

Evaluating Mixed Criticality Scheduling Algorithms with Realistic Workloads

David Griffin, Iain Bate, Benjamin Lesage, Frank Soboczenski

Structure of the Presentation

- Case for Scenario-Based Assessment (SBA)
- Review of ECRTS work
 - ECRTS 2015 paper that included a SBA
- A Case for a better fault model
- Creating an improved Task Set Generator (TSG)
- Does having a different TSG make a difference to our results from ECRTS?

Case for SBA

Static analysis is perfect for definitive answer

Assuming our proofs are valid ©

Its of less use if we want to know

- How much service Lower-Criticality Tasks (LCT) get?
- That is their availability, i.e. how often we enter a Higher-Criticality Mode (HCM) and for how long?
- For a safety case this is important information as lower-criticality doesn't always mean no criticality
- E.g. an aircraft's navigation system is unlikely to be the highest level of system

In ECRTS 2015, Alan, Rob and I showed how SBA could provide useful evidence

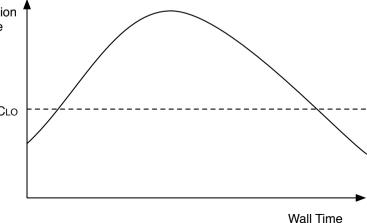
- Showed how often LCTs had service
- Note the concept of probabilistic guarantees is not yet accepted in many domains but MCS needs it
 - The concepts of modes, including for fault tolerance, is accepted

Review of ECRTS Work

Paper showed that

- Bailout Protocol (BP) gave LCTs better service than
 AMC+
- Showed having slack time helped both BP and AMC+

TSG based on Uunifast


- Independent identically distributed (i.i.d.) timing failures
- Failures are exceedances of a WCET value, e.g. C_{LO}
- Initial failure rate chosen as 10⁻⁴
- Others have suggested an initial failure rate of 10⁻¹⁶
- Uniform random used to generate execution times

For individual tasks i.i.d. failures unrealistic

- Evidence from industry timing failures normally caused by fault accommodation code
- E.g. sensor and comms errors due to interference, or state unexpected and untested
- Failures very unlikely to be for a single cycle

Suggest more realistic fault model features:

- Initial Failure Rate (IFR)
- Duration of failure
- Size and shape of failures

- The pWCET normally fits different distributions to data, e.g. Gumbel
- Therefore should ideally select samples from something other than uniform random

Initial failure rate should come from system safety analysis

- Logic behind previous 10⁻¹⁶ figure is as follows
- Some standards mention one hazardous event in 10⁹
 operational hours for activities with highest criticality
- A software task may execute every few milli-seconds which means over a million times an hour
- Therefore IFR should approaches once in every 10¹⁶
 releases of the task

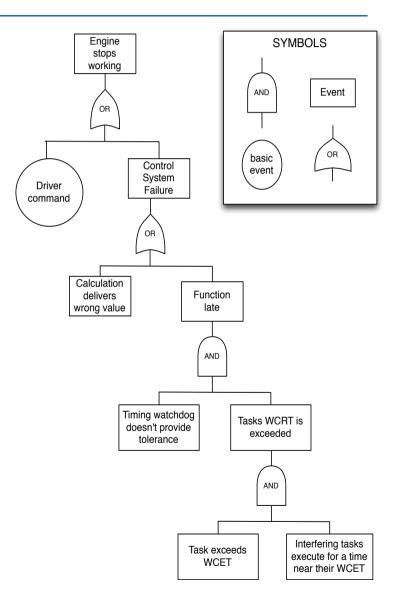
Observations typically stop before 10⁵

- High WaterMark (HWM) normally tight even if not sound
- Due to gap between 10⁵ and 10¹⁶ means, are we effectively guessing?

- If a single point of failure can lead to a hazard then certification standards demand extra level of rigour
- Software can't itself cause a single point of failure
 - There has to be physical devices involved
 - Nobody would trust software that much
 - Systems typically have a timing watchdog
 - Reasonable to reset computer-based system especially if there are replicas without a commonmode failure

Simplified example

Not shown but single missing value wouldn't stop engine


- Algorithms designed to be tolerant
- Previous value could be used, e.g. use the same fuel valve setting
- Engine has inertia

Timing watchdog (TW) provides tolerance

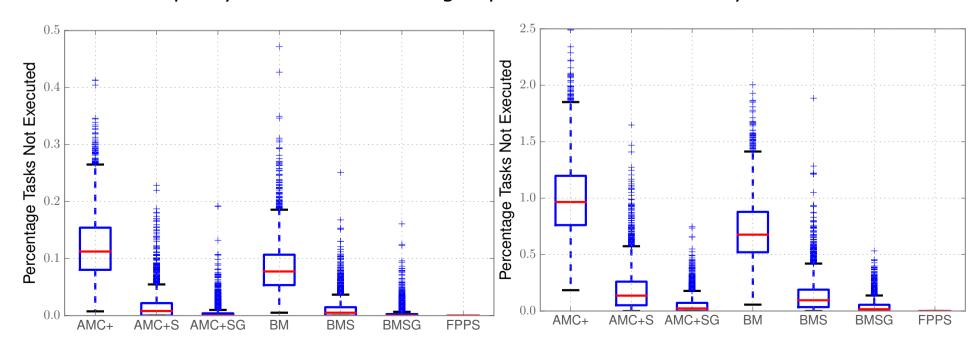
- Accepted MTBF is 10⁶ hours
- Both TW and task(s) have to fail

Exceeding a task's WCRT may involve a number of tasks

- Some faults may affect multiple tasks, however may be better to reset quickly
- We have analysis to help understand dependencies

Discussions with industry suggest for MCS:

- C_{LO} could be HWM based on comprehensive testing
- IFR for C_{LO} would therefore be somewhere between
 10⁴ and 10⁵ based on standard testing literature
- IFR for C_{HT} could be around 10⁶ as
 - Software not expected to be more reliable than TW
 - Plenty of fault tolerance
 - No point having unusable (due to pessimism) WCET
- With "controlled experiment" could show these values relate well to actual WCET
 - Controlled experiment gives actual WCETs (RTNS 2015)
- Note Not every system continuous control


- QUESTION 1: How do you generate a target reliability (IFR and duration) for WCRT?
- QUESTION 2: Given a target reliability for WCRT, can we derive appropriate target reliability for each task's WCET?
- QUESTION 3: Do probabilistic approaches change the way we do timing tolerance?
- QUESTION 4: Can the regulatory authorities change their policy about probabilistic guarantees?

Creating an Improved TSG

- Some previous work that has used MBPTA to generate execution time profiles
 - Often based on Cumulative Distribution Functions (CDF)
- Previous work (RTNS 2015) generated a fault model
 - Used lossy comprehensive and Markov chains to understand the duration and magnitude of failures
 - Failure threshold (in terms of exceedance threshold)
 could be chosen
- Combined to form a TSG called DepET
 - Basis was to set failure threshold at different levels
 - Use fault model in bands from one threshold to the next
 - Source can be found at http://rtslab.wikispaces.com/ Experiment+Source+Code

Does a Different TSG Change Results?

- Repeated some of the trials from ECRTS 2015 with DEPET
 - LHS: Independent failures, RHS: Dependent failures, Both: IFR = 0.1%
- Trends were similar
 - i.e. Scheduling policy X gave Y% better service to LCTs than policy Z
- Absolute values of service were different
 - In partly due to IFR meaning dependent case had many more failures

Summary

- I think we have to go beyond static analysis
- "Real" industrial needs raises some cool academic challenges
 - Only raised a few here
- As soon as we do, we either
 - Make simple assumptions leading to answers with questionable worth
 - We hit some very complex (interesting) problems
- Biggest issue is possibly changing industrial and regulatory practice
 - Best to ignore until we have solid solutions
 - Note its not what standards say that matters but what is expected in meeting them

Acknowledgements

- Patrick Graydon of NASA for comments
- Mälardalen University SYNOPSIS project
- EPSRC funded MCC
- EU funded PROXIMA