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Abstract—Probability distributions bring flexibility as well as
accuracy in modeling and analyzing real-time systems. On the
other end, the adding of probabilities increases the complexity of
the scheduling problem, especially in case of mixed-criticalities
where tasks of different criticalities have to be taken into account
on the same computing platform. In this work we explore the
flexibility of probabilistic distributions applied to mixed-critical
task sets for defining the probabilistic space of Worst Case
Execution Time and evaluating the effects of changes on the task
execution conditions. Finally, we start formalizing and making use
of probabilistic sensitivity analysis for evaluating mixed-critical
scheduling performance.

I. INTRODUCTION

During the last decade, real-time systems designers are
facing the arrival of new COTS architectures and new func-
tionalities which may result into important variability of the
execution time of programs. Worst-case reasoning may have
reached its limits since it considers worst-case values without
taking into account that the probability of occurrence of such
values may be vanishingly small [1].

In [2], the authors characterize the space of feasible Worst-
Case Execution Times (WCETs) for the Earliest Deadline First
(EDF) scheduling paradigm, denoted C-space. The C-space is
a convex polytop of n dimensions (the number of tasks), such
that for any vector of execution times inside the polytop, the
task set is always feasible with EDF scheduling (deterministic
approach). The deterministic approach supposes that all the jobs
of the tasks can experience their WCETs at run time which is
very unlikely.

Approaches that take into account tasks probabilistic worst
case execution time (distributions of values instead of single
values) may lead to important reduction of computing capabil-
ity over-provisioning.

First papers on probabilistic approaches describe execution
times of tasks by random variables, according to discrete [3],
[4] or continuous [5] models. Since Edgar and Burns [6],
several papers have worked on obtaining safe and reliable prob-
abilistic Worst-Case Execution Time (pWCET) estimates [7],
[8], [9].

The probabilistic worst-case reasoning leads to schedulability
analysis with probabilities. Diaz et al. [10] developed the first
analysis for systems with execution times described by random
variables. Recent works have extended schedulability to proba-
bilistic arrival times, using an average arrival model as in [11],
or to probabilistic minimal inter-arrival times model as in [12].
Other approaches lately have revised the notion of bounding
curves with probabilities, i.e. arrival curves, demand bound
function and workload bound function, [13], for probabilistic
guarantees of the timing constraints.

The Mixed-Criticality (MC) problem comes from the need
for using the platform resources efficiently. This is facilitated by
noting that the task parameters depend on their criticality level,
in particular the WCET estimate will be derived by a process
dictated by the criticality level. The higher the criticality level,
the more conservative the verification process and hence the
greater will be the WCET, [14]. In [15], the confidence on the
WCET estimations has been leveraged to develop MC schedul-
ing algorithms. In this work we intend to continue researching
in that direction formalizing the relationship between pWCETs
and mixed-criticalities.
Contribution: This paper formalizes the scheduling problem
with tasks of different criticalities through probabilistic models.
The pWCETs are applied to construct the probabilistic version
of the C-space. Such fine grained probabilistic representations
(pWCETs and probabilistic C-Space) are applied to leverage
probabilistic information for the MC scheduling problem. This
work intends to provide an initial evaluation to the flexibil-
ity brought by the probabilistic models and the probabilistic
scheduling to the mixed-criticality problem. In it, the sensitivity
analysis is enhanced with probabilities for the first time and it
is applied to the probabilistic C-space for some initial thoughts
and possible strategies for resource allocation with mixed-
critical tasks.

II. MODELING WITH PROBABILITIES

Jobs of tasks can exhibit multiple durations at run time due to
interferences from the system elements and the environment. It
is then reasonable to describe task execution time with random
processes1.

The probabilistic worst-case execution time random variable
Ci of a task τi generalizes the deterministic WCET. It is
defined as the worst-case distribution that upper-bounds any
possible task execution time the task can exhibit, [16]. Hence,
worst-case execution time distributions represents a way to
account for the system variabilities as the worst-case model
to all of them. In its abstract interpretation, Ci would includes
multiple WCET values, each with the probability of being
the worst-case2. For example, given a trace of task execution
time which would be an empirical distribution due to the
task execution time variability, the worst-case execution time
distribution could be the distribution made out of the maximum
of blocks of execution times, each block representing a specific
task execution condition.

1A random process is a sequence of random variables describing a process
whose outcomes do not follow a deterministic pattern, but follow probability
distributions.

2Calligraphic letters are used to represent distributions while non calligraphic
letters are for scalars.



The pdfCi
is the probability distribution function (pdf) repre-

sentation of the random variable Ci. Without loss of generality,
we could consider discrete pWCET distributions, that is:

pdfCi
=

(
ci,1 . . . ci,ki

P (Ci = ci,1) . . . P (Ci = ci,ki
)

)
, (1)

with pdfCi
(ci,r) = P (Ci = ci,r),

∑ki

r=1 pdfCi
(ci,r) = 1, and

ki is the number of worst-case execution time values in the
pWCET distribution of τi. It is P (Ci ≤ Ci) = 1, and the other
values ci,k, 1 ≤ k ≤ ki are such that Ci,k ≤ Ci.

cdfCi denotes the cumulative distribution function (cdf)
representation of Ci such that cdfCi(c) = P (Ci ≤ c) =∑c

x=1 pdfCi
(x), with discrete distributions. The inverse cumu-

lative distribution function (icdf) icdfCi(c) outlines the excee-
dence thresholds, icdfCi(c) = P (Ci ≥ c) as the probability of
having worst-case execution time larger than c. With discrete
random variable, it is icdfCi(c) = 1−∑c

x=1 pdfCi
(x).

We also assume that the pWCET are finite distributions, with
finite support, such that the safe3 worst-case (the worst-case
such that its cumulative probability is 1) is finite and is the
deterministic WCET Ci; Ci ∈ C and cdfCi

(Ci) = 1. The finite
support assumption allows to have the deterministic WCET
belonging to the pWCET distribution, thus it is possible to do
hard real-time analysis. Recent works have investigated how
to derive continuous pWCETs estimates from execution time
measurements in different system conditions, [17]. Discrete
and finite pWCETs can always be derived as approximations
at relatively low probabilities of such continuous pWCET
estimates, [15].

A task τi is also characterized by a period Ti and a relative
deadline Di ≤ Ti; thus the task model τi = (Ci, Ti, Di). In this
paper we consider a set of n periodic tasks Γ = {τ1, . . . , τn},
with the hyperperiod H being the least common multiple of all
task periods, H = lcm(T1, . . . , Tn). Γ is scheduled with EDF.
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Fig. 1. Representation of discrete task execution time and worst-case execution
time distributions. Execution times are in time units.

Figure 1 shows an example of discrete pWCET. Figure 1(a)
depicts a possible meaning for the worst-case distribution from
a trace of execution time: a worst-case value could come
from the maximum of a block of execution times, and due
to system variabilities and different execution conditions, the
maximum could change. Thus the maximum could end up
in a probabilistic model. Figure 1(b) is for the histogram
representation of the pWCET, which in that case resembles
to a normal distribution. Figure 1(c) outlines the differences
between execution time distribution and pWCET with the cdf
representation.

3Safety comes from the overestimation of any possible measured behavior.

From Ci it is possible to define WCET thresholds 〈ci,k, pi,k〉,
1 ≤ k ≤ ki. The worst-case value ci,k is associated to the prob-

ability pi,k of being the WCET for task τi. pi,k
def
= cdfCi

(ci,k)
quantifies the accuracy of the WCET ci,k, equivalently the
confidence on ci,k of being the WCET. 1−pi,k is the probability
of passing ci,k. Depending on the granularity of the pWCET
representation it would be possible to define WCET thresholds
at 10−3, 10−6, 10−9, and beyond.

A. Tasks Relationship
Most of the algebra in probability theory relies on the

degree of dependence between random variables, the so called
statistical dependence. Therefore, the task relationship can be
evaluated with the degree of statistical dependence between
pWCET distributions.

The joint probability, which expresses the composition of
random variables, is affected by the degree of dependence
among the random variables. For a couple of worst-case ex-
ecution time distributions Ci and Cj , respectively for τi and
τj , the joint probability P (Ci = ci,r, Cj = cj,s) defines the
probability of the worst-case execution times Ci = ci,r and
Cj = cj,s; both Ci and Cj represent events at the same time,
thus concurrently executing tasks. It is P (Ci = ci,r, Cj =
cj,s) = P (Cj = cj,s|Ci = ci,r) × P (Ci = ci,r) = P (Ci =
ci,r|Cj = cj,s) × P (Cj = cj,s), with P (Ci = ci,r|Cj = ci,s) is
the conditional probability defined as the probability of having
Ci = ci,r once also τj is executing and having Cj = cj,s.
Equivalently, with the pdfs and the cdfs it is respectively:

pdfCi,Cj
= pdfCi|Cj

⊗ pdfCj
= pdfCj |Ci

⊗ pdfCi
(2)

cdfCi,Cj
= cdfCi|Cj

× cdfCj
= cdfCj |Ci

× cdfCi
; (3)

⊗ being the convolution operator between random variables and
pdfCj |Ci

is the conditional pWCET of τi concurrently executing
with τj .

Two tasks τi and τj are independent, τi�τj (equivalently
τj�τi), if the execution of one task does not have any impact
on the execution of the other task. Whenever the two tasks
worst-case execution times are random variables Ci and Cj
respectively, the independence states that the execution of one
task does not affect the distribution of the other task (statistical
independence): pdfCi|Cj

= pdfCi
and pdfCj |Ci

= pdfCj
. Two

tasks τi and τj are dependent, τi � τj (equivalently τj � τi),
if the execution of one task does have impact on the execution
of the other task. With Ci and Cj the pWCETs of respectively
τi and τj , with dependence the execution of one task does
affect the distribution of the other task (statistical dependence):
pdfCi|Cj

�= pdfCi
and pdfCj |Ci

�= pdfCj
.

1) Worst-Case Independence: Interferences to task execu-
tion from concurrently executing tasks or concurrent access
to shared resources have the effect of increasing the task
execution time. Assuming Ci to be the probabilistic worst-case
distribution of τi, it means that the distribution has already
accounted for all the possible interferences, including those
from other tasks. It implies also that every time there is an
interference (a concurrent task or an other system element
acting at the same time as τi), Ci as already embedded
its effects [18]. The distribution does not change anymore
in the presence of such effects being already the pWCET:
pdfCi|Cj

= pdfCi
. We can say that the Ci, with respect to the

empiric execution time distributions (from the measurements of



the system actual behavior), quantifies the effect of dependence
to the task executions.

III. PROBABILISTIC MIXED-CRITICALITY

In this paper, we consider the two-criticality-level case (high
and low) of the MC problem, each task is designated as
being either of high (HI) or low (LO) criticality. With the
deterministic model two WCET values are specified for each
task: a LO-WCET c(LO) determined by a less pessimistic
timing analysis tools, and a larger HI-WCET c(HI) determined
by more conservative timing analysis tools, which is sometimes
larger than the LO-WCET by several orders of magnitude in
COTS platforms. For τi, the WCET of a task is a vector
Ci = (ci(LO), ci(HI)).

Existing MC analysis usually makes the most pessimistic
assumption that every HI-criticality task may execute beyond
its LO-WCET and reach its HI-WCET simultaneously. In real
applications, the industry standards usually only require the
expected probability of missing deadlines within a specified
duration to be below some specified small value, as the deadline
miss can be seen as a faulty condition. The expected probability
of deadline miss depends on the criticality level crit, e.g. crit ∈
{LO, HI}, under which the system is running.

The pWCET distribution effectively defines different WCET
threshold estimates for the same task, for different criticality
levels depending on the different requirements confidence,
e.g. on the maximum tolerable failure rate as the pWCET
estimates embeds the effect of faults on the task executions.
That translates into a MC two-criticality task model such that
τi = ((〈ci(LO), pi(LO)〉, (〈ci(HI), pi(HI)〉), Ti, Di), where the
WCET values have a confidence of being worst-cases.

The cdf representation of the pWCET relates probability to
confidence of the criticality levels. pi(LO) = P (Ci ≤ ci(LO)) ≡
cdfCi(ci(LO)) expresses the confidence of ci(LO) of being the
upper-bound of the task worst-case execution time in its LO-
criticality. Similarly, pi(HI) = P (Ci ≤ ci(HI)) ≡ cdfCi(ci(HI))
the confidence of ci(HI) of being the upper-bound of the task
worst-case execution time in its HI-criticality We call pi(crit),
crit ∈ {LO, HI} the confidence on the criticality level crit.

A. Probability thresholding
It is possible to define a design parameter β as the probability

threshold for the pWCET defining the level of confidence for
a WCET limit imposed to a task. β comes from the quantile
q(p) as the probability threshold p, and q(Ci, β) is the WCET
threshold such that β× 100% of the worst-case execution time
experienced by τi are below that threshold.
β offers another perspective to the task execution model.

By fixing β it is possible to specify which is the limit WCET
reachable, ci(β); β imposes a bound to the task WCET such
that ci(β) = q(Ci, β).

A trace TCi
reports the sequence of WCET values that τi

has assumed from one execution instance to another. From
TCi

it is then possible to infer the timing behavior of the task
WCETs as well as identify ci(β) = q(TCi

, β). Therefore, β can
model the task (or the whole application) timing behavior and
it could be applied as design parameter: by imposing ci(β) as
the task WCET value the behavior of τi is limited to ci(β).
With respect of the actual task behavior TCi

(which follow Ci,
β is the confidence that τi respects it WCET limit ci(β).

From β it is also possible to infer the criticality level crit
that would allow respecting ci(β):

max{crit} such that ci(crit) ≤ ci(β). (4)

It is β �= p(crit), as c(β) �= c(crit), but there is a close
relationship between the two thresholds c(β) and c(crit) which
come from the probabilistic modeling of the task (the pWCET).

Example 1. Given a task set Γ = {τ1, τ2, τ3}, with τ1 =
(C1, 7, 5), τ2 = (C2, 11, 7), τ1 = (C3, 13, 10), and the discrete
worst-case execution time distributions are

pdfC1
= (

(
1 2 3 4 6
0.3 0.3 0.1 0.15 0.15

)

pdfC2
= (

(
1 2 3 5 6 7
0.1 0.2 0.4 0.2 0.07 0.03

)

pdfC3
= (

(
3 4 5 6 8
0.2 0.1 0.3 0.3 0.1

)
.

Considering criticality levels such that for τ1 it is {c(LO) =
1, c(HI) = 4}, for τ2 it is {c(LO) = 1, c(HI) = 7}, and for τ3 it is
{c(LO) = 4, c(HI) = 8}. Figure 2 represents the tasks pWCETs
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(c) τ3
Fig. 2. A portion of the pWCET cdf for the three tasks. Three probability
thresholds are outlined, respectively at p = 0.3 p = 0.7, and p = 1.

with a zoom of the cdfs on the largest cumulative probabilities.
In Figure 3(a) an example of thresholds β for C2 and their
effects on the task [worst-case] executions. It is represented
a trace of 500 worst-cases extracted from C2 by randomly
picking values from the distributions law, and associated to
the task execution. As already mention, the trace of worst-case
execution times could represent the trace of maximum among
different task execution conditions. For a β3 = 1 the WCET
limit is 7, the maximum allowed value. For β2 = 0.8 the task
WCET would be limited to 5, and for β2 = 0.5 the task WCET
would be limited to 3. For example, with c2(β2) = 5 there is a
confidence of 0.8 of remaining below that WCET values while
τ2 executes. Hence, imposing C2 = 5 as the max WCET for τ2
it will be respected 80% of the case.
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Fig. 3. Trace and cdf representations of the pWCET.



Figure 3(b) outlines the relationship between β and the
criticality levels.

IV. THE PROBABILISTIC C-SPACE

Real-time systems with probabilistic models require schedu-
lability conditions which involve probabilities. Given a random
process Ci describing the evolution of τi worst-case execution
time, we can state the notion of probabilistic demand bound
function, [13], [19].

dbfi,j(t) is the demand bound function in the interval [0, t]:

dbfi,j(t)
def
= 
 t−Di

Ti
+ 1� × ci,j . (5)

The bound is the result of a specific WCET threshold ci,j ,
and by definition, it represents an upper-bound to any dbfi,k
obtained from ci,k ≤ ci,j . Then, there exist an associate
confidence of the bound, which is the exact confidence pi,j
of the WCET ci,j applied. ci,j and Equation (5) define a
probabilistic bound 〈dbfi,j(t), pi,j〉 to the task resource de-
mand; 〈dbfi,j(t), pi,j〉 is such that pi,j is the probability that
dbfi,j(t) is an upper-bound to the τi resource demand in [0, t].
Equivalently to dbfi,j(t) we can write dbfi(t, ci,j).

As 〈dbfi(t, ci,j), pi,j〉 represents a single demand bound
function with its associated confidence, there exist a
dbfi(t, ci,j) for each ci,j ∈ Ci. All together the
〈dbfi(t, ci,j), pi,j〉 form a distribution of demand bound func-
tions, DBF i(t) = (dbfi(t, ·), pi(·)) which is the probabilistic
demand bound function (probabilistic demand curve) of τi in
[0, t]. DBF i(t) collects the set of all demand bound functions
dbfi(t) and the set of all confidences pi. In particular, the
pis forms the the cdf of DBF i(t), cdfDBFi(t), as cumulative
probabilities. To note that the set of probabilities pi does not
change with the interval [0, t], therefore form one interval to
another is only the bounds dbfi(t) to change, but not their
confidence.

The application Γ probabilistic demand curve DBF =
(dbf(t, ·), p(·)) results from the combination of tasks demand
bound functions DBF i:

DBF(t) = ⊗iDBF i(t), (6)

with ⊗ the convolution of the distributions. dbf(t, ·) is the set
of all the demand bound functions:

dbf(t, ·) def
= +idbfi(t, ·), (7)

with + the combination (sum) of all the demand bound
function. p(·) is the set of all the confidence probabilities:

p(·) def
= ×ipi(·), (8)

with × the combination (product) of all the demand bound
function probabilities.

The demand bound function dbf(t, c) is the application
demand with c = (c1,j , c2,k, . . .) the array of WCET thresholds
used for achieving dbf(t, c); p(c) is the confidence of dbf(t, c)
such that:

p(c) = p1(c1,j)× p2(c2,k)× . . . . (9)

The probability multiplication for the joint probability p(c) is
possible due to the worst-case distribution assumption. As Ci
are pWCETs they are independent, the distributions DBF i

are independent among each other; consequently the joint
probability p(·) could result from the probability multiplication,
Equation (9).

A. Probabilistic C-space Representations
The schedulability under EDF states that

∀t ∈ D, dbf(t) ≤ t, (10)

with D the set of Γ deadlines within the hyperperiod, according
to [20], [21].

With a probabilistic framework each condition dbf(t, ·) ≤
t has a probability p(t) associated, which is the confidence
on the demand bound function dbf(t, ·). Being p = p(c) the
probability of not passing dbf(t, c), with the condition dbf(t) ≤
t the probability p could be also interpreted as the probability
of verifying the condition.

For all t ∈ D, there exist c∗ such that dbf(t, c∗) =
max{dbf(t, c) | dbf(t, c) ≤ t}. P (t) = p(c∗) from Equation (9)
is the probability for which dbf(t) ≤ t is true. The overall
schedulability probability P is given such that all the conditions
are satisfied:

P = P (t1)× P (t2)× . . . , (11)

with P (tk) the schedulability probability of the k-th condition
dbf(tk) ≤ tk, tk ∈ D. The independence between conditions
and the probability product as the joint probability, are guaran-
teed by the use of pWCET distributions. 1−P is the probability
that at least one condition is not respected, thus the probability
of deadline miss.

From Condition (10) and Equation (11) it is possible to
build the probabilistic version of the C-space (pC-space), [2].
The pC-space is the abstraction that applies the schedulability
condition, Condition (10), to a vector of execution times
c = {c1, c2, . . .}. Each point c = {c1, c2, . . .} in the pC-
Space is a combination of task WCET thresholds. Within
the pC-Space, given the scheduling policy, it is possible to
define the schedulability region where every point c within the
region is a schedulable WCET thresholds configuration, and the
points outside the region do not represent schedulable WCET
thresholds configurations. [2] for the details on the definition
of the deterministic C-space under EDF.

The pC-space maps also probabilities onto points. Each c
within the space has a probability associated which is the
probability of being the application set of worst-case execution
times, Equation (9). Then, depending on where the point is
with respect to the schedulability region, the probability could
translate into schedulability probability. For the points at the
feasibility region border, their ps, Equation (9), are exactly
the schedulability probability, Equation (11). With the different
probabilities P within the region and at the border it would be
possible to classify portions of the regions with respect to the
schedulability probability P .

B. pC-Space and Confidence
The probabilities within the pC-Space can be interpreted in

various ways:

• as the confidence of not passing the WCET thresholds
of c. With the criticality levels there is also the proba-
bility of remaining at a certain criticality level p(crit) =
p1(crit) × p2(crit) × . . .. Consequently it is quantifiable
the possibility of changing that level as 1− p(crit);

• as the confidence on the system schedulability P , or the
confidence per schedulability condition, Pk. The feasibil-
ity region is characterized by P and all the points inside



the region are schedulable but with a confidence of at
least P , Equation (11). It translates into a per-condition
schedulability probability of Pk;

• as the confidence β on the worst-case behavior of the
tasks. β is the probability of passing the c(β); per-task
it would be cj(β).

With different probability interpretations the pC-Space can
be used for different purposes. At one end there is the modeling
of the probabilistic applications; on the other end, it is possible
to develop analysis on top of the pC-Space with probabilities.

Example 2. Given the probabilistic task set of Example 1. The
feasibility region of Γ does not depend on the input distributions
(and their shape) but it describes the feasibility point according
to the task period and deadline configuration, (x, Ti, Di). What
is depending on the pWCETs instead, are the probabilities of
each point. In Figure 4 all the possible WCET thresholds and
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Fig. 4. Probabilistic C-space: feasibility and confidences (probabilities)
within the pC-space. Circles for feasible c, crosses for not feasible c) and
βs limitations (β1 = 0.5,β2 = 0.8, and β3 = 1) for τ3 are presented as
horizontal 2D planes.
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Fig. 5. Probabilistic C-space: 2D planes with bounding βs (β1 = 0.5,β2 =
0.8, and β3 = 1).

the WCET thresholds combinations from the input pWCETs
are plotted. To notice that the whole plane at C1 = 6 is
an unfeasible plane, being outside the feasibility region. The
confidences are presented together with the feasible points
c (points with circles and in green). Points with crosses (in
red) are WCET thresholds configurations unfeasible. Figure 5
gives a better insight with 2D representations of both the pC-
Space and the feasibility regions. In both figures the βs are
represented as constraints to the task execution behavior.

V. PROBABILISTIC SENSITIVITY ANALYSIS

The probabilistic version of the sensitivity analysis [2] in-
tends to combine the information from the probabilistic models
(the pWCETs, β, and the confidences β and ps) and the pC-
space representation.

We have seen that Cis discretize the pC-Space as they maps
the points to only the possible WCET thresholds of the tasks.
Out of that, the probabilistic sensitivity analysis can be applied
to quantify the effects of changes in terms of schedulability,
probabilities/confidences, and criticalities.

• What are the resource demand that can be accommodated?
Hence, which task combinations can be accounted for
a schedulable systems, the criticality levels that can be
considered in order to make the system schedulable, etc.

• What can be done with β? By acting on β (limiting task
WCETs to c(β)) it is possible to evaluate the effect on
the execution of tasks. What are the effect of β on the
tasks criticality levels? With the relationship β → crit is
is possible to infer the criticality levels which subdue to
the c(β) bounding.

Furthermore, with the probabilistic sensitivity analysis it is
possible to evaluate the effect of changes on Γ. For example
a change on β, from β to β′ would result into a WCET
threshold change c to c′, such that c = (c1,j , c2,k, . . .) and
c′ = (c1,r, c2,s, . . .). The change of probabilities, from p(c)
to p(c′), is an immediate consequence of the change of β. It
would also be evident the effects of changes on the allowed
criticality levels, from β → crit.

While P does not change by moving the points toward the
feasibility region (by limiting task execution behavior with β),
it is possible to increase the confidence that the feasibility
condition is respected.

Example 3. The probabilistic sensitivity analysis, with respect
to the previous example, could help replying to the following
questions:

• With a certain mixed-criticality level, is the system schedu-
lable? For example, in Figure 7(c), if τ3 is in HI-criticality
mode, then τ2 can only be scheduled with C2 = 1
(LO-criticality) for guaranteeing schedulability. Another
example from Figure 7(a), where only LO-criticality modes
are schedulable for τ1 and τ2.

• What can be done to make the system schedulable? What
are the costs of being schedulable? β and its limitation
effects on the task WCETs can give answers to those
questions. From Figure 7(b), only limiting WCETs with
β < 0.5 would guarantee Γ schedulability. This translates
into LO-criticality execution for both τ1 and τ3.

Figure 6 representing the discretized feasibility region (to
the possible WCET thresholds) and the feasible cs. Figure 7
for 2D representations. β limitation effects are evident to the
tasks WCET thresholds and the criticality level allowed.

VI. CONCLUSION

In this work we have begun combining the probabilities and
the mixed-criticality problem with the help of the probabilistic
C-space and of the probabilistic sensitivity analysis. Some of
the observations on the probabilistic task sets are just initial
ideas which could help designing and applying more effective
MC scheduling.
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Fig. 6. Probabilistic sensitivity analysis from the feasibility region (points
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Fig. 7. Probabilistic sensitivity analysis on the 2D planes.

In the future we intend to enhance such observations and
define the probabilistic sensitivity analysis in terms of change
strategies and effect evaluation. We aim at leveraging the in-
formation from the probabilistic models (pWCET distributions
and confidences) and provide system design feedbacks for an
optimal (at least suboptimal) system resource utilization for
different criticalities, thus different requirements.
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