A protocol for Mixed-Criticality management in Switched Ethernet networks

O.Cros, X.Li, L.George

December 1, 2015

What's the matter?

Mixed-Criticality (MC) in network context A protocol to manage MC Delay computation Simulation results

Plan and objectives

MC in network context
A protocol to manage MC
Delay computation
Simulation results

Context

Domains

Public transport (CAN) (Volvo, Renault, ...) Avionics (AFDX) (Airbus)

Home automation

Defense

Context

Domains

Public transport (CAN) (Volvo, Renault, ...) Avionics (AFDX) (Airbus)

Home sutemation

Home automation

Defense

Principles

Message routing and scheduling Classifying messages by importance

Context

Domains

Public transport (CAN) (Volvo, Renault, ...)

Avionics (AFDX) (Airbus)

Home automation

Defense

Principles

Message routing and scheduling Classifying messages by importance

MC

Privileging messages in critical situation

Critical for the vehicle, for the mission, for the users

Overload context

Assuring critical messages transmission

Why Mixed-Criticality?

Today

1 network per group of functions (mechanical, comfort, gps tracking, ...)

Increasing of financial costs, weight, fuel and energy consumption Example: 3/4 different antennas per public bus

Mixed-criticality

Mixing all the functions in the same network Each function associated to a criticality level MC management protocol to guarantee critical messages transmission

Mixed-Criticality

Related work

Mono/Multicore context 2-levels of criticality QoS

C 1

Synchronization protocol

Ethernet IEEE-1588 PTPv2

Mixed-criticality

Problems

How to manage messages scheduling inside a embedded network ? How to assure critical messages transmission ?

Mixed-criticality

Problems

How to manage messages scheduling inside a embedded network ? How to assure critical messages transmission ?

Solution

Providing MC management in embedded networks Period-oriented or WCTT-oriented Static-defined path

Example

Flow	T_i^{LO} (μs)	T_i^{HI} (μs)	C_i (μ s)	u_i^{LO}	u_i^{HI}
$\overline{v_1}$	500	250	100	0.2	0.4
<i>V</i> ₂	500	250	100	0.2	0.4
<i>V</i> 3	300	-	100	0.33	-

Topology

Centralized topology

Automotive Ethernet, AFDX targets
One central node to store criticality information

Example $ES_1 \bigcirc S_1 \\ ES_2 \bigcirc S_1 \\ ES_3 \bigcirc S_3 \\ ES_4 \bigcirc S_4 \\ ES_5 \bigcirc S_2$

Plan and objectives

MC in network context

A protocol to manage MC

Delay computation

Simulation results

A two-phase protocol

First phase

Switch-criticality call
Transmitting switch order to a central node
Centralized topology

Second phase

Multicast the switch criticality order (reliable multicast) Sending new criticality info to all nodes Reliable (deterministic) multicast

A two-phase protocol: The call phase

Principle

Triggering a criticality switch when : Longer period detected Or shorter inter-arrival time detected Fixed WCTT C_c (static known size) Ethernet protocol

Transmission

Dedicated VLAN, highest priority PTP messages : clock accuracy (PTP-ETE)

MC management protocol

A two-phase protocol: the multicast phase

Multicast

Each node can get the switch criticality order at a different instant Clock precision and clock synchronization (PTP - IEEE1588) Total order: coherency in the network At each instant, all nodes have the same criticality information (precision ϵ)

Reliability

Each single physical link is bounded Clock accuracy ϵ Worst-case delay computation

Switch-criticality order

All nodes switch at the same time Last reception instant : $\max_{n \in \mathcal{N}} (d_n * (C_c + sl) + \epsilon_n)$

Plan and objectives

MC in network context
A protocol to manage MC
Delay computation
Simulation results

The trajectory approach

Flows

Representing the network as a set of flows

Each flow v_i emits messages

$$v_i = \{\mathcal{P}_i, C_i, \vec{T}_i\}$$

Criticality management

One period per criticality level

$$\vec{T}_i = \{T_i^{LO}, T_i^{HI}\}$$

Call phase delay

Principle

Sending criticality switch call to central node Emitting a call when a message exceeds its period or LO-WCTT Highest priority VLAN

Delay

$$egin{align*} I_{delay}^n &= F_{PTP} * \sum_{\substack{j \in hp_c \\ \mathcal{P}_c \cap \mathcal{P}_j
eq \emptyset}} \left(S_{max_c}^{first_{c,j}} - M_c^{first_{c,j}} + A_{c,j}
ight) \ &+ \sum_{h \in \mathcal{P}_c} \delta_c^h + (|\mathcal{P}_n| - 1) * (sl + 2 * C_c) \end{split}$$

Multicast phase delay

Principle

Sending the criticality level information to all nodes Depending on the size of the network

Delay

$$M_{delay}^n = d_n * (C_c + sI) + \epsilon_n$$

Total delay

Phases delay

$$S_{delay} = \max_{n \in \mathcal{N}} (I_{delay}^n + M_{delay}^n)$$

Final expression

$$S_{delay} = F_{PTP} * \sum_{\substack{j \in hp_c \\ \mathcal{P}_c \cap \mathcal{P}_j \neq \emptyset}} \left(S_{max_c}^{first_{c,j}} - M_c^{first_{c,j}} + A_{c,j} \right)$$

$$+ \sum_{h \in \mathcal{P}_c} \delta_c^h$$

$$+ \left(2 * \max_{n \in \mathcal{N}} (d_n) - 1 \right) * \left(C_c + sl \right) + C_c \left(\max_{n \in \mathcal{N}} (d_n) - 1 \right) + \epsilon$$

Plan and objectives

MC in network context A protocol to manage MC Delay computation Simulation results

Criticality switch delay

Criticality switch delay

Highest priority (except PTP)
Non-preemptive effect

Switch criticality delay stays constant

Criticality messages transmission is guaranteed in a bounded time

Conclusion

MC management protocol Reliable multicast Independent from the load

Perspectives

Delay computation on switch-criticality delay Delay computation to return to low-criticality mode Uncentralized MC management

Conclusion

Thanks

Thanks to all the authors of this presentation and publication Thanks to our respective labs
Thank you for your attention!

?

Questions? Feel free to ask!

