
Semi-partitioned Cyclic Executives for Mixed
Criticality Systems

A. Burns
University of York, UK.

Email: alan.burns@york.ac.uk

S. Baruah
University of North Carolina, US.

Email: baruah@cs.unc.edu

Abstract—In a cyclic executive, a series of frames are executed
in sequence; once the series is complete the sequence is repeated.
Within each frame, units of computation are executed, again
in sequence. In implementing cyclic executives upon multi-core
platforms, there is advantage in coordinating the execution of the
cores so that frames are released at the same time across all cores.
For mixed criticality systems, the requirement for separation
would additionally require that, at any time, code of the same
criticality should be executing on all cores. In this paper we derive
algorithms for constructing such multiprocessor cyclic executives
for mixed-criticality collections of independent jobs.

I. INTRODUCTION

Recent trends in embedded computing towards the
widespread use of multi-core platforms, and the increasing
tendency for applications to contain components of different
criticality, have thrown up major challenges to the developers
of safety-critical real-time systems. In this paper we con-
sider these two challenges in the context of highly safety-
critical application domains where cyclic executives remain
the scheduling mechanism of choice.
Cyclic executives. A cyclic executive is a simple deterministic
scheme that consists, for a single processor, of the continuous
executing of a series of frames (or minor cycles as they are
often called). Each frame consists of a sequence of jobs that
execute in the specified sequence and are required to complete
by the end of the frame. The set of frames is called the major
cycle.
Multicore CPUs. On a multi-core, or multiprocessor, platform
each core should have the same frame size and the same major
cycle time. The time source from which the run-time support
software will execute the jobs contained within each frame,
is synchronised so that all cores switch between minor cycles
concurrently. Within each frame there are a series of jobs to
be executed. If jobs are constrained to execute always within
the same minor cycle and always on the same core then the
run-time schedule is defined to be partitioned. Alternatively,
if jobs can migrate from one active frame to another active
frame on a different core then the schedule is defined to be
global. A semi-partitioned schedule has a small number of
constrained migrations.
Mixed criticality. In mixed-criticality scheduling (MCS) the-
ory, a single job may be characterized by several different
WCET parameters denoting different estimates of the true
WCET value, these different estimates being made at different
levels of assurance. (The workload model used in this paper

is formally defined in Section II.) The scheduling objective is
then to validate the correct execution of each job at a level of
assurance that is consistent with the criticality level assigned
to that job: jobs assigned greater criticality must be shown to
execute correctly when more conservative WCET estimates are
assumed, while less critical jobs need to have their correctness
demonstrated only when less conservative WCET estimates
are assumed.
Related work. A cyclic executive is a particularly restricted
form of static schedule. The issue of mapping mixed criticality
code to static schedules has been addressed by Tamas-Selicean
and Pop [10], [11]. An alternative approach to implementing
the move between criticality levels in a static schedule is by
switching between previously computed schedules; one per
criticality level - this approach is explored in [2], [9]. However,
these schemes are only applicable to single processor systems.
The notion of separation used in this paper comes from [7].

In prior work [1], [5], we introduced the concept of im-
plementing cyclic executives for mixed-criticality workloads
upon multi-core CPUs. The workshop paper [1] formalized
the problem, and proposed some initial approaches towards
solving it for systems represented as collections of independent
jobs. The scheduling test proposed was based upon a network
flow argument and used a polynomial-time reduction. In this
paper we present a much more straightforward yet still optimal
scheme. See Def 1 for a definition of optimality.

II. SYSTEM MODEL

The cyclic executive (CE) is defined by two durations, the
length of the minor cycle (or frame) TF and the duration of
the major cycle TM . These values are related by (TM = k.TF )
where k is a positive integer (usually a power of 2), denoting
the number of frames in the repeating major cycle of the CE.

The issue of how to choose TF and TM to best support a
set of tasks with given periods is beyond the scope of this
paper. Rather we follow industrial practice [3] and assume
these parameters are fixed by the system definition and that
application tasks’ periods are constrained to be multiples of
TF (up to the value of TM ).

The mapping of tasks to frames implies that there is a set
of jobs allocated to each frame. All jobs within a frame must
complete by the end of the frame. However, what it means to
complete will depend on the behaviour of the system in terms
of its criticality levels – as will be explained shortly.



We assume that the hardware platform consists of m iden-
tical (unit speed) processors (or cores). Each job can execute
on any core and has identical temporal behaviour on all cores.

In general we assume there are V criticality levels, L1

to LV , with L1 being the highest criticality. Each job ji
is assigned a criticality level, denoted χi, and two WCET
parameters. One represents its estimated execution time at its
own criticality level (Ci(χi)) and the other an estimate at the
base (i.e., lowest) criticality level (Ci(LV )). It follows that if a
job is of the lowest criticality level (i.e., χi = LV ) then it only
has one WCET parameter. For all other jobs, C(χi) ≥ C(LV ).
The rationale for having more than one WCET parameter is
covered in a number of papers on mixed criticality systems,
including the initial work of Vestal [12].

This use of only two Ci values for V criticality levels is a
more constrained model than the one proposed by Vestal [12],
under which each criticality level may give rise to a distinct
WCET estimate. However with say five criticality levels it is
unlikely that five distinct estimates of the worst-case execution
time of the task would be available, while it can be argued
([6], [4]) that the restriction to just two estimates is sufficient
to capture the key properties of a mixed criticality system.

At run-time the system is defined to be executing in one
of V modes. In mode LV (the lowest-criticality mode) all
deadlines of all jobs must be met. It represents ‘normal’
behaviour. If every job ji executes for no more than Ci(LV )
then all deadlines must be guaranteed. If some job ji executes
for more than Ci(LV ) then the mode of the system will
degrade towards L1, with jobs of criticality lower than χi no
longer guaranteed. This mode change behaviour is explained
in more detail later in the paper.

Run-time support

Mixed-criticality scheduling (MCS) theory has primarily
concerned itself with the sharing of CPU computing capacity
in order to satisfy the computational demand, as characterized
by the worst-case execution times (WCET), of pieces of code.
However, there are typically many additional resources that are
also accessed in a shared manner upon a computing platform,
and it is imperative that these resources also be considered.
An interesting approach towards such a consideration was ad-
vocated by Giannopoulou et al. [7] in the context of multicore
platforms: during any given instant in time, all the cores are
only allowed to execute code of the same criticality level.
This approach has the advantage of ensuring that accesses to
all shared resources (memory buses, cache, etc.) during any
time-instant are only from code of the same criticality level.
We refer to such a scheme of switching between workloads of
different criticality levels as synchronised switching. We focus
our attention in this paper on synchronized switching. That is,
we seek to construct cyclic executives in which each minor
cycle may be considered partitioned into V criticality levels.
Initially the highest criticality jobs are executed, when they
have finished the next highest criticality jobs are executed, and
so on. This continues until finally the lowest criticality jobs are
executed. In a simple system with just two criticality levels,

HI and LO, there is a switchover time S defined within each
minor frame. Before S each core is executing HI-criticality
work, after S each core is executing LO-criticality work. To
give resilient fault tolerant behaviour, if the HI-criticality work
has not completed by time-instant S on any core then the LO-
criticality work is postponded (on every core), thereby giving
extra time for the HI-criticality work to execute (up to the end
of the minor cycle). In this paper we will explore how to find
acceptable (safe and efficient) values for the switching times.
Implementing the criticality switches. Giannopoulou et
al. [7] advocated, if supported by the hardware platform, the
use of synchronisation barriers. In the case of dual-criticality
workloads (the generalization to > 2 criticality levels is
straight-forward), each core calls the barrier upon completing
its assigned HI-criticality work. When the final core completes
and calls the barrier, all the calls are released from the barrier
and each core continues with executing LO-criticality work.

The benefit of this barrier-based scheme is that it can take
advantage of time gained by jobs executing for less than
their estimated WCETs. So at the end of the HI-criticality
executions if the signal occurs before the pre-computed barrier
S, then all cores can move to LO-criticality executions early.
Additionally, there may be situations arising at run-time when
a late switch to one criticality level is compensated by time
gained from under-execution within jobs of the next criticality
level. For example, the switch occurs at some time > S, but
the LO-criticality jobs end up executing for less than their
Ci(LO) WCET values and hence all complete by the end of
the frame.

III. DUAL CRITICALITY JOBS

In this section, we consider the scheduling of a collection of
jobs within a single frame of an m-processor platform, when
there are only two criticality levels (V ≡ 2). All the jobs are
assumed to become available at the start of the frame (without
loss of generality, denoted as being at time 0), and they all have
a deadline at the end of the frame (denoted D). In keeping with
prior work on the scheduling of such dual-criticality systems,
we use the notation HI and LO to denote the greater and lesser
criticality levels (i.e., L1 ≡ HI and LV ≡ L2 ≡ LO). The
criticality of job ji is denoted by χi ∈ {LO, HI}; each LO-
criticality job ji is characterized by a single WCET parameter
Ci(LO), while each HI-criticality job is characterized by two
WCET parameters Ci(LO) and Ci(HI).

Given a collection of such dual-criticality jobs to be sched-
uled within a frame of duration D upon an m-processor
platform, our objective is to determine the switching point S
such that only HI-criticality jobs are executed over the interval
[0, S). If all HI-criticality jobs complete by time-instant S,
then LO-criticality jobs are executed over [S,D); else, the LO-
criticality jobs are abandoned and execution of HI-criticality
jobs continues over [S,D) as well. It follows that there are
three conditions that need to be satisfied:

1) If each HI-criticality job ji executes for no more than
Ci(LO), then all the HI-criticality jobs must fit into the
interval [0, S).



2) All the LO-criticality jobs must fit into the interval [S,D)
3) If each HI-criticality job ji executes for no more than

Ci(HI), then all the HI-criticality jobs must fit into the
interval [0, D).

In Section III-A below, we derive a simple and efficient
algorithm for determining S (and the corresponding schedules)
such that these conditions are satisfied; in Section III-B,
we describe an optimization to this simple method. These
algorithms assume minimal run-time support; if additional
run-time support is available, then a further optimization is
possible – this is described in Section III-C.

A. A simple scheme for constructing CEs
We first define two (potential) candidates for the switching

point S:
Smin The earliest instant at which all HI-criticality jobs

have completed their LO-criticality work.
Smax The latest instant at which a switch must occur for

the LO-criticality work to complete by time D.
It is evident that any candidate S must satisfy the two
inequalities Smin ≤ S ≤ Smax.

Let us additionally define two interval durations, which
constrain the possible values of Smin and Smax.

∆LO The duration (makespan) of the interval needed for
all the LO-criticality jobs to (begin and) complete
execution.

∆HI The duration of the interval needed for all the HI-
criticality jobs to execute the extra work they must do
in HI-criticality mode — i.e., the amount (Ci(HI)−
Ci(LO)), for each ji with χi = HI.

To determine these durations, we employ the optimal
scheme of McNaughton [8, page 6]. Given a collection of n
jobs with execution requirements c1, c2, . . . , cn, McNaughton
showed that the minimum makespan of a preemptive schedule
for these jobs on m unit-speed processors is given by

max

(∑n
i=1 ci
m

,
n

max
i=1
{ci}

)
(1)

The actual schedule is obtained by taking the jobs (in any
order) and allocating them to m intervals of the size of the
makespan, each representing one of the m processors. As one
interval is filled, perhaps with part of a job, the next interval
starts with the rest of this job. At most (m− 1) jobs are split
across intervals in this manner. During run-time a job that
was split across two intervals will run at the beginning of the
time-interval upon one processor, and towards the end of the
time-interval on the other processor.

A direct application of McNaughton’s result yields the con-
clusion that the minimum makespan for a global preemptive
schedule for the jobs in LO-criticality mode is given by

∆LO def
= max

(∑
χi=LO Ci(LO)

m
, max
χi=LO

{
Ci(LO)

})
(2)

We therefore set

Smax def
= D −∆LO (3)

Similarly, a direct application of the makespan result allows
the minimum interval for the HI-criticality work (in LO-
criticality mode) to be computed:

Smin def
= max

(∑
χi=HI Ci(LO)

m
, max
χi=HI

{
Ci(LO)

})
(4)

Clearly for the whole system to be schedulable, it is
necessary that Smin ≤ Smax which is equivalent to requiring
that

Smin ≤ D −∆LO

⇔ Smin + ∆LO ≤ D (5)

We now consider the final constraint — the scheduling of
HI-criticality jobs executing in HI-criticality mode. It has been
shown [1, Example 1] that this is not necessarily ensured
by simply computing the makespan (using McNaughton’s
method, as above) with the Ci(HI) values, and validating that
the resulting makespan is ≤ D. We instead determine the
minimal makespan for all the HI-criticality jobs, subject to
each such job having received an amount of execution equal
to its LO-criticality WCET by time-instant Smin. To determine
this makespan, we apply McNaughton’s scheme to the work
that is left to do after time-instant Smin (i.e. Ci(HI)−Ci(LO)
for each job ji with χi = HI). Letting Ci(EX) denote the
“excess” computational requirement of job ji in HI-criticality
mode over LO-criticality mode:

Ci(EX)
def
=
(
Ci(HI)− Ci(LO)

)
,

we have

∆HI def
= max

(∑
χi=HI Ci(EX)

m
, max
χi=HI

{
Ci(EX)

})
(6)

It is evident that Smin + ∆HI ≤ D is sufficient for schedu-
lability; earlier (Expression 5) we had shown that Smin +∆LO

should also be ≤ D. Putting these pieces together, we may
summarize this method as follows. We compute Smin,∆LO,
and ∆HI according to Expressions (4), (2), and (6) respectively,
and require that

Smin + max
(
∆LO,∆HI

)
≤ D (7)

as a sufficient schedulability condition. If this condition is
satisfied, S ← Smin (i.e., we declare Smin to be the switch-
point we had set out to compute).

B. An improvement

Let us now suppose that Condition 7 is violated, and Smin+
max

(
∆LO,∆HI

)
> D. Since

(
Smin+∆LO ≤ D

)
is a necessary

condition for schedulability (see Inequality 5), it must be the
case that

Smin + ∆HI > D.

Now if
(∑

χi=HI Ci(HI) ≥ mD
)
, there is nothing to be done.

Otherwise, there must be some unused processor capacity
in the McNaughton schedule constructed according to Ex-
pression 4 for the interval [0, S), and/or in the McNaughton



schedule constructed according to Expression 6 for the interval
after time-instant S. Let us consider the situation where the
schedule has some unused processor capacity over the interval
[0, S) (recall that S ← Smin in the method of Section III-A).
An inspection of Expression (4) reveals that this happens if∑

χi=HI Ci(LO)

m
< max
χi=HI

{
Ci(LO)

}
Our idea, intuitively speaking, is that any such unused capacity
prior to time-instant S may as well be allocated to some HI-
criticality task, for use in the event of the system undergoing
a mode-change into HI-criticality mode. (If the system does
not undergo such a mode-change, this allocated capacity may
end up remaining unused.) Doing so leaves less execution
remaining to be completed after the switch instant S in HI-
criticality mode, and may thus result in a smaller makespan
in HI-criticality modes (i.e., a smaller value for ∆HI).

Such a scheme is particularly effective if the duration of the
HI-criticality schedule after S — the one of duration ∆HI —
is also dominated by longer jobs, i.e., if in Expression 6∑

χi=HI Ci(EX)

m
< max
χi=HI

{
Ci(EX)

}
If this be the case, then the unused capacity prior to time-
instant S can be filled so as to minimise the maximum Ci(EX)
by bringing forward work to before S — this is accomplished
by increasing Ci(LO) for such a job and decreasing its Ci(EX)
by the same amount. However, jobs that have (Ci(LO) = S)
cannot have work brought forward in this manner since this
would result in S increasing as well.

It is evident that this scheme is effective since:

• Any work brought forward will not change S,
• The first term in Expression (6) is not increased by

bringing work forward, and
• The second term in Expression (6) is reduced by always

choosing the largest value and decreasing it.

We note that if more than one job has the same Ci(EX)
value then an arbitrary choice is made (and has no impact
on optimality).

And what if there is no unused processor capacity in the
schedule over [0, S)? In that case, the switch-point S may be
increased to any value ≤ Smax (where Smax is as defined
by Expression (3)). An obvious choice for S is S ← Smax;
an algorithm for achieving the smallest value of S (i.e., the
earliest possible switch-time) is as follows. Setting the switch
point S to be Smin + 1 will generate m free slots. So Ci(LO)
values of HI-criticality jobs can be increased by this amount
(and the corresponding C(EX) values decreased). If this will
reduce the size of ∆HI by more than one then an overall
decrease in S + ∆HI will have been achieved . This cycle
is repeated (i.e. adding 1 to S) until either no further gain is
made or S takes the value of Smax. At each step of the cycle
no C(LO) value should increase beyond the current value of
S.

χi Ci(LO) Ci(HI) Ci(HI)− Ci(LO)
j1 LO 3 - -
j2 LO 2 - -
j3 LO 2 - -
j4 HI 2 7 5
j5 HI 3 7 4
j6 HI 3 3 0
j7 HI 4 4 0

TABLE I
AN EXAMPLE DUAL-CRITICALITY JOB INSTANCE

Example 1: To illustrate the above scheme consider the
scheduling of the mixed-criticality instance of Table I upon
3 unit-speed processors with a frame length of 8 (D = 8).

We can immediately use the equations above to compute:
∆LO = 3 (and hence Smax = 5) and Smin = 4. So the first
step to schedulability is satisfied (i.e. Smin ≤ Smax). We note
that if we ignore mixed criticality issues then the minimum
makepsan for the HI-criticality jobs (ignoring LO-criticality
work) is 7. So a completely separated scheme would require
a frame size of 10 (7 + 3).

If we initially focus on Smin then we note that there are
no free slots, so equation(6) gives a makespan in HI-criticality
mode (∆HI) of 5. So the use of this value for S (i.e. 4) gives
a required frame size of 9 (4+5); since the frame-size is 8, the
instance would be deemed unschedulable with S ← 4.

However, if we set S ← (Smin+1) which equals Smax = 5
then the total work available on three processors by time 5 is
15. The work required using C(LO) values for HI-criticality
work is 12. Hence 3 units of work can be added to these
C(LO) values. If we make C4(LO) = 4 and C5(LO) = 4 then
maximum Ci(EX) becomes equal to 3. Hence ∆HI = 3 and
Smax + ∆HI = 8. Therefore the job set fits into the frame size
of 8, with a switch time of 5.

C. More flexible implementations

The cyclic executives constructed as discussed above are
implementable as lookup tables. Three lookup tables are
constructed as dictated by the McNaughton procedure: one
for the interval [0, S), another for HI-criticality jobs over the
interval [S,D), and a third for LO-criticality jobs over the
interval [S,D). The first lookup table is always executed, while
one of the other two is selected depending upon whether all
HI-criticality jobs have completed or not by time-instant S.

Lookup tables are a very restrictive form of run-time
dispatching. If a certain amount of additional flexibility is
permitted, then more efficient use of platform resources may
be possible, We illustrate with an example.

Suppose that C1(LO) in the example instance of Table I
were equal to 4 (rather than 3 as listed in Table I). It may
be verified that ∆LO for this instance is then equal to 4; the
switch-point must therefore be ≤ (8 − 4) or 4. But we saw
in Example 1 that this is not possible, since setting S ← 4
results in a makespan of (4 + 5 =) 9 in HI-criticality mode.

Let us therefore choose S ← 5 as mandated by the argu-
ments in Example 1, and consider the CE schedule specified
in Figure 1 over the interval [0, 5). Notice that this schedule is



-
0 1 2 3 4 5

Proc1

Proc2

Proc3

j7 j4

j6 j5

j4 j6

Fig. 1. Dynamic switching.

compliant with the requirements of Example 1: j4 and j5 both
execute for 4 units over [0, 5) while j6 and j7 each execute
for their Ci(LO) values of 3 and 4 respectively. Hence in HI-
criticality mode all HI-criticality jobs would complete by the
end of the frame, at time-instant 8.

Now observe that in any LO-criticality behaviour,

• j4 would complete C4(LO) = 2 units of execution by
time-instant 2; hence, the execution of j6 on processor 3
could be moved forward1 to the interval [2, 4).

• As a consequence, j6 would complete its C6(LO) = 3
units of execution by time-instant 4.

• j5 would complete its C5(LO) = 3 units of execution
over [1, 4), also completing by time-instant 4, and

• j7 would execute to completion over [0, 4).

Thus, all the HI-criticality jobs processors will have completed
their LO-criticality execution by time-instant 4, and the plat-
form becomes available for the LO-criticality jobs to execute
at time-instant 4 and complete by time-instant 8.

This example illustrates that the added run-time flexibility
of adjusting the pre-computed schedule may permit enhanced
schedulability — instances not schedulable without this flex-
ibility can be scheduled correctly. We are currently working
on better understanding what kinds of run-time flexibility are
reasonable to permit within the context of cyclic executives;
we leave as future work the design of algorithms that would
construct schedules such as the one shown in Figure 1.

IV. JOBS WITH MORE THAN TWO CRITICALITY LEVELS

We now assume there are V > 2 criticality levels, L1

(the highest) to LV (the lowest). Recall from Section II
that each job ji, of criticality χi, has just has two WCET
estimates, one for the base criticality level LV , Ci(normal) =
Ci(LV ), abbreviated to Ci(NL), and one for its own criticality
level, Ci(self) = Ci(χi), abbreviated to Ci(SF). We define
Ci(EX)

def
= Ci(SF) − Ci(NL). We overload the symbols Li

to also denote the set of jobs of that criticality. We seek to
compute (V −1) switch points S1 to SV−1 that are constrained
as follows (for notational convenience we let S0 and SV

denote the start and end of the frame respectively (i.e S0 ≡ 0
and SV ≡ D)). So for each criticality level Li, and frame f
we require that

1Note that this moving forward of j6’s execution is not permitted in a pure
lookup table dispatcher; this is the additional implementation flexibility that
is sought in this section.

• If each job ji ∈ Li executes for no more than Ci(NL),
then all the jobs in the set Li must fit into the interval
(Si−1,Si]

• If each job ji ∈ Li executes for no more than Ci(SF),
then all the jobs in the set Li must fit into the interval
(Si−1,SV ].

To compute the switching times we extend the process
defined in Section III above to > 2 criticality levels. It is
possible to start at the lowest or highest criticality level;
experimentation shows that it is better to start at the highest.
So first we compute minimum makespan for criticality level
L1:

Smin
1

def
= max

(∑
ji∈L1

Ci(NL)

m
, max
ji∈L1

{
C(NL)

})
(8)

Next we compute ∆1 and check that Smin
1 + ∆1 is no greater

than SV (= D):

∆1 def
= max

(∑
ji∈L1

Ci(EX)

m
, max
ji∈L1

{
Ci(EX)

})
(9)

If Smin
1 + ∆1 > SV then work must be brought forward

so that Smin
1 is increased but ∆1 is decreased by a greater

amount. This is achieved by adding to C(NL) so as to minimise
the maximum C(EX) (for jobs of criticality L1). If such
alterations cannot deliver Smin

1 + ∆1 ≤ SV then the job set is
unschedulable. Alternatively, S1 is fixed to be the minimum
value computed.

This process is repeated for each criticality level, Li using:

Smin
i

def
= max

(∑
ji∈Li

Ci(NL)

m
, max
ji∈Li

{
Ci(NL)

})
(10)

and

∆i def
= max

(∑
ji∈Li

Ci(EX)

m
, max
ji∈Li

{
Ci(EX)

})
(11)

with the conditions

Si−1 + Smin
i + ∆i ≤ SV (12)

and for all jobs of criticality Li

Ci(NL) ≤ Smin
i . (13)

At all stages, modification to Ci(NL) (and hence Ci(EX))
are made to ensure these two conditions are met. Note that
some movement of computation time may be possible without
increasing a Smin

i value. Each step fixed Si.

A. An Example

We illustrate the above scheme upon an example with two
cores, four criticality levels and three jobs per criticality level.
Table II lists the parameters for the jobs. The frame length
is 20 units. We note that independent makespans for the
four criticality levels would require a frame length of 48
(20+15.5+8.5+4).

First Smin
1 and ∆1 are computed; they are seen to equal 3

and 18 respectively. Together this is too large (as the frame size
is 20). So S1 is set to 4 (i.e. C1(NL) = 4 with C1(EX) = 16).



χi Ci(NL) C(SF) Ci(EX)
j1 L1 2 20 18
j2 L1 1 8 7
j3 L1 3 9 6
j4 L2 6 13 7
j5 L2 1 3 2
j6 L2 4 15 11
j7 L3 5 6 1
j8 L3 3 8 5
j9 L3 1 3 2
j10 L4 3 3 0
j11 L4 4 4 0
j12 L4 1 1 0

TABLE II
AN EXAMPLE MIXED-CRITICALITY JOB SET.

χi Ci(NL) C(SF) Ci(EX)
j1 L1 4 20 16
j2 L1 1 8 7
j3 L1 3 9 6
j4 L2 6 13 7
j5 L2 1 3 2
j6 L2 7 15 8
j7 L3 5 6 1
j8 L3 4 8 4
j9 L3 1 3 2
j10 L4 3 3 0
j11 L4 4 4 0
j12 L4 1 1 0

TABLE III
THE EXAMPLE JOB SET OF TABLE II TRANSFORMED.

This now delivers Smin
1 = 4 and ∆1 = 16 which is sufficient

for criticality level L1.
Next level L2 is checked. Note the frame size for this

criticality level is, in effect, 16 (i.e. 20 - S1). So, Smin
2 = 6

and ∆2 = 11; again this is too long so Smin
2 is set to 7, with

the result that C6(NL) is made equal to 7 and C6(EX) is 8.
As a result ∆2 is now equal to 8.5, and the sum of the two
intervals is 15.5 which is sufficient. This fixes S2 to be 11
(4+7).

Continuing with L3. Frame size is now 9. Value of Smin
3

is 5, and ∆3 is 5 also. As 10 > 9 there is again a need to
reduce ∆3. Here this can be done without increasing Smin

3

(as this interval was not ‘full’). Let C8(NL) = 4 and hence
C8(EX) = 4. Now ∆3 = 4 and Smin

3 + ∆3 = 9 (5+4). Again
this is sufficient and S3 is set equal to 16.

The final step is to check that the lowest criticality jobs will
fit into the interval left for them. The interval is of length 4, and
the makespan (∆4) for this set is 4. So they are accommodated
and the job set can be declared schedulable.

To further illustrate the process of modifying the job set to
obtain a schedulable one, Table III gives the parameters of the
job set obtained after modification. It is easy to observe that
the new job set is obtained from the initial one by just adding
to the C(NL) estimates. And also it is clear that the new job
set is schedulable with switch points 4, 11 and 16.
Optimality. The scheme outlined at the beginning of this
section via equations/conditions (10) to (13), and illustrated
with the example above, is optimal in the following sense.

Definition 1: An allocation scheme (of jobs to frames) is
optimal if it leads to the smallest possible switching points
and a schedulable system.

This notion of optimal is intuitive as for each criticality level
the earliest switching point maximises the time available for
the lower criticality levels. The scheme produces the optimal
value for each switching point, Si, as:
• If Si = Smin

i satisfies condition (12) then this is the
minimum makespan by definition [8, page 6].

• If condition (12) is not satisfied the scheme increases
C(NL) values by the minimum amount commensurate
with decreasing the maximum C(SF) so that the condition
is met. This leads to a minimum increase in Si.

• If no Si can be found (i.e. it continues to increase until
∆i = 0 without satisfying condition (12) then the system
is unschedulable.

V. CONCLUSIONS

Single processor safety-critical systems are often con-
strained so that they can be implemented as a series of frames
in a repeating cyclic executive. In this paper we have extended
this approach to incorporate multi-core platforms and mixed
criticality applications. We allow a minimum number of jobs
to be split across the frames, and propose a practical means of
constructing the necessary cyclic schedule. Future work will
extend our approach to multi-cycle systems.

Acknowledgements. This research is partially supported by NSF grants CNS
1115284, CNS 1218693, CNS 1409175, and CPS 1446631, AFOSR grant FA9550-14-1-
0161, ARO grant W911NF-14-1-0499, and a grant from General Motors Corp. It is also
supported by ESPRC grant MCC (EP/K011626/1). No new primary data were created
during this study.

REFERENCES

[1] S. Baruah and A. Burns. Achieving temporal isolation in multiprocessor
mixed-criticality systems. In Proc. of the 2nd Workshop on Mixed
Criticality Systems (WMC), 2014.

[2] S. Baruah and G. Fohler. Certification-cognizant time-triggered schedul-
ing of mixed-criticality systems. In Proc. of the Real-Time Systems
Symposium (RTSS), 2011.

[3] I. Bate and A. Burns. An integrated approach to scheduling in safety-
critical embedded control systems. Real-Time Systems, 25(1):5–37,
2003.

[4] A. Burns. An augmented model for mixed criticality. In Sanjoy K.
Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza,
editors, Mixed Criticality on Multicore/Manycore Platforms (Dagstuhl
Seminar 15121), volume 5(3). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 2015.

[5] A. Burns, T. Fleming, and S. Baruah. Cyclic executives, multi-core
platforms and mixed criticality applications. In Proc. ECRTS, 2015.

[6] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In Proc. of the Real-Time Systems
Symposium, pages 291–300, 2009.

[7] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Scheduling
of mixed-criticality applications on resource-sharing multicore systems.
In International Conference on Embedded Software (EMSOFT), pages
17:1–17:15, 2013.

[8] R McNaughton. Scheduling with deadlines and loss functions. Man-
agement Science, 6:1–12, 1959.

[9] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered
mixed critical scheduler. In Proc. of the Workshop on Mixed Criticality
Systems (WMC), pages 67–72, 2013.

[10] D. Tamas-Selicean and P. Pop. Design optimization of mixed-criticality
real-time applications on cost-constrained partitioned architectures. In
Proc. of the Real-Time Systems Symposium (RTSS), 2011.

[11] D. Tamas-Selicean and P. Pop. Task mapping and partition allocation for
mixed-criticality real-time systems. In Dependable Computing (PRDC),
17th Pacific Rim International Symposium on, pages 282–283, 2011.

[12] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. of the Real-Time
Systems Symposium, pages 239–243, 2007.


