
Evaluating Mixed Criticality
Scheduling Algorithms with
Realistic Workloads

David Griffin, Iain Bate,
Benjamin Lesage, Frank
Soboczenski

Structure of the Presentation

•  Case for Scenario-Based Assessment
(SBA)

•  Review of ECRTS work
–  ECRTS 2015 paper that included a SBA

•  A Case for a better fault model

•  Creating an improved Task Set Generator
(TSG)

•  Does having a different TSG make a
difference to our results from ECRTS?

Case for SBA
•  Static analysis is perfect for definitive answer

–  Assuming our proofs are valid J

•  Its of less use if we want to know
–  How much service Lower-Criticality Tasks (LCT) get?
–  That is their availability, i.e. how often we enter a Higher-Criticality

Mode (HCM) and for how long?
–  For a safety case this is important information as lower-criticality

doesn’t always mean no criticality
–  E.g. an aircraft’s navigation system is unlikely to be the highest

level of system

•  In ECRTS 2015, Alan, Rob and I showed how SBA
could provide useful evidence
–  Showed how often LCTs had service

•  Note the concept of probabilistic guarantees is not yet
accepted in many domains but MCS needs it
–  The concepts of modes, including for fault tolerance, is accepted

Review of ECRTS Work

•  Paper showed that
–  Bailout Protocol (BP) gave LCTs better service than

AMC+
–  Showed having slack time helped both BP and AMC+

•  TSG based on Uunifast
–  Independent identically distributed (i.i.d.) timing

failures
–  Failures are exceedances of a WCET value, e.g. CLO

–  Initial failure rate chosen as 10-4

–  Others have suggested an initial failure rate of 10-16

–  Uniform random used to generate execution times

A Case for a Better Fault Model

•  For individual tasks i.i.d. failures unrealistic
–  Evidence from industry timing failures normally caused

by fault accommodation code
–  E.g. sensor and comms errors due to interference, or

state unexpected and untested
–  Failures very unlikely to be for a single cycle

•  Suggest more realistic fault model features:
–  Initial Failure Rate (IFR)

–  Duration of failure
–  Size and shape of failures

Wall Time

CLO

Execution
Time

A Case for a Better Fault Model

•  The pWCET normally fits different
distributions to data, e.g. Gumbel

•  Therefore should ideally select samples
from something other than uniform random

A Case for a Better Fault Model

•  Initial failure rate should come from system
safety analysis
–  Logic behind previous 10-16 figure is as follows
–  Some standards mention one hazardous event in 109

operational hours for activities with highest criticality
–  A software task may execute every few milli-seconds

which means over a million times an hour
–  Therefore IFR should approaches once in every 1016

releases of the task

•  Observations typically stop before 105

–  High WaterMark (HWM) normally tight even if not sound
–  Due to gap between 105 and 1016 means, are we

effectively guessing?

A Case for a Better Fault Model

•  If a single point of failure can lead to a
hazard then certification standards
demand extra level of rigour

•  Software can’t itself cause a single point
of failure
–  There has to be physical devices involved

–  Nobody would trust software that much
–  Systems typically have a timing watchdog

–  Reasonable to reset computer-based system
especially if there are replicas without a common-
mode failure

A Case for a Better Fault Model
•  Simplified example

•  Not shown but single missing
value wouldn’t stop engine
–  Algorithms designed to be tolerant
–  Previous value could be used, e.g. use

the same fuel valve setting
–  Engine has inertia

•  Timing watchdog (TW) provides
tolerance
–  Accepted MTBF is 106 hours
–  Both TW and task(s) have to fail

•  Exceeding a task’s WCRT may
involve a number of tasks
–  Some faults may affect multiple tasks,

however may be better to reset quickly
–  We have analysis to help understand

dependencies

SYMBOLSEngine
stops

working

Driver
command

OR

Control
System
Failure

OR

Calculation
delivers

wrong value
Function

late

AND

Timing watchdog
doesn't provide

tolerance
Tasks WCRT is

exceeded

AND

Task exceeds
WCET

Interfering tasks
execute for a time
near their WCET

ORbasic
event

EventAND

A Case for a Better Fault Model

•  Discussions with industry suggest for MCS:
–  CLO could be HWM based on comprehensive testing

–  IFR for CLO would therefore be somewhere between
104 and 105 based on standard testing literature

–  IFR for CHI could be around 106 as
–  Software not expected to be more reliable than TW
–  Plenty of fault tolerance
–  No point having unusable (due to pessimism) WCET

–  With “controlled experiment” could show these values
relate well to actual WCET

–  Controlled experiment gives actual WCETs (RTNS 2015)

–  Note - Not every system continuous control

A Case for a Better Fault Model

•  QUESTION 1: How do you generate a
target reliability (IFR and duration) for
WCRT?

•  QUESTION 2: Given a target reliability for
WCRT, can we derive appropriate target
reliability for each task’s WCET?

•  QUESTION 3: Do probabilistic approaches
change the way we do timing tolerance?

•  QUESTION 4: Can the regulatory
authorities change their policy about
probabilistic guarantees?

Creating an Improved TSG
•  Some previous work that has used MBPTA to

generate execution time profiles
–  Often based on Cumulative Distribution Functions (CDF)

•  Previous work (RTNS 2015) generated a fault
model
–  Used lossy comprehensive and Markov chains to

understand the duration and magnitude of failures
–  Failure threshold (in terms of exceedance threshold)

could be chosen

•  Combined to form a TSG called DepET
–  Basis was to set failure threshold at different levels
–  Use fault model in bands from one threshold to the next
–  Source can be found at http://rtslab.wikispaces.com/

Experiment+Source+Code

Does a Different TSG Change Results?

AMC+ AMC+S AMC+SG BM BMS BMSG FPPS
0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge
Ta

sk
s

N
ot

E
xe

cu
te

d

AMC+ AMC+S AMC+SG BM BMS BMSG FPPS
0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

en
ta

ge
Ta

sk
s

N
ot

E
xe

cu
te

d

•  Repeated some of the trials from ECRTS 2015 with DEPET
–  LHS: Independent failures, RHS: Dependent failures, Both: IFR = 0.1%

•  Trends were similar
–  i.e. Scheduling policy X gave Y% better service to LCTs than policy Z

•  Absolute values of service were different
–  In partly due to IFR meaning dependent case had many more failures

Summary
•  I think we have to go beyond static analysis

•  “Real” industrial needs raises some cool
academic challenges
–  Only raised a few here

•  As soon as we do, we either
–  Make simple assumptions leading to answers with

questionable worth
–  We hit some very complex (interesting) problems

•  Biggest issue is possibly changing industrial and
regulatory practice
–  Best to ignore until we have solid solutions
–  Note - its not what standards say that matters but what is

expected in meeting them

Acknowledgements

•  Patrick Graydon of NASA for comments

•  Mälardalen University SYNOPSIS project

•  EPSRC funded MCC

•  EU funded PROXIMA

