessor single-criticality scheduling, such
as UUniFast [21] for generating uniform task utilizations. But
this standard way of generating task sets does not extend
to more specific systems, where an ecosystem of techniques
still exists. UUniFast has been extended to multiprocessor
systems in [22], which is the basis of the multiprocessor
mixed-criticality task set generation algorithm found in this
paper. Other works in the literature have proposed techniques
for generating mixed-criticality task sets, such as [14], [23]
using an explicit scaling factor between the utilization in HI
and LO mode.

In this paper task utilizations in LO and HI mode are
generated taking the constraints specific to mixed-criticality

systems into account and in a way that aims to keep the
uniformity of the generated systems intact. The generator
receives guidelines on Ugy(7), Uro(7), the ratio of HI tasks
(ratioHI = nLI) and the maximum and minimum period
(tMax and t]\/[%In). The generator will try to create a system
meeting those guidelines as precisely as possible, although
making no guarantees.

1) LO and HI utilizations: The algorithm generates n uti-
lization values from U (7) for LO mode and n g utilization
values from Ugr(7) for HI mode using a variant of the mul-
tiprocessor UUniFast algorithm [22]. Those utilization values
are then associated to one another in HI-LO couples making
sure that for each HI task the HI utilization is higher than the
LO utilization. If this cannot be achieved, HI utilizations are
re-generated for one less HI task until one such association can
be found. When a valid association is found, it is randomly
shuffled with the limitation that is has to stay correct.

2) Periods, WCETs and deadlines: Periods are randomly
chosen between tMin and tMax with a log uniform random
variable biased towards lower values, as done in [22]. WCETs
are then directly calculated from those periods and the uti-
lizations. HI WCETs are checked to be at least one plus the
corresponding LO WCET. Periods are then adjusted to make
sure no task has utilization above or equal to one then ensuring
that the total system utilization is below the given guidelines
for LO and HI utilization. This is done by repeatedly choosing
a random task in 7 and incrementing its period until both
conditions become satisfied. Finally, deadlines for each task
are randomly chosen between the highest WCET (CL© for
LO tasks, C! for HI tasks) and the period with a logarithmic
uniform random variable biased towards higher values.

B. Results

The methods explained in Section V-A and Section V-B
agree on the general domination of the single-criticality heuris-
tics Fpy and Fpp both in criticality unaware (confirming
previous results in single-criticality systems [19]) and in criti-
cality aware mixed-criticality partitioning heuristics. However
the conducted experiments aggregated success ratios based on
systems with utilizations in HI and LO mode ranging from 1
to the number of processors (4), giving the same weight to
each system. In a realistic environment, it is expected that
systems with higher utilization will be more interesting as
we want to use the platform to maximum capacity (or use
lighter hardware to run the same set of tasks). Three of the
best heuristics have been run on new systems generated with
a range of fixed HI and LO utilizations (all other parameters
remaining the same) to show how their success ratio evolves
with HI and LO utilization. The results for Fpp, Fpp/Fpp
and Fpp/Wpp are respectively shown in Figure 3, 1 and 2.

The intuitive expectation is that using Wpp as a HI mode
heuristic will give better results when Upo(7) is high and
Upr(7) is low. This is motivated by the reasoning that if HI
utilization is as balanced between processors as possible, it is
more likely that more LO tasks will be schedulable over the
whole system. However if we forget about LO tasks, Wpp
performs worse than Fpp to find a good partitioning of HI
tasks (the same way it performs worse in single-criticality
scheduling), which means Fpp/Fpp has an advantage over
Fpp/Wpp when partitioning task sets with high Ug;(7) and
low Upo(7). This is verified in our experiments as when

1.0

Fdd/Fdd (500 systems/point) (20 tasks on 4 processors)
v v

08

Success ratio
S
o

o
~

¥V uo=2
e uo=3
02Hm m uo =35
AA
>

ulLo = 3.75

10 15 2.0 25 3.0 35 4.0
HI utilization

Fig. 1. Success ratio of Fpp/Fpp for various HI and LO utilizations
10 Fdd/wdd (500 systems/point) (20 tasks on 4 processors)
08}
206
s
M
4
bS]
3 0.4
¥V uo=2
®® uo=3
02w m uo=35
A-A ulO =3.75
9@ uo=4 —A—
0.0 A
10 15 2.0 25 3.0 35 4.0
HI utilization
Fig. 2. Success ratio of Fpp/Wpp for various HI and LO utilizations

compared to Fpp/Fpp, Fpp/Wpp does globally better
when HI utilization is lower than 2.5 if LO utilization is at
least 3.5.

10 Fdd (500 systems/point) (20 tasks on 4 processors)

0.8

Success ratio
o
>

o
=

¥Y¥ uo-2 A
®e uo=3
[|mm uo=35
oA
(lad

0.2
ulLo = 3.75

10 15 2.0 25 3.0 35 4.0
HI utilization

Fig. 3. Success ratio of F)pp for various HI and LO utilizations

Fpp obtains slightly better success ratio in most situations.
However if we try to directly compare Fpp with Fpp/Wpp,
we obtain surprising results.

In Figure 4 the amount of systems that are schedulable by
Fpp/Wpp but not by Fpp is compared with the amount

Heuristic domination (500 systems/group)
I Fdd/wWdd
3 Fdd
Il Not schedulable

250

200

Number of systems

(2,4) (2.5,3.5) (3,3)
LO utilization, HI utilization

(3.5, 2.5) (3.7,2.3)

Fig. 4.
versa

Number of systems where Fpp/Wpp dominates Fpp and vice

of systems schedulable by Fpp but not by Fpp/Wpp for
various values of Uro(7) and Ugy(7). For all the chosen
utilization combinations, there are very few systems that
belong to the second category. This number increases as HI
utilization increases and LO utilization decreases, which hints
that not allowing LO tasks to be partitioned before any HI
tasks (the definition of criticality aware heuristics) might not
be a good choice in systems that have heavy LO tasks.

VII. CONCLUSION

In this paper, we have considered the problem of partitioned
EDF-VD scheduling for mixed critical (HI and LO) periodic
tasks on identical multiprocessors. In a mixed critical system,
it is mandatory to grant HI critical tasks. We have studied
different meta-heuristic that maximize the success ratio of LO
critical tasks while granting HI critical tasks. We considered
two partitioned scheduling approaches, one called criticality
aware that first tries to assign HI tasks to processors and then
LO tasks separately and one called “criticality unaware” that
does not take into account the criticality of the tasks. We have
adopted a race metaheuristic to select the best partitioning
heuristics according to several placement and sorting criteria.
We show that taking into account criticality levels by first
assigning HI critical tasks leads to better success ratio for HI
tasks. Furthermore, when Worst Fit with Decreasing Density
succeeds to partition HI tasks, assigning LO tasks with Fist Fit
Decreasing Density maximizes the success ratio of LO tasks.

REFERENCES

[1] D. Johnson, “Fast algorithms for bin packing,” Journal of Computer
and Systems Science, vol. 8(3):272314, 1974.

[2] A. Burns and R. Davis, “Mixed criticality systems-a review,” , Depart-
ment of Computer Science, University of York, Tech. Rep., 2013.

[3] L. George, P. Courbin, and Y. Sorel, “Job vs. portioned partitioning
for the earliest deadline first semi-partitioned scheduling,” Elsevier
Journal of systems architecture, Special issue on multiprocessor real-
time scheduling Ed. U.Devi and J.H. Anderson, vol. 57, no. 5, pp. 518-
535, 2011.

[4] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Proceedings of the
28th IEEE International Real-Time Systems Symposium. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 239-243.

(5]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

N. C. Audsley, “Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times,” Tech. Rep. YCS-164, 1991.

F. Dorin, P. Richard, M. Richard, and J. Goossens, “Schedulability and
sensitivity analysis of multiple criticality tasks with fixed-priorities,”
Real-Time Syst., vol. 46, pp. 305-331, December 2010.

S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Proceedings of the 2010 16th IEEE
Real-Time and Embedded Technology and Applications Symposium.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 13-22.

S. Baruah, V. Bonifaci, G. D’ Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality
jobs,” Mathematical Foundations of Computer Science 2010, pp. 90—
101, 2010.

H. Li and S. Baruah, “An algorithm for scheduling certifiable mixed-
criticality sporadic task systems,” in 3Ist IEEE Real-Time Systems
Symposium. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 183-192.

N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems,” in
32nd IEEE Real-Time Systems Symposium. 1EEE Computer Society,
2011, pp. 13-23.

S. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for mixed
criticality systems,” in 32nd IEEE Real-Time Systems Symposium.
IEEE Computer Society, 2011, pp. 34-43.

S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality
scheduling on multiprocessors,” Real-Time Systems, pp. 1-36, 2013.

S. K. Baruah, V. Bonifaci, G. DAngelo, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie, “Mixed-criticality scheduling of
sporadic task systems,” in Algorithms—ESA 2011. Springer, 2011, pp.
555-566.

H. Li and S. Baruah, “Global mixed-criticality scheduling on multipro-
cessors,” in 24th Euromicro Conference on Real-Time Systems (ECRTS).
IEEE, 2012, pp. 166-175.

S. K. Baruah, “Optimal utilization bounds for the fixed-priority schedul-
ing of periodic task systems on identical multiprocessors,” IEEE Trans-
actions on Computers, vol. 53, no. 6, pp. 781-784, 2004.

P. Ekberg and W. Yi, “Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,” Real-Time Systems, pp. 1-39,
2013.

S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in Proceedings of the
11th IEEE Real-Time Systems Symposium (RTSS). IEEE, 1990, pp.
182-190.

R. Yesodha and T. Amudha, “A comparative study on heuristic proce-
dures to solve bin packing problems,” International Journal, 2012.

I. Lupu, P. Courbin, L. George, and J. Goossens, “Multi-criteria
evaluation of partitioning schemes for real-time systems,” in 2010 IEEE
Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2010, pp. 1-8.

M. Birattari, T. Stiitzle, L. Paquete, and K. Varrentrapp, “A racing
algorithm for configuring metaheuristics.” in Proceedings of the Genetic
and Evolutionary Computation Conference, vol. 2. GECCO, 2002, pp.
11-18.

E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129-154, 2005.

P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WA-
TERS), 2010, pp. 6-11.

N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Improving the scheduling
of certifiable mixed-criticality sporadic task systems,” Tech Rep 2013-
008, Department of Information Technology, Uppsala University, Tech.
Rep., 2013.

