
A protocol for mixed-criticality management in

switched Ethernet networks

Olivier CROS, Laurent GEORGE

Université Paris-Est, LIGM / ESIEE, France

cros@ece.fr,lgeorge@ieee.org

Xiaoting LI

ECE Paris / LACSC, France

xiaoting.li@ece.fr

Abstract—In real-time industrial networks, providing timing
guarantees for applications of different criticalities often results
in building separate physical infrastructures for each type of
network at the price of cost, weight and energy consumption.
Mixed-Criticality (MC) is a solution first introduced in embedded
systems to execute applications of different criticality on the same
platform. In order to apply MC scheduling to off-the-shelves
Switched Ethernet networks, the key issue is to manage the
criticality change information at the network level. The objective
of this work is to propose a criticality change protocol for MC
applications communicating over Switched Ethernet networks.
The protocol relies on a global clock synchronization, as provided
by the IEEE-1588v2 protocol, and a real-time multicast based
upon it, to preserve the consistency of the criticality level
information stored in all the Ethernet switches. We characterize
the worst-case delay of a criticality change in the network.
Simulation results show how the criticality change delay evolves
as a function of the network load.

I. INTRODUCTION

Nowadays, highly-constrained industrial systems found in

defense, public transports or home automation have increasing

needs in terms of reliability and performance. It is a common

situation for such systems to integrate several independent

network architectures in order to transmit, in each network,

messages of different criticality (e.g. in bus: passenger in-

formation, mechanical control information, speed, etc.) such

that each system can be certified in isolation. This solution

is very expensive in terms of cost, weight and hence in

terms of energy consumption, as each network must have its

own infrastructures, materials and wires. For example, the

mechanical functions, trajectory control and the passenger

information are often treated in separated infrastructures inside

a public bus, with different dedicated materials.

One solution to this problem is the mixed-criticality (MC)

scheduling approach first proposed in the context of unipro-

cessor and multiprocessor systems [1]. It executes several

applications of different criticalities on the same platform by

adapting certification effort to the level of assurance needed

at a given criticality level. Since a networked system is an

interconnect system for applications of different criticalities,

the objective of this work is to study how to manage criticality

level information in networked systems.

With MC scheduling, each task is characterized by the

maximum criticality level it is allowed to execute. A task

can be non-critical, critical for the mission (mission-critical),

critical for the safety of the vehicle (mechanical-critical), or

for the safety of its occupants (safety-critical). Each criticality

level must provide guarantees on end-to-end transmission

delays, especially for high critical tasks. The more critical a

task is, the more reliable the guarantee should be.

In the real-time network context, we focus on how to

integrate criticality management in networked systems. The

first point is to bound the number of criticality levels we use.

Baruah [2] showed that the complexity of MC scheduling

problems is NP-hard in the strong sense. In order to limit

the complexity of our architectures, we focus on a two-level

criticality network, as presented in [3]. These two criticality

levels are called low-critical (LO) and high-critical (HI) levels:

only a set of predefined messages can be transmitted in HI

criticality level, whereas all messages can be transmitted in

LO criticality level.

The main goal of the criticality management in networked

systems consists in providing Quality of Service (QoS) guar-

antees (in terms of worst case end-to-end transmission delays),

specially for high critical messages. In this context, we focus

on a method to grant the consistency of the criticality level

information in a Switched Ethernet network, to ensure bounds

on end-to-end transmission delays of messages as a function

of the criticality of information sent.

In uniprocessor and multiprocessor systems, the problem

of characterizing the impact of low-criticality tasks when a

criticality change from LO to HI has been considered by

bounding the demand of carry-in jobs.

Assuring deterministic communications in networked sys-

tems implies to be able to bound the end-to-end delay of all

messages. In [4], we proposed a tool to evaluate the worst case

end-to-end delay of any message sent on a Switched Ethernet

network relying on a global clock-synchronization protocol.

In this paper, we also consider a clock synchronized network,

synchronized with the IEEE-1588v2 synchronization protocol

and its implementation in Precision Time Protocol (PTP). On

top of the clock synchronization, we build a reliable multicast

to consistently switch the criticality level on all the nodes of

the network.

In this paper, first we present in II the network model studied

in this work. In III, we illustrate a link utilization problem

based on an example, and then we present the importance

of managing MC in network context. We propose a MC

management protocol in IV. Finally, we show by simulation

the performances of this protocol in V, and conclude this paper

as well as future perspectives of this paper in VI.

II. NETWORK MODEL

A. Mixed-Criticality

In this paper, we consider a tree-based topology as those

found in application domains like avionics systems and recent

and futur public transport systems [5]. The network is com-

posed of a set of interconnected nodes, all organized according

to a tree-based structure with one final collecting node denoted

the sink node. An example of such topology is the one showed

in figure 1, with S4 as the sink node.

ESout

S2

S1

S3

S4

ES1

ES2

ES3

ES4

ES5

Fig. 1. Centralized Network architecture

Our goal is to propose a criticality level management

protocol in a tree-based Switched Ethernet network topology.

The sink node is in charge of stroring the network criticality

information. All the nodes of the network have a local copy

of the network criticality level information. The protocol we

propose should maintain the consistency of the criticality level

information in all the nodes of the network in the case of a

criticality switch.

We then have two cases:

• If the network criticality level is LO, the first node send-

ing a request to the sink-node, to change the criticality

level to HI will result in a multicast sent by the sink node

the all the nodes of the network with the new network

criticality level. All the nodes receiving this message

should update their local criticality level information so

as to keep it consistent after a criticality mode switch.

• If the network criticality is HI, a switch to LO criticality

level can happen only if the sink node has received from

all the other nodes a request to switch to LO mode.

A simple multicast is not sufficient to guarantee the con-

sistency of the network criticality level information in all the

nodes. We introduce a real-time reliable multicast protocol in

section IV-C as one solution to this consistency problem. We

caracterize the maximum time needed to switch the network

criticality level from LO to HI, from the request of the first

node willing to change the criticality level to HI, to the time

all nodes are allowed to change their criticality level (after

receiving the reliable multicast from the sink node).

B. Notations and main hypothesis

In MC systems, representing different levels of criticality

inside a system is mostly based on a choice between two

different hypotheses : either a message has a dedicated worst-

case transmission time (WCTT) for each criticality level,

which means that the flow of data sent in the entry points

are longer in the case of HI modes. For example, as a plane is

landing, it might need more precise evaluation of the altitude.

It means that the altitude sensors will send more complete,

and so longer, data values.

The second hypothese is not based on longer WCTT, but

on a more frequent messages. Each message has now two

different periods, one for LO level and one for HI level. It

corresponds to increasing the number of measures during a

critical phase : for example, during landing, the measure of

speed or altitude could have to be more frequent. We consider

this case in our analysis.

A network is a set of interconnected switches communi-

cating through full-duplex links connecting end-systems. On

each link, we can send one or several flows vi, and each flow

produces several messages. Each flow vi is represented as a

3-tuple vi = {Pi, Ci, �Ti} where:

• Pi is the path of nodes followed by any message of vi,

starting from a source node to a destination node. We

consider this path as statically defined by the designer.

• Ci defines the WCTT of any message of vi sent in LO

or HI network criticality level.

• Its period is defined as �Ti = {TLO
i , THI

i }. It is a vector

of different periods of the flow, corresponding to LO-

critical and HI-critical period (we assume two network

criticality levels in this paper).

• In the case where a flow can only be sent in LO criticality

level, that means that the flow will not be sent by a switch

when the network criticality level is HI.

Furthermore, we suppose that:

• Each message is independent from each other

• All message transmissions are non-preemptive

• All the switchs use a Fixed Priority (FP) scheduling

with FIFO scheduling in a specific FP queue, denoted

as FP/FIFO scheduling.

III. PROBLEM STATEMENT

A. An example

We consider the case of a simple network composed of one

switch S (denoted SM is it support MC), scheduling flows

with FIFO scheduling and having three entry ports ES1, ES2
and ES3 respectively receiving flows v1, v2 and v3, with the

following parameters:
Flow TLO

i (μs) THI
i (μs) Ci (μs) uLO

i uHI
i

v1 500 250 100 0.2 0.4

v2 500 250 100 0.2 0.4

v3 300 - 100 0.33 -
Imagine a scenario where all the three flows are transmitted

in the LO criticality level. The LO-utilization (uLO) of the

network at the most loaded node S4 is then uLO = uLO
1

+
uLO
2

+ uLO
3

= 0.73. Then flow v1 and flow v2 increase

their workloads by reducing the periods of messages due to

certain emergencies. Then flow v1 and flow v2 are transmitted

in HI criticality level. Supposing that there is no criticality

management, now the utilization at the node S4 should be

uHI
1

+ uHI
2

+ uLO
3

= 1.13. It means that S4 is overloaded in

a mixed mode with both criticality levels.

We focus on the impact of such an overloaded link on

transmission delays when criticality levem is not managed by

the nodes. We suppose that, at t = 100 μs, the system becomes

high-critical : v1 and v2 start emitting messages according to

THI
i and no more to TLO

i . Basically, this results in a strong

increase in the transmission delay for the frames of v1 (see S

in figure 2).

ES3

ES2

ES1

SMC

S

1 1′ 1′′ 1′′′

2 2′ 2′′ 2′′′

3 3′ 3′′ 3′′′

2 1 2′ 1′ 2′′ 1′′ 2′′′

2 3 1 2′ 3′ 1′ 2′′ 3′′ 1′′

0 250 500 750

Fig. 2. Transmission delay with criticality management

We can observe that the transmission delay of messages

from v1 increases drastically with time. In fact, we can easily

compute that the waiting delay of each message from v1 in

the entry point of S4 increases of 50 ms at each new emission.

Thus, in classical Ethernet context, switches do not have input

buffers of infinite size, so a too high waiting delay can result

in dropping out a message, and then loss of data.

If the network supports MC management (see SMC in

figure 2), we can observe that the transmission delay of HI-

critical messages is constant and that criticality management

allowed us to fix the overload problem. We show next a

protocol to implement MC in network context.

IV. A CRITICALITY-CHANGE PROTOCOL

A. A two-phase protocol

Transmitting and managing criticality level inside network

topology implies two different conditions. First, we need to

assure that all nodes in the network have the same criticality

level. Secondly, in case of criticality level switch, we have

to be sure that all nodes change their local criticality level

information preserving the consistency the network criticality

level information.

Like we showed in II, criticality level is managed by a

central entity (the sink node). It means that, even if each

node has its own criticality level, it must be synchronized

at all times with the one of the sink node. To assure this

condition, we propose our MC managing protocol. It consists

in assuring the consistent change of criticality level in all

the nodes of a network topology. For this, we use a reliable

multicast to ensure a total order (updates are scheduled in

the same order in all nodes) for the update of criticality level

information in all nodes. This preserves the serialisability of

the criticality updates hence the consistency of the criticality

level information [6].

This MC managing protocol works in two phases for a LO

to HI criticality change. The node n in charge of initiating

this criticality level change sends a criticality change request

to the sink node. We name it the switch-criticality call (SCC)

message, the delay needed to send this message from node

n to the sink is denoted Indelay . Next, we need to send a

criticality switch message with the new criticality level to all

the nodes (except the sink node) of the network. This is the

reliable multicast phase initiated by the sink node that send a

timestamp of his local clock in the multicast message (recall

that we assume a global clock synchronization). The delay

needed to send and receive this message from the sink node

to node n is denoted Mn
delay .

The total criticality switch delay Sdelay in the network N
can be computed by :

Sdelay = max
n∈N

(Indelay +M
n
delay) (1)

Upon reception of a criticality switch message, each node

will have to localy determine when to to the criticality switch.

We now how yo characterize the criticality switch delay in the

case of a LO to HI criticality switch.

B. Switch-criticality call

Suppose that the network criticality is LO. Calling for a

criticality level change to HI consists in sending a specific

message from a node n in the network requiring this criticality

level change, and transmitting it to the central node responsible

of criticality management. This SCC message is transmitted

with the highest priority (except PTP messages), dedicated for

configuration messages. Nevertheless, it can be delayed by

other messages in the network: either by PTP synchronization

messages, or by other messages due to the non-preemptive

effect (a message even with the lowest priority cannot be

stopped once its transmission has started).

The SCC message is considered as a new message in the

network. It means that it is defined by its own path Pc from

n to the central node Sh and its WCTT Cc. We consider

that only one SCC message is sent by a switch (the first one

received). If another nodes initiate another SCC message with

the same criticality level, the switch receiving it will discard

the message.

In other words, computing the delay needed to transmit the

SCC consists in evaluating the delay needed for the message

to be tranmitted from one node n to the sink node. To do this,

we use the trajectory approach, presented in [7]. The SCC

transmission delay (noted as Indelay) can be computed by the

general trajectory approach expression. Given that the call is

done by a node n in the network, we apply the trajectory

approach computation method to the switch-criticality call

message c. This gives us the following result :

I
n
delay =

∑
j∈hpc

Pc∩Pj �=∅

(
1 +

⌊
W

lastc,j
c,t −M

firstc,j
i +Ac,j

TLO
j

⌋)+

· Cj (2)

+
∑

j∈spc
Pc∩Pj �=∅

(
1 +

⌊
t+ S

firstc,j
maxc −M

firstc,j
i +Ac,j

TLO
j

⌋)+

· Cj (3)

+
∑

h∈Pc\{n}

(max
j∈spc∪hpc

h∈Pj

(Cj)) (4)

+ (|Pc| − 1) · sl (5)

+
∑
h∈Pc

δ
h
c (6)

− Cc (7)

• (2) is the delay induced by messages with higher priorities

than the one of message c. These messages can delay c

if they arrive at one shared output port with c during the

maximized interval. For a higher-priority flow j , its max-

imized arrival jitter is Ac,j = S
firstc,j
maxc −S

firstc,j
minc

, where

Sh
maxc

(resp. Sh
minc

) is the maximum (resp. minimum)

delay of the message c from its source node firstc till

the output port h.

• (3) is the delay induced by messages with the same

priority as message c. They are scheduled by FIFO policy.

According to FIFO, messages arriving at the output

port where firstc,j (the first output port where they

meet message c) during the maximized temporal interval

[Mfirstc,j , t+ S
firstc,j
maxc] can delay message c.

• (4) indicates the transmission delay of a message se-

quence including message c. This delay is maximized

by considering the transmission time of the largest frame

in the sequence at each output port along Pc .

• (5) is the electronical latency induced by the transmission

through wires (with sl, the electronical latency induced

by the transmission between two nodes)

• (6) represents the delay induced by the non-preemptive

effect (see [8]) of flows with a lower priority

• (7) finally, we substract Cc because the global transmis-

sion delay W lastc
c,t corresponds to the delay between the

emission of c and its starting instant of emission in the

final sink node

As SCC message has a high priority (dedicated for config-

uration messages), the only higher priority messages that will

delay us are the PTP synchronization messages. We consider

that PTP messages and switch-criticality call messages are

the only one to be sent in this level of priority and higher,

so there is no other message with the same priority as SCC.

It means that we just need to compute the number of PTP

messages generated in each node encountered along the path

of the switch-criticality call.

Moreover, we suppose that PTP messages have their specific

worst case transmission time, noted as CPTP . But, for the sake

of readability, we consider that Cc and CPTP have the same

value (the highest one of the two). Even if it is a pessimistic

assumption, we can consider it true as PTP and SCC messages

are both configuration messages, defined with a small and

close number of bytes in Ethernet protocol. Considering these

hypotheses, we obtain (with FPTP , the PTP synchronization

frequency) :

I
n
delay = FPTP ∗

∑
j∈hpc

Pc∩Pj �=∅

(
S
firstc,j
maxc

−M
firstc,j
c +Ac,j

)

+
∑

h∈Pc

δ
h
c + (|Pn| − 1) ∗ (sl+ 2 ∗ Cc) (8)

C. Reliable multicast

In order to update the criticality level information from the

central node to all the nodes in the network, we must be sure

that the criticality switch order is received by all the nodes and

is executed preserving the consistency of the criticality level

information. Thus, in order to preserve the consistency of the

current criticality level in all the nodes, we need to guarantee a

total order in the criticality updates: two consecutive criticality

switches have to be executed in the same order in all the

nodes. A reliable real-time multicast is a method to send the

same information to all nodes in a network providing total

order for the update of the criticality level in all nodes. In [6],

the authors show how to build a real-time reliable multicast

provided that worst case messages end-to-end delays can be

bounded from above. In this paper, we adapt their solution to

the context of mixed criticality management with the trajectory

approach to compute worst case end-to-end message delays.

To implement this, we need a deterministic computation of

the transmission delay of the information. Since we can assure

a bounded transmission delay for information in each physical

link of the network, we will be able to provide guarantees

on transmission delays in the whole network. That builds the

determinism of the delay.

Suppose a network N , composed of a set of nodes S =
{S1, S2, ...Sn, ES1, ES2, ...ESm}. We note Mn

delay the delay

needed by node n to receive the reliable real-time multicast

information from the central node.

Now, we can compute the transmission delay of the

criticality-switch order (which is a message) from the central

node to all the nodes in the network. This multicast delay is

noted as Mdelay .

Even if we implemented PTP, we need to consider clock

accuracy εi for each node i, as it impacts the reliable multicast

protocol [6]. The multicast delay of the whole network can

then be deduced by taking the maximum value of accuracy on

any node. We have ε = max
n∈N

(εn). We obtain [6]:

Mdelay = max
n∈N

(Mn
delay) + ε (9)

Mn
delay , for a node n, is then computed by the addition

of different elements: the switching latency sl induced by

electronical transmission between two nodes, and the WCTT

of the criticality-switch message, noted as Ci
o. For clarity

purposes, we consider that the WCTT of the switch-criticality

message is the same in each node: ∀n ∈ N , Co = Cn
o = Cc.

For a node i in the network with a central node (sink node)

Sh , the delay needed to receive the order directly depends

on the distance between i and Sh. We note this distance

dh. Furthermore, we make the hypothesis that the switching

latency sl is the same for each physical link (like in IV-C),

and so that sl = 0ms : the electronical delay generated by the

distance between each node is null.

We then obtain the following expression of Mdelay:

Mn
delay = dn ∗ (Cc + sl) + εn

Mdelay = max
n∈N

(dn) ∗ (Cc + sl) + ε (10)

As we are computing the multicast delay, we are computing

the worst case delay needed for the farthest node from the sink

node to receive the switch criticality order. At the end of this

multicast delay Mdelay , we are sure that all the nodes in the

network received the criticality change information.

The criticality switch occurs on any node at its local time

tm+Mdelay , where tm (respectively Mdelay) is the timestamp

(the switching delay) sent by the sink node in the criticality

switch multicast message. Hence when all nodes have received

the criticality switch request, hence preserving the consistency

of the criticality level information in all nodes. All the nodes

switch almost at the same time, with a time difference bounded

by ε the clock synchronization accuracy.

D. Criticality-switch message

Given the expression of Indelay(8) and Mdelay(??), we obtain

the global expression of the criticality-switch delay Sdelay in

the network. Given the hypotheses that the switching latency is

constant, and that PTP, SCC and the reliable multcast message

have the same WCTT (noted as Cc), we obtain:

Sdelay = FPTP ∗
∑

j∈hpc
Pc∩Pj �=∅

(
S
firstc,j
maxc

−M
firstc,j
c +Ac,j

)

+
∑

h∈Pc

δ
h
c

+ (2 ∗ max
n∈N

(dn)− 1) ∗ (Cc + sl) + Cc(max
n∈N

(dn)− 1)

+ ε (11)

When we compute the total delay needed to operate a

criticality switch in the network, we then compute the de-

lay represented by PTP synchronization messages, the non-

preemptive effect induced by all messages in the network, the

WCTT of criticality switch messages and finally the delay

induced by electronical latency and clock jitter.

V. SIMULATION

In order to provide estimations of the transmission delay of

criticality information inside a network, we provide simulation

results using ARTEMIS [4]. To provide these results, we based

our approach on the topology described on figure 1, and on

randomly-generated tasksets to simulate traffic load in the

topology. To generate these tasksets, we used the UUnifast

generation algorithm presented in [9]. But as this method was

designed for processor-context simulation, we first adapted it

to network context.

A. UUnifast

The UUnifast method is a random tasksets generation

method, first presented in [9] and used to generated tasksets

in mono and multicore contexts. It consists in three steps :

• First, we generate random periods in a configurable time

interval [ε;T], where ε is the clock accuracy(see IV) and

T is the global simulation time. These periods can be of

any size.

• On a second point, we generate a random value in [0, 1]
according to a uniform law, called the utilisation of a

frame. It represents the individual load represented by

the frame.

• Then, based on the generated period and utilisation, we

compute the WCET of the task.

When it comes to adapt UUnifast method to a network con-

text, it results in two different problems to solve. First, when

we generate a random flowset, we have to specify a targetted

load for the whole system (to compute the utilisation). But

in the network, the load is different in each node. To solve

this, we decided to focus on the load on the sink node of the

topology : as it is the central node, we assume this is the one

with the highest load, or at least with the most important one

to focus on.

Secondly, we had to modify the UUnifast method in order

to generate LO and HI critical messages. So we introduced

a critical rate in the method which defines, randomly and

according to this rate, the average number of critical messages

inside the whole generated flowset. As we based our approach

on critical periods change, each frame was defined either with

just one LO-critical period, or with one LO and one HI critical

period.

B. Impact of the load

We did generate different flowsets, each one representing a

different scheduling scenario. We computed the utilization of

each flow with a uniform distribution based on the network

load, and finally deduce the WCTT of the flow. As we are

working with ethernet(IEEE 802.3), the size of each frame

in constrained in size between 64 and 1518 bytes. With a

100 Mb/s bandwith, all the WCTT in our network are bound

between 4.9μs and 115,8μs.

We made a scenario with a set of 50 different flows

(corresponding to a classical context of use). In our evaluation,

we fixed a global simulation time of t = 500μs, which is

enough to observe and bound the different delays we want

to focus on. We made the load represented by the flows

increasing from 0.4 to 1. The computed load was the one

in the central node (S4) which receives all the flows. With

these generated flows, we wanted to evaluate the impact of

the network load on the criticality switch transmission delay.

Assigning the highest priority for mixed criticality manage-

ment messages (dedicated for configuration messages) allows

the criticality-switch messages to not be delayed more than

once by messages with a lower priority (non-preemptive

effect). We verified this hypothese by evaluating the MC delay

switch as a function of the network load. Thus, we need to add

to this delay the one due to PTP synchronization messages,

considered with a higher priority (see IV).

We can observe in figure 3 that, basically, the delay of the

criticality-switch as a function of the network load is linear.

Fig. 3. Switch-criticality delay/load

We now analyse the impact of the non-preemptive delay for

flows sent with a smaller priority than those of MC messages.

C. Non-preemptive effect

We picked the same parameters as for the previous scenario,

but we also decided to put a limit on the highest WCTT in

the network than for MC messages. We simulated 4 different

cases with different limits in the highest WCTT.

The results obtained (see figure 4) shows that the criticality-

switch delay is strongly influenced by the highest WCTT in

the network. To evaluate this influence, we limited the highest

WCTT to small sizes: 20 μs (262B), 30 μs (393B) and 40

μs (524B). We can observe that, at the highest loads, the

transmission time is nearly constant.

The point is: in the UUnifast task generation method we pre-

sented in V-A , the task model bases the WCTT computation

on the load. It means that the highest WCTT increases with

the load. That explains why, in the first scenario without any

particular limit, we obtained an increasing transmission time

with the increasing load. On the contrary, when limiting the

highest WCTT in the network, we obtain an constant switching

delay (impacted from 1% to 6% in our examples at the highest

network load, due to error margins we tolerated in the load

computation).

As explained in IV, attributing to the switch-criticality and

reliable multicast messages the highest priority allows us to

make the criticality messages independant from the network

load (the impact is very limited). No matter the traffic in the

network, we can then compute the criticality switch delay in

the network. As this switch delay is bound, the transmission

of HI-critical messages can be assured in our topology in a

bound and known time.

Fig. 4. Switch-criticality delay/load with limited highest WCTT

VI. CONCLUSION

A. Conclusion

In this paper, we present a criticality-change protocol in a

clock synchronized Switched Ethernet network, in the case of

two criticality levels. This criticality change protocol is based

on a reliable real-time multicast used update the criticality

information in all the nodes of the network while preserving

its consistency. The real-time multicast builds a total order for

the updates of the critality information. It relies on the based

IEEE1588v2 global clock synchronization. We characterize

the worst case delay for a criticality change with the trajectory

approach. Through simulation, we generate random scenarios

to test the time needed for a criticality change. We show that

the criticality switch delay is harldy impacted by the network

load. As a further work, we will show how to characterize the

end to end response time of HI messages in the case of a LO

to HI criticality switch.

REFERENCES

[1] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed-
criticality systems,” in RTSS 2011.

[2] S. Baruah, “Mixed criticality schedulability analysis is highly intractable,”
2015.

[3] A. Burns and R. Davis, Mixed criticality systems: A review. Department
of Computer Science, University of York, 2013, vol. Tech. Rep.

[4] O. Cros, F. Fauberteau, L. George, and X. Li, “Simulating real-time
and embedded networks scheduling scenarios with artemis,” in WATERS,
2014.

[5] H.-T. Lim, L. Völker, and D. Herrscher, “Challenges in a future
ip/ethernet-based in-car network for real-time applications,” in
Proceedings of the 48th Design Automation Conference, ser. DAC
’11. New York, NY, USA: ACM, 2011, pp. 7–12. [Online]. Available:
http://doi.acm.org/10.1145/2024724.2024727

[6] L. George and P. Minet, “A fifo worst case analysis for a hard real-time
distributed problem with consistency constraints,” in Proceedings of the

17th International Conference on Distributed Computing Systems, 1997.
[7] S. Martin, P. Minet, and L. George, “End-to-end response time with

fixed priority scheduling: trajectory approach versus holistic approach,”
in International Journal of Communication Systems, vol. 18, no. 1. John
Wiley & Sons, Ltd., 2005, pp. 37–56.

[8] X. Li, O. Cros, and L. George, “The trajectory approach for afdx fifo
networks revisited and corrected,” in RTCSA’14, 2014.

[9] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability
tests,” Journal of Real-Time Systems, pp. 129–154, 2005.

