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Structure of the Presentation 

•  Case for Scenario-Based Assessment 
(SBA) 

•  Review of ECRTS work 
–  ECRTS 2015 paper that included a SBA 

•  A Case for a better fault model 

•  Creating an improved Task Set Generator 
(TSG) 

•  Does having a different TSG make a 
difference to our results from ECRTS? 



Case for SBA 
•  Static analysis is perfect for definitive answer 

–  Assuming our proofs are valid J 

•  Its of less use if we want to know 
–  How much service Lower-Criticality Tasks (LCT) get? 
–  That is their availability, i.e. how often we enter a Higher-Criticality 

Mode (HCM) and for how long? 
–  For a safety case this is important information as lower-criticality 

doesn’t always mean no criticality 
–  E.g. an aircraft’s navigation system is unlikely to be the highest 

level of system 

•  In ECRTS 2015, Alan, Rob and I showed how SBA 
could provide useful evidence 
–  Showed how often LCTs had service 

•  Note the concept of probabilistic guarantees is not yet 
accepted in many domains but MCS needs it 
–  The concepts of modes, including for fault tolerance, is accepted 



Review of ECRTS Work 

•  Paper showed that 
–  Bailout Protocol (BP) gave LCTs better service than 

AMC+ 
–  Showed having slack time helped both BP and AMC+ 

•  TSG based on Uunifast 
–  Independent identically distributed (i.i.d.) timing 

failures 
–  Failures are exceedances of a WCET value, e.g. CLO 

–  Initial failure rate chosen as 10-4 

–  Others have suggested an initial failure rate of 10-16 

–  Uniform random used to generate execution times 



A Case for a Better Fault Model 

•  For individual tasks i.i.d. failures unrealistic 
–  Evidence from industry timing failures normally caused 

by fault accommodation code 
–  E.g. sensor and comms errors due to interference, or 

state unexpected and untested 
–  Failures very unlikely to be for a single cycle 

•  Suggest more realistic fault model features: 
–  Initial Failure Rate (IFR) 

–  Duration of failure 
–  Size and shape of failures 
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A Case for a Better Fault Model 

•  The pWCET normally fits different 
distributions to data, e.g. Gumbel 

•  Therefore should ideally select samples 
from something other than uniform random 



A Case for a Better Fault Model 

•  Initial failure rate should come from system 
safety analysis 
–  Logic behind previous 10-16 figure is as follows 
–  Some standards mention one hazardous event in 109 

operational hours for activities with highest criticality 
–  A software task may execute every few milli-seconds 

which means over a million times an hour 
–  Therefore IFR should approaches once in every 1016 

releases of the task 

•  Observations typically stop before 105 

–  High WaterMark (HWM) normally tight even if not sound 
–  Due to gap between 105 and 1016 means, are we 

effectively guessing? 



A Case for a Better Fault Model 

•  If a single point of failure can lead to a 
hazard then certification standards 
demand extra level of rigour 

•  Software can’t itself cause a single point 
of failure 
–  There has to be physical devices involved 

–  Nobody would trust software that much 
–  Systems typically have a timing watchdog 

–  Reasonable to reset computer-based system 
especially if there are replicas without a common-
mode failure 



A Case for a Better Fault Model 
•  Simplified example 

•  Not shown but single missing 
value wouldn’t stop engine 
–  Algorithms designed to be tolerant 
–  Previous value could be used, e.g. use 

the same fuel valve setting  
–  Engine has inertia 

•  Timing watchdog (TW) provides 
tolerance 
–  Accepted MTBF is 106 hours 
–  Both TW and task(s) have to fail 

•  Exceeding a task’s WCRT may 
involve a number of tasks 
–  Some faults may affect multiple tasks, 

however may be better to reset quickly 
–  We have analysis to help understand 

dependencies 
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A Case for a Better Fault Model 

•  Discussions with industry suggest for MCS: 
–  CLO could be HWM based on comprehensive testing 

–  IFR for CLO would therefore be somewhere between 
104 and 105 based on standard testing literature 

–  IFR for CHI could be around 106 as  
–  Software not expected to be more reliable than TW 
–  Plenty of fault tolerance 
–  No point having unusable (due to pessimism) WCET 

–  With “controlled experiment” could show these values 
relate well to actual WCET 

–  Controlled experiment gives actual WCETs (RTNS 2015) 

–  Note - Not every system continuous control 



A Case for a Better Fault Model 

•  QUESTION 1: How do you generate a 
target reliability (IFR and duration) for 
WCRT? 

•  QUESTION 2: Given a target reliability for 
WCRT, can we derive appropriate target 
reliability for each task’s WCET? 

•  QUESTION 3: Do probabilistic approaches 
change the way we do timing tolerance? 

•  QUESTION 4: Can the regulatory 
authorities change their policy about 
probabilistic guarantees? 



Creating an Improved TSG 
•  Some previous work that has used MBPTA to 

generate execution time profiles 
–  Often based on Cumulative Distribution Functions (CDF) 

•  Previous work (RTNS 2015) generated a fault 
model 
–  Used lossy comprehensive and Markov chains to 

understand the duration and magnitude of failures 
–  Failure threshold (in terms of exceedance threshold) 

could be chosen 

•  Combined to form a TSG called DepET 
–  Basis was to set failure threshold at different levels 
–  Use fault model in bands from one threshold to the next 
–  Source can be found at http://rtslab.wikispaces.com/

Experiment+Source+Code  



Does a Different TSG Change Results? 

AMC+ AMC+S AMC+SG BM BMS BMSG FPPS
0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge
Ta

sk
s

N
ot

E
xe

cu
te

d

AMC+ AMC+S AMC+SG BM BMS BMSG FPPS
0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

en
ta

ge
Ta

sk
s

N
ot

E
xe

cu
te

d

•  Repeated some of the trials from ECRTS 2015 with DEPET 
–  LHS: Independent failures, RHS: Dependent failures, Both: IFR = 0.1% 

•  Trends were similar 
–  i.e. Scheduling policy X gave Y% better service to LCTs than policy Z 

•  Absolute values of service were different 
–  In partly due to IFR meaning dependent case had many more failures 



Summary 
•  I think we have to go beyond static analysis 

•  “Real” industrial needs raises some cool 
academic challenges 
–  Only raised a few here 

•  As soon as we do, we either  
–  Make simple assumptions leading to answers with 

questionable worth 
–  We hit some very complex (interesting) problems 

•  Biggest issue is possibly changing industrial and 
regulatory practice 
–  Best to ignore until we have solid solutions 
–  Note - its not what standards say that matters but what is 

expected in meeting them 
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