
Mixed Criticality Systems: Beyond 
Transient Faults 

Abhilash Thekkilakattil, Alan Burns, Radu Dobrin and 
Sasikumar Punnekkat 



Motivation and Contribution 

Ø State of the art of mixed criticality scheduling 
mainly focuses on WCET overruns 

Ø WCET overruns are one example of transient 
faults 

Ø We propose an approach for design and 
scheduling of mixed criticality systems under 
permanent faults 



Introduction 

Ø Mixed criticality scheduling deals with scheduling 
real-time tasks with varying levels of WCET 
assurances 

Ø Growing interest in mixed criticality scheduling 
since Vestal’s RTSS’07 paper 
Ø 230 citations according to Google Scholar 
Ø Over 200 follow-up papers according to “Mixed 

Criticality Systems- A Review” (6th ed.) by Burns and 
Davis 



Goals of Mixed Criticality Scheduling 

Ø Enable certification by different certifying 
authorities 
–  Demonstrate timeliness under different WCETs 

Ø Enable efficient utilization of the underlying 
computing infrastructure 
–  Enabling safe sharing of the computing infrastructure 
–  Ensuring isolation of critical from less critical tasks 



State of the Art Mixed Criticality Scheduling 

Ø Criticality monotonic priority ordering 

Ø Adaptive and static scheduling 

Ø Scheduling with virtual deadlines/periods 

Ø Mixed criticality scheduling under faults 



The Dependability Perspective 

Focus of MC scheduling 

Avizienis et al., Basic Concepts and Taxonomy of Dependable and Secure Computing, IEEE Transactions of Dependable and Secure Computing, 2004  

Dependability 

Means 

Attributes 

Threats 

Faults 

Errors 

Failures 

Reliability 

Safety 

Maintainability 

Confidentiality 

Integrity 

Availability 

Fault tolerance 

Fault Prevention 

Fault Removal 

Fault Forecasting 



Faults, Errors and Failures 

Fault Error Failure 

WCET overrun Task deadline miss High criticality deadline miss 

A bit flip Wrong computed value Incorrect actuation 

Many different types of faults (except WCET overruns) are 
not covered by Vestal-like models  



Classification of Faults 

Faults 

Transient Faults Permanent Faults 

•  Fault whose presence is 
limited in time 

•  Examples include bit flips 
and WCET overruns 

•  Solution: temporal 
redundancy e.g., task re-
executions 

•  Fault whose presence is 
continuous in time 

•  Examples include memory 
and processor failures 

•  Solution: spatial redundancy 
e.g., using additional 
hardware 



Transient Fault Tolerance 

Ø  Temporal redundancy: replicate the tasks in time 
 

•  Re-execute the task 
•  Execute an alternate task 

Ø  The time for re-execution/alternate task execution can 
be seen as the “extra time” needed in Vestal’s model 

Level 1 WCET 

Level 2 WCET 

Level 3 WCET 

Level 4 WCET 



Classification of Faults 

Fault 

Transient Faults Permanent Faults 

•  Fault whose presence is 
limited in time 

•  Examples include bit flips 
and WCET overruns 

•  Solution: temporal 
redundancy e.g., task re-
executions 

•  Fault whose presence is 
continuous in time 

•  Examples include memory 
and processor failures 

•  Solution: spatial redundancy 
e.g., using additional 
hardware 



Focus of this Paper 

How to design mixed criticality real-time architectures 
to tolerate permanent faults?  

 
Contribution: 
 
1.  Propose a fault coverage based mapping of 

criticalities 
2.  Present a taxonomy of fault tolerance mechanisms in 

the context of mixed criticality systems 



Classification of Permanent Faults 
Ø Design Faults 

–  Faults due to deficiencies in design and development 
e.g., manufacturing defects in computers 

–  Hardware and software design faults 

Ø Random Faults 
–  Faults whose time of occurrence nor the cause can be 

determined e.g., faults due to wear and tear 
Ø Byzantine faults 

–  Faults in which replicas behave arbitrarily differently 
–  Worst kind of faults: requires high amount of 

redundancy 



Tolerating Permanent Faults 

Requires additional hardware (N-modular paradigm) 
–  Replicate the tasks on multiple hardware 
–  Perform voting to determine and mask failures 
–  Diversity to prevent common cause failures 

Replica 1 

Replica 2 

Replica 3 

Voter 

input 

input 

input 

output 



Goals of Mixed Criticality Scheduling 
Ø  Enable certification by different certifying authorities 

–  Demonstrate timeliness under different WCETs 

Ø  Enable efficient utilization of the underlying computing infrastructure 
–  Enabling safe sharing of the computing infrastructure 
–  Ensuring isolation of critical from lesser critical tasks 

Timeliness does not imply certification 

Safety standards mandate redundancy for safety 



Goals of Mixed Criticality Scheduling 
Ø  Enable certification by different certifying authorities 

–  Demonstrate timeliness under different WCETs 

Ø  Enable efficient utilization of the underlying computing infrastructure 
–  Enabling safe sharing of the computing infrastructure 
–  Ensuring isolation of critical from lesser critical tasks 

Timeliness does not imply certification 

Safety standards mandate redundancy for safety 

Highest level of “protection” for all tasks? 



Mapping Criticalities Based on Fault Coverage 

Criticality Transient 
Faults 

Random 
Faults 

Software 
Faults 

Hardware 
Faults 

Byzantine 
Faults 

High 
Medium 
Low 
Non-critical Partially covered Partially covered 

Design Faults 



High Criticality Tasks 

•  Dedicated hardware to guarantee isolation 
•  3b+1 replicas and byzantine fault tolerance mechanism 

to tolerate b byzantine faults 
•  Hardware and Software diversity to protect against 

design faults 

Replica 1 
input 

Replica 2 
input 

Replica 3 
input 

Voter 
(byzantine 

fault 
tolerance) 

output 

Replica 
3b +1 

input 

…
…
	



Medium Criticality Tasks 

•  High integrity hardware that is shared among medium 
criticality tasks 

•  Time triggered scheduling and lock-step execution 
•  Replication for protection against random faults 
•  Hardware and software diversity for protection against design 

faults 

high integrity 
processor 1 

high integrity 
processor 2 

Task A 

Task B 

Task A 

Task B 

Voter 
output 



Low Criticality Tasks 

•  COTS hardware, e.g., a multicore processor, that is shared 
among low criticality tasks 

•  Time aware voter and loose synchronization: less development 
effort 

•  Replication for protection against random faults 
•  Software diversity for protection against software design faults 

Core1 
(scheduler: EDF) 

Core 2 
(scheduler: FPS) 

Task A 

Task A 

Time 
aware 
voter 

output 

Task B 

Time aware voter: 
•  Manages outputs delivered at different 

instants 
•  Signals early and late timing errors 

A1 

A2 

B2 

Task B 

unfinished execution 



Non-Critical Tasks 

•  Scheduled along with low criticality tasks 

•  Timeliness is guaranteed in the absence of faults 

•  Discarded upon failures 

•  Possibility of using existing MC scheduling 
algorithms 

•  Guarantees isolation of higher criticality tasks 

•  Limited form of redundancy can be provided 
exploiting spare processing capacity 



Mapping Criticalities Based on Fault Coverage 

Criticality Transient 
Faults 

Random 
Faults 

Software 
Faults 

Hardware 
Faults 

Byzantine 
Faults 

High 

Medium 

Low 

Non-critical 

redundancy redundancy software diversity hardware diversity 
byzantine fault 

tolerance 

redundancy redundancy software diversity hardware diversity 

redundancy redundancy software diversity 

Limited 
redundancy 

Limited 
redundancy 

Design Faults 



Conclusions 
 •  Approach for design of mixed criticality systems 

in the context of permanent faults through: 
–  Fault coverage based mapping of criticalities 
–  Criticality based provisioning of resources 
–  Isolation of higher criticality tasks  
–  Implicit coverage of WCET overrun faults 

•  Future Work 
–  Methods for efficient allocation of replicas to 

processors 
–  Consideration of safety analysis in the allocation and 

scheduling of tasks 
–  Providing better-than-average service to non-critical 

tasks 



Questions ? 

Thank You ! 


