Investigating Mixed Criticality Cyclic Executive
Schedule Generation

Tom Fleming
Department of Computer Science,
University of York, UK.
Email: tdf506 @york.ac.uk

Abstract—Mixed Criticality systems require a difficult com-
promise to be drawn between efficient system utilisation and
sufficient separation of critical components. In addition to these
challenges, hardware platforms are becoming increasingly multi-
core in nature bringing up additional scheduling issues. Previous
publications have met these challenges by suggesting a Cyclic
Executive based approach for Mixed Criticality scheduling. They
make use of a barrier protocol to separate the execution within
each minor cycle, executing higher critical work, then less
critical work. The barrier protocol allowed such a separation
of criticalities to remain consistent across all cores in a given
platform. This strict separation has the advantage that higher
criticality work cannot suffer interference from lower, including
communication and recourse access. One of the key challenges of
using a Cyclic Executive is the construction of a valid schedule.
In this work we consider the question, “Is it worth using an
optimal solver such as Integer Linear Programming (ILP) for
Cyclic Executive schedule generation?”. We start by extending
the Cyclic Executive model to include multiple minor cycles. An
ILP model is described and evaluated against the heuristic worst
fit. The results show that ILP significantly outperforms worst fit.
Finally we show that ILP is not only effective, but also efficient in
terms of runtime and scalability for the examples and parameters
considered in this work, making it a practical choice for Cyclic
Executive schedule generation of real systems.

I. INTRODUCTION

With the introduction of powerful multi-core architectures
comes the desire to consolidate functionality, that was pre-
viously spread across many nodes, onto a single common
hardware platform. Inevitably such a consolidation gives rise
to the situation where more critical work must be placed upon
the same resources as less critical work. This consolidation has
brought about the notion of a Mixed Criticality (MC) system.
Scheduling such a system is challenging as highly critical work
must often be certified and follow safety standards such as
Design Assurance Levels (DAL) in the aerospace industry and
ASIL (Automotive Safety Integrity Levels) in the automotive
industry. Care must be taken to ensure that less critical work
can not interfere with the execution of higher critical work.
The design of such systems becomes a trade-off between
efficiently utilising the system resources while providing an
adequate level of separation to satisfy any safety requirements.

One of the most widely used scheduling policies in industry
is the Cyclic Executive (CE). Such policies execute code
cyclically in a pre-defined order, as such they are highly

Alan Burns
Department of Computer Science,
University of York, UK.
Email: alan.burns@york.ac.uk

deterministic which makes them a favourable choice for highly
critical applications with stringent certification requirements.
Cyclic Executive systems are made up of a major cycle
which is composed on a number of minor cycles, the major
cycle repeats in a cyclic manner. Naturally this determinism
comes with some drawbacks, Baker and Shaw [1] performed
some initial evaluations on the CE model, they noted some
restrictions:

o Cyclic Executives can only easily support periodic work.

o Tasks must have periods that are multiples of the minor
cycle.

o Tasks must have deadlines equal to or less than the minor
cycle.

o Tasks cannot have a period greater than the major cycle.

In addition to these drawbacks, the creation of CE sched-
ules is well known to be NP-hard. Despite these issues the
high level of determinism makes Cyclic Executives popular
schedulers.

Baruah and Burns [3] investigate the notion of a mixed
criticality cyclic executive. In order to provide the separation
required between different levels of criticality they use the
scheme proposed by Ginnopoulou et al. [6]. This approach
uses a barrier protocol to completely separate the execution
of different criticality levels. The barrier mechanism works by
having each CPU call it when its execution for a particular
criticality level has completed. Once all CPUs have called the
barrier, they are released and allowed to execute the work for
the next criticality level. The barrier protocol requires minimal
hardware or OS support. Baruah and Burns make use of this
protocol within a CE context. Within each minor cycle, work
is executed in order of criticality, highest criticality first, each
level is separated by a barrier.

Burns et al. [5] build upon the work in [3] by considering
the creation of CE schedules using heuristics to allocate tasks
to cores. This work considers the simple case where a system
is made up of a single minor cycle (i.e. minor cycle = major
cycle), they assess the performance of First Fit (FF), Worst
Fit (WF) and First Fit with Branch and Bound (FFBB). They
show that the barrier protocol does impact the ability to create
CE schedules but conclude this it is a necessary compromise
to allow for more robust systems that are easier to certify.

In this work we seek to extend the investigation into cyclic
executive schedule construction. We will extend our view of
the system model to include multiple minor cycles within
a major cycle. Alongside heuristic based techniques there
are optimal solutions which typically come with increased
execution overheads. As we know that the MC scheduling
problem is NP-hard in the strong sense [2] we extend our
work to consider an optimal solver. One such technique is
Integer Linear Programming (ILP), in this work we make use
of ILP and show that not only does it allow a large number of
task sets to be scheduled, even in the extended system model
but for the purposes of CE schedule constriction it is efficient.

Throughout this work we will make use of the MC system
model proposed by Vestal in 2007 [8]. Vestals model proposes
that each task in a system has a WCET value for its own
criticality level and all those below. Our model is made up of
a number of dual criticality periodic tasks with the properties
T = {C(LO),C(HI),T,D,L} where C(LO) is the LO
criticality WCET, C(HI) is the HI criticality WCET (and
C(HI) > C(LO)), T is the period, D is the deadline and L
is the criticality level (HI or LO). We use TF to denote the
minor cycle and T to denote the major cycle.

In addition to the model above, we assume a constrained
system where the major cycle is a multiple of the minor cycle.
As such task periods must also be multiples of the minor cycle
and no greater than the major cycle. In general in this work
we consider 4 minor cycles per major cycle, where T = 25
and T™ = 100. We do not consider the issue of assigning an
arbitrary set of periods to a cyclic executive.

The remainder of this work is structured as follows, Section
IT will detail the construction of an ILP model used to check
for feasible CE schedules and show its effectiveness against
heuristic based techniques, Section III will consider whether
ILP can be practically used by assessing its computational
overheads and Section IV will present some conclusions to
this work.

II. USING ILP TO CREATE CE SCHEDULES

In this section we will describe how the constraints of a
cyclic executive can be expressed as an ILP model and how
this model is used to check for a feasible schedule. We extend
the work of [3] by allowing for multiple minor cycles within
the major cycle, this leads to an allocation problem of tasks
to frames and the cores within each frame. We will briefly
recap the runtime of a mixed criticality CE using the barrier
protocol and its schedulability test, following this the ILP
implementation will be described by means of an example.

The runtime of a single minor cycle in a (dual criticality)
mixed criticality cyclic executive is as follows:

CE Runtime:

- The minor cycle begins by executing HI criticality tasks
on all cores.

- Once tasks on a core have finished executing HI work
they signal the barrier protocol.

- If all cores signal the barrier before their C(LO) execu-
tion times, LO criticality work may commence.

- If any core does not signal completion by their C'(LO)
then the system moves into the HI criticality mode and
all HI tasks are allowed to execute up to their C(HI)
execution times.

The latest time at which each core could call the barrier
protocol to report HI work complete is denoted by S(i, j),
where ¢ is the core and j is the minor cycle. The point at which
the system changes from executing the HI work in the LO
mode to executing the LO work is denoted by S™%* (), where
7 is the minor cycle. As such the schedulability of a mixed
criticality CE can be determined as follows (where HI (3, j)
is the set of high criticality tasks scheduled on core ¢, minor
cycle j and LO(i, j) is the set of LO criticality tasks scheduled
on core ¢, minor cycle j):

1) HI criticality tasks must fit within the minor cycle:
Viandj, > Cy(HI) <T".
kEHI(i,j)
2) The value of S(i,J) can be calculated for each core:
Si.j) = Y., Ck(LO)
keHI(i,j)
3) The value of S™%*(j) used across all CPUs is:
S™(G) = max(S(i, 7))

4) LO criticality jobs must fit within the time between
Smaz (. 4) and the end of the minor cycle:
Vi and j, Z Cy(LO) < TF — gma(j)
keLO(i,)

We will describe the construction of our ILP model via the
use of an example. Consider the task set shown in Table I:

T1 3 4 25 25 HI
T2 4 5 50 50 HI
T3 5 6 50 50 HI
T4 13 15 25 25 HI
T5 10 - 25 25 | LO
T6 2 - 50 50 | LO
T7 3 - 25 25 | LO
T8 5 - 100 | 100 | LO

TABLE I
A MIXED CRITICALITY TASK SET WITH 4 MINOR CYCLES
(TF =25, TM = 100).

The construction of the ILP model to check the schedula-
bility of the task set in Table I will now be described based
on a 2 core platform. We will describe this model based on
the syntax of the Gurobi optimiser [7] which is the tool used
throughout this work.

In order to achieve our goal of testing for any valid CE
schedule we require a simplistic method of modelling our
system. In order to model the possible locations of a task

we create a variable for each location, the variables are in
the format T[tasknumber]_|core][cycle]. Each variable is
declared as a binary value, therefore if it is set to 1 the task is
scheduled in that location. For example 7'1 has a period of 25,
as such is included in all 4 of the minor cycles, therefore it
must be scheduled on one of the two cores within each minor
cycle, (T'_11 or T_21 where TF = 1). In the next part of the
model we define the bounds for these variables so that each
task might only be scheduled the correct number of times in
the correct places (no duplicate tasks etc.).

With this in mind we construct our maximize statement,
the first section of the ILP model. As we are not interested
in optimising any particular parameter, we need not include
anything in this section. We merely seek to discover if a
scheduleable assignment exists, we require at least one feasible
schedule.

The second stage of the model is the Subject To section, in
this section the key constraints of the model are defined. To
model this we set-up a constraint for each minor cycle, for
cycle one T'1 would have the constraint 71_11+71_21 =1,
this ensures that 7'1 is only scheduled on one of the two cores
in the first minor cycle. These constraints are repeated for the
remaining minor cycles.

If a task has a period of 50, it must be scheduled once
in the first two minor cycles and once in the second two.
We use the same notation to model this, for example cycles
one and two for T2 can be constrained with the following:
T2 11+T72.21+T2_124T2_22=1.

Finally if a task has a period of 100 then it must be
scheduled only once within the major cycle, we model this for
T8 as follows: T8_11 + T8_21 + T8_12 + T8 _22 + T8_13 +
T8 23 + T8 14 + T8 24 = 1.

The complete set of constraints for the task set shown in
Table I are shown below:

Subject To

Ti_11 + T1_21 =1

T1_12 + T1_22 =1

T1_13 + T1_23 =1

T1_14 + T1_24 =1

T2_11 + T2_21 + T2_12 + T2_22 =1
T2_13 + T2_23 + T2_14 + T2_ 24 =1
T3_11 + T3_21 + T3_12 + T3_22 =1
T3_13 + T3_23 + T3_14 + T3 24 =1
T4_11 + T4_21 =1

T4_12 + T4_.22 =1

T4_13 + T4_.23 =1

T4_14 + T4_.24 =1

T5_11 + T5_21 =1

T5_12 + T5_.22 =1

T5_13 + T5.23 =1

T5_14 + T5_24 =1

T6_11 + T6_21 + T6_12 + T6_22 =1
T6_13 + T6_23 + T6_14 + T6_24 = 1
T7_11 + T7_21 =1

T7_12 + T7_22 =1

T7_13 + T7_23 =1

T7_14 + T7_24 =1

T8_ 11 + T8_21 + T8_12 + T8_22 +
T8_13 + T8_23 + T8_ 14 + T8 24 =1

Statements are now required to ensure that the taskset is
schedulable in the configuration chosen. This is done in three
stages.

Stage One: The first stage aims to ensure that the HI
criticality work is schedulable when it executes up to its
maximum C(HI) WCET value. This is done by multiplying
each tasks WCET with the variables representing the possible
locations of the tasks. If the variable is set to 1 and the task
is scheduled, then the answer will be equal to the WCET, if 0
then the answer is 0. The notation for the HI criticality tasks
in the HI mode is shown below:

4 TI_11 + 5 T2_11 + 6 T3_11 + 15 T4_11 <= 25
4 T1.21 + 5 T2.21 + 6 T3_21 + 15 T4_21 <= 25
4 T1_12 + 5 T2_12 + 6 T3_12 + 15 T4_12 <= 25
4 T1.22 + 5 T2.22 + 6 T3.22 + 15 T4 22 <= 25
4 T1_13 + 5 T2_13 + 6 T3_13 + 15 T4_13 <= 25
4 T1. 23 + 5 T2.23 + 6 T3.23 + 15 T4 23 <= 25
4 T1_14 + 5 T2_14 + 6 T3_14 + 15 T4_14 <= 25
4 T1.24 + 5 T2.24 + 6 T3_24 + 15 T4_24 <= 25

Stage Two: The second stage checks the schedulability of
the HI criticality tasks executing to their LO WCET values,
this is done in the same way as stage one. In addition to
this an X value is added to the calculation, one X value per
minor cycle (X_1,X_2, X_3, X_4). The X value represents
the time between the point at which all cores complete their
execution of the HI criticality tasks (S™%"), and the end of
the minor cycle (T'F).

3 T1_11 + 4 T2_11 + 5 T3_11 + 13 T4_11 +X_I<= 25
3 T1_21 + 4 T2_21 + 5 T3_21 + 13 T4_21 +X_1<= 25
3 T1_12 + 4 T2_12 + 5 T3_12 + 13 T4_12 +X 2<= 25
3 T1.22 + 4 T2_22 + 5 T3_.22 + 13 T4_22 +X 2<= 25
3 T1_13 + 4 T2_13 + 5 T3_13 + 13 T4_13 +X 3<= 25
3 T1.23 + 4 T2_23 + 5 T3_23 + 13 T4_23 +X 3<= 25
3 T1_14 + 4 T2_14 + 5 T3_14 + 13 T4_14 +X 4<= 25
3 T1_24 + 4 T2_24 + 5 T3_24 + 13 T4_24 +X 4<= 25

Stage Three: The final stage seeks to ensure than the
LO criticality tasks are schedulable within the time X we
calculated above. This is achieved by a similar process to
stages one and two, but this time also subtracting X. The
solution must be less than or equal to O for the LO criticality
execution to be schedulable within X.

10 T5_11 + 2 T6_11 + 3 T7_11 + 5 T8_11 —X_1<=0
10 T5_21 + 2 T6_21 + 3 T7_21 + 5 T8_ 21 —X_1<=0
10 T5_12 + 2 T6_12 + 3 T7_12 + 5 T8_12 -X 2<=0
10 T5.22 + 2 T6_22 + 3 T7_22 + 5 T8_22 —X 2<=0
10 T5_13 + 2 T6_13 + 3 T7_13 + 5 T8_13 —X 3<= 0
10 T5.23 + 2 T6_23 + 3 T7_23 + 5 T8_.23 —X 3<=0
10 TS5S_14 + 2 T6_14 + 3 T7_14 + 5 T8_14 —X 4<= 0
10 T5_24 + 2 T6_24 + 3 T7_24 + 5 T8_24 —X 4<=0

The model then declares any bounds required, as all but 4
of the variables used are declared as binaries only 4 bounds
are defined. The X values are bounded to be less than or equal
to 25, in reality these variables should never reach this point.

Bounds

X_1 <= 25
X 2 <= 25
X 3 <= 25

X 4 <= 125

Finally we declare all variables used.

Binaries

T1_11 T1_21
T2_11 T2_21
T3_11 T3_21
T4_11 T4_21
T5_11 T5_21
T6_11 T6_21
T7_11 T7_21
T8_11 TS8_21

T1_12
T2_12
T3 12
T4_12
T5_12
T6_12
T7_12
T8_12

T1 22
T2 22
T3 22
T4_22
TS5 22
T6_22
T7_22
T8_22

T1_13
T2_13
T3 13
T4_13
T5_13
T6_13
T7_13
T8_13

T1_23
T2 23
T3 23
T4_23
TS5 23
T6_23
T7_23
T8 23

T1_14
T2_14
T3 14
T4_14
TS5 14
T6_14
T7_14
T8_14

T1 24
T2 24
T3 24
T4_24
TS 24
T6_24
T7 24
T8 24

Integers

X1 X2 X3 X4

End

In order to access the performance of the ILP model
we compared it against the heuristic Worst Fit (WF) which
performed well in the experimentation undertaken in [5]. In
the work of [5] WF performed its allocation in two stages:

o Stage One Allocate the HI criticality tasks and locate
point S,

o Stage Two Allocate the LO criticality tasks in the time
remaining, 7% — §maz,

As the prior work dealt with the simpler single cycle model,
the implementation of worst fit used in this work had to take
into account the multi-cycle system. This is done as follows:

o Stage One Allocate the HI criticality tasks to minor
cycles.

o Stage Two Allocate the LO criticality tasks to minor
cycles.

« Repeat For Each Minor Cycle
Stage One Allocate HI criticality tasks assigned to the
minor cycle to cores and locate point S™%*.
Stage Two Allocate the LO criticality tasks assigned to
the minor cycle in the time remaining, 77 — S™az,

Worst fit and ILP were compared by means of experimental
data using randomly generated task sets. The parameters for
this experimentation were as follows:

o Our experiments were based on a 4 core platform.

o Each task set consisted of 20 tasks.

¢ 10,000 task sets were generated at each 5% utilisation
interval.

o Tasks were generated as follows: utilisations (U) were
uniformly generated via UUniFast [4], periods were se-
lected from the set {25,50,100}, C(LO) values were
created by, C(LO) = U x T, C(HI) values were
created by multiplying C'(LO) values via a random value
between 1.1 and 1.9.

o The criticality levels within a task set were evenly dis-
tributed.

o CE execution is split across 4 minor cycles where T =
25 and T™ = 100.

o Tasks may have periods of 25, 50 and 100. These are
allocated randomly during taskset generation.

0.8

Schedulability
o
[}

o
IS
T

02r

Utilisation

Fig. 1. The effectiveness of WF and ILP to generate CE schedules.

Figure 1 is typical of the results found over a range of
parameters and shows that ILP significantly out performs the
WF heuristic. Where ILP still boasts schedulability at nearly
0.8 WF is only able to manage around 0.1. ILP provides a
clear improvement over the heuristic based techniques. With
ILP being an optimal solver this improvement is somewhat
expected, the question remains, are the overheads of using
ILP in comparison to WF worth the increase in the number
of CE schedules generated.

On an alternate note, if ILP is used in the constrained
CE model from [5] where TF = T™ then the results are
interesting.

1 —h——4
08 1
>
£061 1
Qo
©
=
°
(0]
_S L -
» 04
02t ILP 4
FFBB
—WF
FF
0 s \ \ \ \ \ s
0 0.5 1 1.5 2 2.5 3 3.5 4

Utilisation

Fig. 2. A comparison between ILP and prior heuristics presented in [5].

Figure 2 shows that for the restricted case of a single minor
cycle, the heuristics FFBB' and WF perform extremely close
to the ILP solution. This makes it clear that these heuristics
are very well optimised for this problem, but the additional
complexity of multiple minor cycles is a significant issue. This
is likely down to it becoming a two stage allocation process
for the heuristic techniques (allocate to minor cycles then to
cores within those cycles).

III. THE EFFICIENCY OF USING ILP FOR CE SCHEDULE
CREATION

As established in Section II, ILP can provide significant
improvements for CE schedule creation, especially when a
more complex CE model is considered. However ILP based
solutions are well known for having high computational over-
heads. This section will investigate the overheads involved
with our technique and show how ILP can be effectively used
for schedule generation.

In order to investigate the computation time required for
ILP in comparison to WF we made use of the inbuilt timing
tools in Matlab. This provides a comparable baseline which
allows the real world performance of each approach to be
assessed. Our test platform consisted of a 32 core (AMD
Opteron 6134) compute server. We timed the execution of
the complex test with the aim of investigating the cost of the
additional schedulability provided by ILP.

The figures in Table II show the average time taken to
execute (in seconds), per task set for both ILP and WF. The
parameters of this experiment were: 20 tasks per set with
evenly distributed (dual) criticality levels.

WF
Average Time (sec) | 0.010

TABLE 11
THE AVERAGE EXECUTION TIME OF WF AND ILP.

ILP
0.0125

While these results do show that on average the ILP solver
takes longer than WF to solve the CE schedule generation
problem, both times are negligible when you consider real
world use. During experimentation thousands of task sets are
tested in order to produce results, while the experiments take
some time to run, a single set of tasks can be checked quickly.
In a real use case it is likely that only a single version of
the system need be checked at any given time and both WF
and ILP take, on average, a very small amount of time to
solve a single problem. ILP however boasts greatly increased
schedulability, we observed an average increase of 0.19 and
up to 0.53 at some utilisations. The question remains, if this
is true for a system with 20 tasks, how do both approaches
fair when the number of tasks are increased? In other words,
is it scalable?

!Inital allocation is performed by First Fit, the largest and smallest S™®
values are identified, these are used to perform a Branch and Bound search
to attempt to minimise S™%*. See [5] for details.

This was explored by re-running the experiments and vary-
ing the number of tasks from 20 to 100, the results of this are
shown in Figure 3:

0.1 T T T T T T T T T T
-
0.09 | [
0.07 I
7T L
8
2
3006 T 4
@
Q
E 005 él % i
E
< 1
5 0.04 -
2 - =
(]
X
@ =
0.03 | = i
1
0.02 - L==1 % 4
0.01 |- === * .
.
WF20 ILP20 WF40 ILP40 WF60 ILP60 WF80 ILPSO WF100 ILP100

Task Set Size & Allocation Technique

Fig. 3. The increase in computation time as the number of tasks per set is
increased.

The results in Figure 3 show data for more than 99.99% of
the task sets tested, the majority of the outliers not shown here
completed within 4 seconds”. Although a rise in the average
computation time can be seen as the number of tasks per set
is increased, the time required still remains very low. The
low execution requirements of the ILP implementation comes
down to the desire to simply discover if a suitable schedule
exists, no optimisation is required. As the number of tasks
per set increases, the number of variables required to model
the problem increases dramatically. However due to the binary
nature of the variables that decide where a task is placed and
the lack of a maximization requirement the execution time
remains low.

It is also possible to observe this scalability with regard
to the number of CPU cores in a system. Figure 4 shows
again 99.99% of all task sets tested®. It is clear that our ILP
solution is scalable both as tasks and CPU cores are added to
the system.

During this investigation we do not claim to have the most
efficient implementation of the WF heuristic and other aspects
of the code could affect the timing results. The results are
representative of the real world performance of the solutions
and of their performance relative to each other. By increasing
the number of tasks per set and cores we have shown that
our ILP implementation is scalable, further reinforcing the
argument for its use during the development of real world
industrial systems.

2 A small number did not complete within a 24 hour test period. The outliers
are omitted as over 80000 task sets were tested per plot while the outliers
numbered less than 100.

3as before all but a very small number of the outliers completed within
0.11 seconds and a small number did not completed within the 24 test period.

(Seconds)
o o o
(= o o
> < &
T T
AL F----1]
L L

002} - o - = J

0.01 =8 g

0 L L L L L L L L L L
WF2C ILP2C WF4C ILP4C WF6C ILP6C WF8C ILP8C WF10C ILP10C
Number Of Cores & Allocation Technique

Fig. 4. The increase in computation time as the number of tasks per set is
increased.

IV. CONCLUSIONS

Throughout this work we addressed the following problems.
Firstly we extended the mixed criticality cyclic executive
model used in [5] to consider multiple minor cycles per
major cycle. This significantly increased the complexity of
the allocation problem as now a schedule must be constructed
by allocating tasks to the appropriate number of minor cycles,
and from there to cores within each minor cycle.

Secondly we showed that when the heuristic based approach
WE, is applied to the more complex system model it performs
poorly due to the increased complexity of the allocation
process. We introduce the notion of using ILP to model the
CE system and check for a suitable valid schedule. We show
that in the complex case ILP provides significant gains in
schedulability over WF. Interestingly in the simple case with
a single minor cycle we observed that the heuristics tested
(excluding FF) perform very well and manage a level of
schedulability close to that provided by ILP. In addition to
this, the high MC performance of ILP clearly implies similarly
good performance for the non-MC case.

Finally we showed through code timings that our ILP
implementation was able to produce a result for a single task
set within a very reasonable time frame. In addition to this
we investigated the scalability of the solution showing that,
although the execution time required did increase as a result of
increasing the number of tasks in a set, the time taken was still
very reasonable. We showed that for any practical application,
an ILP model could be comfortably used to generate a mixed
criticality cyclic executive schedule.

The specific ILP tool employed did demonstrate a small
number of runs that either took an excessive amount of time to
complete or indeed did not completed within a 25 hour period.
Those that did complete were mainly unscheduledable. It is
therefore a sensible pragmatic approach to deem the task set

to be unschedulable if the tool did not obtain a result within
4 seconds.

At the start of this work we posed the question: Is it
worth using an optimal solver for CE schedule generation over
heuristic based techniques? We have shown that it is worth
using, both from the angle of performance and computational
efficiency. In addition to this we have shown that the ILP
model proposed is scalable allowing it to handle practical
system parameters with ease.

ACKNOWLEDGEMENTS

The authors acknowledges the support and funding provided
for this work by BAE Systems, and the ESPRC (UK) via MCC
grant (EP/K011626/1). The authors also wish to thank Sanjoy
Baruah for insightful discussions on the content of this work.

REFERENCES

[1] T. Baker and A. Shaw. The cyclic executive model and
ada. In Real-Time Systems Symposium, 1988., Proceed-
ings., pages 120-129, Dec 1988.

[2] S. Baruah, V. Bonifaci, G. D’ Angelo, H. Li, A. Marchetti-
Spaccamela, N. Megow, and L. Stougie. Scheduling real-
time mixed-criticality jobs. Computers, IEEE Transactions
on, 61(8):1140 —-1152, aug. 2012.

[3] S. Baruah and A. Burns. Achieving temporal isolation
in multiprocessor mixed-criticality systems. In WMC,
page 21, 2014.

[4] E. Bini and G. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129-154,
2005.

[5] A. Burns, T. Fleming, and S. Baruah. Cyclic executives,
multi-core platforms and mixed criticality applications.
ECRTS 2015, 2015.

[6] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele.
Scheduling of mixed-criticality applications on resource-
sharing multicore systems. In Embedded Software (EM-
SOFT), 2013 Proceedings of the International Conference
on, pages 1-15, Sept 2013.

[7] I. Gurobi Optimization.
http://www.gurobi.com/.

[8] S. Vestal. Preemptive scheduling of multi-criticality sys-
tems with varying degrees of execution time assurance.
In Real-Time Systems Symposium, 2007. RTSS 2007. 28th
IEEE International, pages 239 —243, dec. 2007.

Gurobi optimizer 6.0.

