
MC-Fluid: rate assignment strategies

Saravanan Ramanathan, Arvind Easwaran
Nanyang Technological University, Singapore

Email: {saravana016, arvinde}@ntu.edu.sg

Abstract—In this paper, we consider fluid scheduling of mixed-
criticality implicit-deadline sporadic task systems. Fluid schedul-
ing allows tasks to be allocated fractional processing capacity,
which, although hard to implement, significantly improves the
schedulability performance. For dual-criticality systems, dual-
rate fluid scheduling in which each task is assigned two execution
rates depending on the system criticality level has been proposed
in the past. An optimal rate assignment algorithm for such
systems called MC-Fluid that assigns rates with polynomial
complexity has also been proposed. Another rate assignment
strategy called MCF has recently been proposed with linear run-
time complexity. Although MCF results in a lower schedulability
ratio when compared to MC-Fluid, it is shown that both the
strategies result in a speed-up optimal scheduling algorithm
for dual-criticality systems. We propose two new algorithms
to assign execution rates called MC-Sort and MC-Slope, both
with linearithmic (i.e., nlogn) complexity in the number of tasks
n. The proposed algorithms have a schedulability ratio that is
significantly better than MCF and almost as good as MC-Fluid,
but with a reduced run-time complexity when compared to MC-
Fluid.

I. INTRODUCTION

Increasing trend in the embedded industry towards platform

integration has motivated Mixed-Criticality (MC) systems in

the research community. These systems integrate multiple

components with varying criticality onto a common hardware.

Safety-critical cyber-physical systems such as automotive and

avionics fall under this category. Recently, the complexity of

such systems has increased owing to increased functionality.

Multi-cores have therefore become a natural choice to meet

the growing demand of such systems.

In this paper, we consider the problem of multi-core MC

scheduling of implicit-deadline sporadic task systems. We

consider a type of global scheduling called fluid scheduling

in which each task is assigned a fraction of a processing core

at each time instant. Assignment criteria are subjected to two

constraints: 1. No task is allowed to have an assignment greater

than 1 and 2. Sum of assignments of all the tasks should not

exceed the total processing capacity of the system. Though

fluid scheduling provides better schedulability, it is practically

infeasible to implement as heavy overhead is incurred due to

frequent context switching. Levin et al. [1] proposed a method

to convert fluid schedules into non-fluid schedules without

any loss in performance and thereby, making fluid scheduling

practically feasible.

Lee et al. [2] proposed a dual-rate fluid algorithm MC-Fluid

for scheduling dual-criticality (LO and HI) implicit-deadline

sporadic task systems on a multi-core platform. In a dual-

rate fluid scheduling, tasks are assigned two execution rates,

one in each of LO and HI modes, based on their execution

requirements in the two modes. These rates are criticality-

dependent as tasks have different execution requirement for

different criticality levels, and the criticality level of system

changes at run-time. MC-Fluid determines the values of these

execution rates by solving a convex optimization problem in

polynomial time, and is shown to have an optimal rate assign-

ment strategy [2]. Baruah et al. [3] derived a simplified fluid

scheduling algorithm called MCF with an optimal speed-up

factor of 4/3 and linear time rate assignment strategy. Although

MCF compromises on the schedulability when compared to

MC-Fluid, it has lower time complexity for determining the

rates and is speed-up optimal.

Extending MC-Fluid to multi-rate model or to multi-

criticality systems without compromising on the complexity is

quite hard. Formulating and solving an optimization problem

for such system can be challenging. In case of MCF, extension

to such systems is rather simple, but it will significantly affect

the schedulability.

Contributions: We propose two fluid algorithms: MC-

Sort and MC-Slope for computing the execution rate of each

task at different criticality levels. MC-Sort algorithm sorts all

the high-critical tasks based on their high-critical execution

requirement, and assigns a larger rate for a task with larger

execution requirement. The challenge with the MC-Sort algo-

rithm is that it does not consider the difference in execution

requirement of tasks between different criticality levels. It is

necessary to allocate higher rate to such tasks since they need

to execute more in high-criticality. MC-Slope algorithm, on

the other hand, assigns a larger rate to a task with a larger

rate of change in the execution requirement between different

criticality levels.

To evaluate the performance of our algorithms, experiments

are conducted with randomly generated tasks sets. Experiment

results in Section IV show that our algorithm performs better

than MCF [3] in terms of schedulability ratio and closely

follows the optimal fluid algorithm MC-Fluid [2]. It is also

shown that both MC-Sort and MC-Slope algorithm have a

linearithmic (i.e., nlogn) complexity in the number of tasks

n. Thus, both the proposed algorithms significantly improve

schedulability when compared to MCF, with a marginal loss

in time complexity.

Dual-rate fluid scheduling of MC task systems on a multi-

core is not optimal; i.e., there are tasksets that are schedulable

by some algorithm but are deemed to be not schedulable by

the dual-rate MC-Fluid algorithm. In Section V we present a

simple example that is not schedulable by any dual-rate fluid

scheduler whereas, a multi-rate (> 2 execution rates for each

task) fluid scheduler successfully schedules it. Thus, explor-

ing multi-rate fluid scheduling algorithms to further improve

schedulability is a worthy research direction to consider, even

though speed-up optimality has already been achieved.

Related Work: The concept of mixed-criticality systems

was introduced by Vestal [4]. Several studies have been done

on single-core MC scheduling in recent years; see [5] for

review. As the recent trend in the chip industry is towards

multi-cores, there have been some studies on multi-core MC

scheduling as well. Initial work on multi-core MC scheduling

is by Anderson et al. [6] is based on hierarchical scheduling

in which they proposed a mix of partitioned and global

approaches. A global fixed-priority scheduling algorithm based

on response time analysis was proposed by Pathan et al. [7].

Li and Baruah [8] proposed a global scheduling algorithm

by combining a multi-core fixed priority algorithm fpEDF

and single-core virtual deadline based MC algorithm EDF-

VD. Baruah et al. [9] also presented a partitioned scheduling

algorithm based on EDF-VD and showed that partitioned

scheduling performs better than global scheduling with respect

to schedulability ratio. Rodriguez et al. [10] compared the

performance of different partitioning heuristics for the par-

titioned EDF-VD algorithm. Guan et al. [11] extended the

work on single-core demand bound function to multi-core and

presented two enhancements to improve the overall system

schedulability and heavy low-critical task schedulability. Ren

et al. [12] proposed a partitioned scheduling algorithm based

on compositional scheduling and task grouping that offers

strong isolation for high-critical tasks and improved real-

time performance for low-critical tasks. In contrast to the

above studies, we focus on global fluid scheduling algorithms

because they have been shown to have good, theoretically

bounded, performance.

II. BACKGROUND

A. System Model

MC scheduling problem is considered for an implicit-

deadline sporadic task system scheduled on m identical cores.

In this paper, we restrict ourselves to a dual-criticality system

(namely LO and HI) as in [2] [3].

Tasks: We consider a sporadic taskset τ , in which each MC

task τi is characterized by a tuple (Ti,C
L
i ,CH

i ,Xi), where Ti

∈ R
+ is the minimum release separation time, CL

i ∈ R
+ is

the LO-criticality Worst-Case Execution Time (WCET), CH
i

∈ R
+ is the HI-criticality WCET (HI-WCET); we assume CL

i

≤ CH
i and Xi ∈ {LO,HI} is the criticality level. We assume

an implicit-deadline task model in which each task τi has a

relative deadline equal to Ti.

Notation: We consider a dual-criticality sporadic taskset τ
with n tasks. LO-criticality taskset τL and HI-criticality taskset

τH are defined as τL
def
= {τi ∈ τ | Xi = LO} and

τH
def
= {τi ∈ τ | Xi = HI}. LO-criticality and HI-criticality

utilization of a task τi is defined as uL
i

def
= CL

i /Ti and uH
i

def
=

CH
i /Ti respectively. System-level utilizations of a taskset τ

are defined as: UL
L

def
=
∑

τi∈τL
CL

i /Ti, U
L
H

def
=
∑

τi∈τH
CL

i /Ti

and UH
H

def
=
∑

τi∈τH
CH

i /Ti.

MC Behaviour: If each task τi ∈ τ signals completion before

exceeding its LO-WCET, then the system is said to be in

LO-criticality behaviour or LO-mode. If any HI-task τi ∈ τH
signals completion after executing beyond its LO-WCET and

before exceeding its HI-WCET, then the system is said to be in

HI-criticality behaviour or HI-mode. Mode change represents

the change in criticality level of the system from LO to HI.

System initially starts in LO-mode, and switches to HI-mode at

the earliest time instant when any HI-task executes beyond its

LO-WCET without signalling completion. After mode switch

all LO-tasks are discarded by the system. If at any point a LO-

task executes beyond its LO-WCET in LO-mode or a HI-task

executes beyond its HI-WCET in HI-mode, then the system

behaviour is said to be erroneous.

MC Schedulability: A taskset τ is said to be MC schedulable

by a scheduling algorithm if,

• In LO-mode, each instance of each task in τ is able to

complete LO-WCET execution within its deadline, and

• In HI-mode, each instance of each HI-task in τ is able

to complete HI-WCET execution within its deadline.

B. Dual-Rate Fluid Scheduling

Dual-rate fluid scheduling algorithm was designed to sched-

ule dual-criticality implicit-deadline sporadic task systems on

an identical multi-core platform. Dual-rate fluid scheduling can

be summarized as follows:

• In LO-mode, each task τi ∈ τ executes at a constant rate

θLi (where θLi ∈ (0, 1]).
• After mode switch, all tasks in τL are discarded immedi-

ately and each HI-task starts executing at a constant rate

θHi (where θHi ∈ [θLi , 1]).

MC-Fluid uses the criticality-dependent execution rates θLi
and θHi to schedule each task τi [2]. MC-Fluid formulates an

optimization problem to determine the execution rates where,

θHi is the solution to the optimization problem,

minimize
∑

τi∈τH

uL
i (u

H
i − uL

i)

θHi − uH
i + uL

i

≤ m

subject to
∑

τi∈τH

θHi −m ≤ 0

∀τi ∈ τH , −θHi + uH
i ≤ 0

∀τi ∈ τH , θHi − 1 ≤ 0

The θHi values are determined by solving the convex optimiza-

tion problem. The speed-up factor of MC-Fluid is shown to

be 4/3, which is optimal among all multi-core MC scheduling

algorithms [3].

MCF is a simplified variant of MC-Fluid that has linear

run-time complexity in the number of tasks n [3]. MCF, like

MC-Fluid, tries to compute the execution rates θLi and θHi to

meet the MC schedulability condition. It can be summarized

as follows:

• Compute ρ where,

ρ ← max

{
(
UL
L + UL

H

m
), (

UH
H

m
), max

τi∈τH
{uH

i }
}

• If ρ ≤ 1 compute θHi and θLi else declare failure;

θHi ← uH
i

ρ
, for all τi ∈ τH

θLi ←
{

uL
i .θH

i

θH
i −uH

i +uL
i
, if τi ∈ τH ,

uL
i , otherwise

• If
∑
τi∈τ

θLi ≤ m declare success else declare failure

The key difference between MCF and MC-Fluid is that MCF

uses a simple rate assignment strategy with linear run-time

complexity as opposed to the convex optimization framework

of MC-Fluid. Although MCF has lower schedulability perfor-

mance when compared to MC-Fluid in experiments, it is also

shown to have an optimal speed-up bound of 4/3.

A taskset τ is said to be MC schedulable under dual-rate

fluid scheduling iff

∀τi ∈ τ, θLi ≥ uL
i ,

∀τi ∈ τH ,
uL
i

θLi
+

uH
i − uL

i

θHi
≤ 1,∑

τi∈τ

θLi ≤ m,

∑
τi∈τH

θHi ≤ m.

III. PROPOSED RATE ASSIGNMENT STRATEGIES

In this section, we present two new algorithms, namely MC-

Sort and MC-Slope, for computing the execution rates θLi and

θHi for each task τi. MC-Sort and MC-Slope algorithm can be

summarized as follows:

• Compute θHi for all τi ∈ τH using MC-Sort/MC-Slope

HI-rate assignment,

• If
∑

τi∈τH

θHi ≤ m compute θLi else declare failure;

θLi ←
{

uL
i .θH

i

θH
i −uH

i +uL
i
, if τi ∈ τH ,

uL
i , otherwise

• If
∑
τi∈τ

θLi ≤ m declare success else declare failure.

A. MC-Sort Algorithm

MC-Sort rate assignment algorithm sorts all the HI-tasks

based on their HI-WCET values, and assigns the maximum

possible rate in HI-mode (ΘH
i) for each HI-task in that order.

The detailed steps of this strategy for assigning the HI-rates

are given in Algorithm 1.

The run-time complexity of the MC-Sort algorithm is

linearithmic in the number of tasks in τ . Initial assignment

of θHi can be done in a single pass through all the HI-tasks in

the system. Sorting θHi can be done in O(nlogn) time, where

n is the total number of tasks in the system. Final assignment

Algorithm 1 MC-Sort HI-rate assignment

Input: τH , m and for each θHi assign an initial value of
uH
i

max

{
(
UH
H
m),uH

i

}

Output: θHi for each τi ∈ τH
1: Sort τH in decreasing order of uH

i

2: for j := 1 to length(τH) do
3: if (m− ∑

τi∈τH

θHi) > 0 and uH
i �= uL

i then

4: if (m− ∑
τi∈τH

θHi) ≥ (1− θHi) then

5: Update θHi to 1.0
6: else if (m− ∑

τi∈τH

θHi) < (1− θHi) then

7: Update θHi to θHi + (m− ∑
τi∈τH

θHi)

8: else
9: Break

10: end if
11: end if
12: end for

of θHi and θLi can be done in linear time, and therefore the

overall run-time complexity of MC-Sort is O(nlogn).
If algorithm MC-Sort successfully determines the rates, then

the schedule resulting from using these rates will result in a

correct MC-scheduling strategy. From Line 5, it is evident

that the individual tasks’ execution rate never exceeds 1. The

condition in Line 3 ensures that the total execution rate of all

tasks do not exceed the system capacity. The initial assignment

for θHi , and θLi computation are the same as in MCF. For

correctness proof please refer to theorem 1 in [3].

B. MC-Slope Algorithm

Another rate assignment algorithm with linearithmic run-

time complexity called MC-Slope is presented in this section.

MC-Slope assigns execution rates based on the rate of change

of task τis component (O(θHi)) in the objective function of the

optimization problem in [2]. The rate of change of objective

function O(θHi), R(θHi), is defined as follows.

O(θHi) =
uL
i (u

H
i − uL

i)

θHi − uH
i + uL

i

R(θHi) =
d2O(θHi)

dθH2
i

=
2.uL

i (u
H
i − uL

i)

(θHi − uH
i + uL

i)
3

(1)

Algorithm 2 below then gives the HI-rate assignment strategy

of MC-Slope. Line 1 in Algorithm 2 sorts all the HI-criticality

tasks in increasing order of R(uH
i). It considers one HI-task

(τj) at a time from this sorted list (Line 2). For each HI-

task (τi) such that i > j, it assigns rate θHi such that R(θHi)
is decreased to match R(θHj). This can be computed using

Equation (1) by considering θHi as the unknown quantity with

a fixed value for θHi . If the assigned θHi rate is greater than 1,

θHi will be updated to 1. Line 5 checks if the assigned rates

are feasible, and if not, then the above process is repeated

Algorithm 2 MC-Slope HI-rate assignment

Input: τH , m and for each θHi assign an initial value of uH
i

Output: θHi for each τi ∈ τH
1: Sort τH in increasing order of R(θHi) at θHi = uH

i

2: for j := 1 to length(τH) do
3: Compute θHi for each τi ∈ τH s.t. i > j R(θHi) =

R(θHj)
4: Update θHi to 1.0 if θHi > 1 for each τi ∈ τH
5: if

∑
τi∈τH

θHi ≤ m then

6: Break

7: else
8: Continue

9: end if
10: end for
11: Slack = m -

∑
τi∈τH

θHi

12: Sum O(θHi) =
∑

τi∈τH ,θH
i �=1

O(θHi)

13: for i := length(τH) to 1 do
14: if (θHi �= 1) and (Slack > 0) then
15: Update θHi to θHi +

Slack∗O(θH
i)

Sum O(θH
i)

16: if θHi ≥ 1 then
17: Update θHi to 1.0
18: end if
19: end if
20: end for

for the next HI-task τj in the sorted list. In the worst-case,

the for loop exits without any modification to the initial

assignment of θHi , which is always feasible. Line 11 computes

the remaining slack in the system after the above assignment.

Lines 13-18 allocates this remaining slack to all the HI-tasks

proportionately, based on their updated O(θHi) values.

Objective function O(θHi) and the rate of change of objec-

tive function R(θHi) of a sample taskset is plotted against θHi
in Figure 1. Task 1 has a larger O(θHi) value compared to task

2, whereas, task 2 has larger R(θHi). MC-Slope assigns θHi
rate to task 2 first, until its R(θHi) value becomes equal to that

of task 1. If slack remains after their R(θHi) becomes equal,

it proportionately allocates the slack based on their updated

O(θHi) values. The rationale behind MC-Slope strategy is that

the algorithm tries to minimize the total objective function by

allocating a larger portion of the execution rate to tasks with

faster decreasing R(θHi).
The schedule resulting from using the execution rates com-

puted by the MC-Slope algorithm constitutes a correct MC-

scheduling strategy. Lines 4 and 17 in Algorithm 2 ensure

execution rates do not exceed 1. Lines 5 and 14 guarantees that

the total execution rate of tasks does not exceed the system

capacity. The θLi computation is the same as in other fluid

algorithms. MC-Slope algorithm declares success if the total

LO-rate of the tasks do not exceed the processing capacity.

MC-Slope algorithm has a run-time complexity of

O(nlogn) in the number of tasks in τ . Sorting R(θHi) in MC-

Slope algorithm can be done in O(nlogn) time complexity.

Selecting a task with least R(θHi) that satisfies the condition

(a) Objective Function - O(θHi)

(b) Rate of change of objective function - R(θHi)

Fig. 1: MC-Slope Algorithm

in Line 5 can be done using binary search. Thus, the outer

FOR loop of Line 2 runs at most O(logn) times. Computing

θHi in Line 3 consumes linear time in the number of tasks

n. Proportionately allocating the remaining slack to the tasks

can also be done in linear time. The overall complexity of the

MC-Slope algorithm is thus O(nlogn).

IV. EXPERIMENTS AND RESULTS

Experiments with randomly generated tasksets are con-

ducted to compare the performance of the proposed algorithms

with the existing fluid algorithms MCF [3] and MC-Fluid [2].

In this section, we first present the experiment setup and then

discuss the results.

A. Experiment Setup
Task set generation: Our experiments are carried out for

a dual-criticality implicit-deadline task systems scheduled on

an m-core platform. We use the same approach for generating

random tasksets as in earlier studies [3]. The task parameters

used in our experiments are described as follows:

1) UB ∈ [0.1, 0.15, ..., 1.0] denotes the normalized system

utilization in both LO and HI modes.

2) PH ∈ [0.1, 0.2, ..., 1.0] denotes the probability of a task

to be HI-task.

3) Minimum and maximum individual task utilization umin

(= 0.02) and umax (= 0.90).

4) m ∈{2, 4, 8} denotes the total number of cores.

5) Ti, the period of task τi is drawn uniformly at random

from [20, 300].
6) Pi is drawn uniformly at random from [0, 1]. If Pi <

PH , then Xi = HI else Xi = LO.

7) Task utilization ui is drawn from the range [umin,umax].

If Xi = HI, then uH
i = ui else uL

i = ui. If Xi = HI,

uL
i = uH

i /R, where R is an integer drawn uniformly at

random from the range [1, 4].
8) Execution requirements CL

i and CH
i are derived as �uL

i ∗
Ti
 and �uH

i ∗ Ti
 respectively.

The steps 5−8 are repeated to generate tasks until the system

utilization condition max{UL
L+UL

H

m ,
UH

H

m } ≤ UB is met. Once

the condition is violated, the last generated task is discarded. If

the resulting taskset has a normalized utilization between UB

- 0.05 and UB , then the taskset is accepted, else the taskset is

discarded and the procedure is repeated again. We evaluate the

performance of four algorithms MC-Fluid, MC-Slope, MC-

Sort and MCF for each successfully generated taskset.

B. Results

Figures 2a-2c show the acceptance ratios of the four

algorithms i.e., fraction of schedulable tasksets, versus

normalized average utilization UB over varying m ∈{2, 4, 8}
and fixed PH (= 0.5). Each data point in the figure

corresponds to 10, 000 tasksets. The results show that both

MC-Sort and MC-Slope outperform MCF, and the difference

in schedulability is marginal when compared to MC-Fluid.

Figure 3a shows the effect of varying PH values over

the weighted acceptance ratio. Weighted acceptance ratio is

defined as WAR(S) =

∑
UB∈S

(AR(UB)XUB)

∑
UB∈S

UB where, S is the

set of UB values and AR(UB) is the acceptance ratio for

a specific value of the normalized utilization UB . All the

algorithms perform well at the extreme probability values as

tasksets contain only either LO or HI tasks. It can be seen that

both MC-Sort and MC-Slope outperforms MCF algorithm

for all the PH values. The performance of MC-Slope is

marginally better than that of MC-Sort for PH values greater

than 0.6. This is as expected because MC-Slope uses the rate

of change in the objective function to determine HI-rates,

whereas MC-Sort simply uses the execution requirement in

HI-mode.

Figure 3b shows the results of weighted

acceptance ratio for varying range of uH
i /uL

i

(∈ [1, 1.5], [1.5, 2.0], [2.0, 2.5], [2.5, 3.0], [3.0, 3.5], [3.5, 4.0])
with fixed PH (= 0.5) and umax (= 0.90) values. Only the

upper bound of the ranges is presented in the plot. It can

be seen that as the ratio uH
i /uL

i becomes larger there is

a drop in the performance of all the algorithms. However,

unlike MCF, MC-Slope and MC-Sort continue to perform

exceedingly well in comparison to the optimal MC-Fluid.

V. DISCUSSIONS AND FUTURE WORK

MC-Fluid is shown to be an optimal rate assignment strategy

for a dual-rate dual-criticality task systems [2]. That is, if there

exists an assignment of θHi and θLi for all the tasks that satisfies

MC schedulability condition, then MC-Fluid is guaranteed to

find such an assignment. As fluid schedules are not imple-

mentable on actual computing platforms due to their fractional

allocations, MC-DP-Fair translates the fluid schedules to non-

fluid ones without any loss in performance [2]. MCF on the

(a) m = 2

(b) m=4

(c) m=8

Fig. 2: Comparison of acceptance ratio

other hand, presents a sub-optimal rate assignment strategy

with linear complexity. Both these strategies have been shown

to result in optimal speed-up bounds.

As a part of the future work, we plan to derive the speed-

up bounds for the two proposed algorithms, and also identify

a linearithmic complexity algorithm with an optimal rate

assignment strategy.

Dual-rate fluid scheduling is not optimal among all fluid

scheduling algorithms. In particular, algorithms with more than

two rate assignments per task can further improve schedula-

bility. Consider a dual-core system with the periodic taskset

τ and its execution rate as shown in Table I. Taskset in the

table is not MC-schedulable with the dual-rate assignment θLi
and θHi given by the MC-Fluid algorithm. We can check that∑
τi∈τ

θLi is greater than 2.

Each MC task is characterized by a sequence of job releases.

A job of a task τi is said to be a carry-over job, if it is released

TABLE I: Example taskset and its rate assignment

Tasks MC-Fluid Proposed multi-rate model

CL
i CH

i Ti uL
i uH

i θLi θHi δLi δH∗
i δCi δHi

τ1 1.5 4 5 0.3 0.8 0.641 0.939 0.641 0.939 - 0.8
τ2 2.8 4.9 7 0.4 0.7 0.700 0.700 0.700 0.700 0.700 0.7
τ3 3.5 10.5 35 0.1 0.3 0.224 0.360 0.209 0.360 0.499 0.3
τ4 15.75 - 35 0.45 - 0.450 - 0.450 - - -∑

2.015 1.999 2.00 1.999 1.199 1.80

(a) Varying probability of a task to be HI-Criticality

(b) Varying uH
i /uL

i ranges

Fig. 3: Comparison of weighted acceptance ratio

before the mode switch and has not completed its execution

until the mode switch.

We plan to improve the fluid scheduling framework by

considering multiple rates for each task. The jobs of a HI-task

τi released before mode switch execute with δLi in LO-mode

and the jobs released after mode switch execute with δHi in

HI-mode. Here, δHi = uH
i as no jobs require more than its

HI-utilization for completion. The carry-over jobs of HI-tasks

execute with δH∗
i from mode switch until the earliest time

instant at which a carry-over job of any HI-task complete

its execution, and then execute with δCi (≥ δH∗
i) until its

completion. Figure 4 represents the proposed multi-rate model

in which each task executes with more than two rates.

By assigning multiple rates to the HI-tasks, the taskset in

Table I is shown to be MC-schedulable. Let us assume task τ1
initiates the mode switch as shown in Figure 4. It is sufficient

for jobs of τ1 released after mode switch to execute with

uH
1 (= 0.8). The difference in δH∗

1 and uH
1 (= 0.939−0.8) can

be used for executing other HI-tasks; in this case, for task τ3.

By allowing additional execution rate for task τ3 in HI-mode,

we can bring down its LO-mode rate. Now we can check that

Fig. 4: Proposed multi-rate model∑
τi∈τ

δLi is less than or equal 2. Therefore, by assigning more

than two rates to each task it is possible to schedule tasksets

that are deemed to be not MC-schedulable by dual-rate fluid

scheduling algorithms.

REFERENCES

[1] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “Dp-fair: A
simple model for understanding optimal multiprocessor scheduling,” in
Real-Time Systems (ECRTS), 22nd Euromicro Conference on, July 2010.

[2] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee,
“MC-Fluid: Fluid Model-Based Mixed-Criticality Scheduling on Mul-
tiprocessors,” in Real-Time Systems Symposium (RTSS), 35th IEEE
International, Dec 2014.

[3] S. Baruah, A. Easwaran, and Z. Guo, “MC-Fluid: simplified and
optimally quantified,” in Real-Time Systems Symposium (RTSS), 36th
IEEE International, Dec 2015.

[4] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium, 28th IEEE International, Dec 2007.

[5] A. Burns and R. I. Davis. (2013) Mixed Criticality Systems - A Review.
http://www-users.cs.york.ac.uk/burns/review.pdf.

[6] J. H. Anderson, S. K. Baruah, and B. B. Brandenburg, “Multicore
operating-system support for mixed criticality,” in Workshop on Mixed
Criticality: Roadmap to Evolving UAV Certification, 2009, Apr 2009.

[7] R. Pathan, “Schedulability analysis of mixed-criticality systems on
multiprocessors,” in Real-Time Systems (ECRTS), 24th Euromicro Con-
ference on, July 2012.

[8] H. Li and S. Baruah, “Outstanding paper award: Global mixed-criticality
scheduling on multiprocessors,” in Real-Time Systems (ECRTS), 24th
Euromicro Conference on, July 2012.

[9] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality
scheduling on multiprocessors,” Real-Time Systems, vol. 50, no. 1, pp.
142–177, 2014.

[10] P. Rodriguez, L. George, Y. Abdeddaim, and J. Goossens, “Multi-
criteria evaluation of partitioned edf-vd for mixed-criticality systems
upon identical processors,” in Workshop on Mixed Criticality Systems
(WMC), 2013, December.

[11] C. Gu, N. Guan, Q. Deng, and W. Yi, “Partitioned mixed-criticality
scheduling on multiprocessor platforms,” in Design, Automation and
Test in Europe Conference and Exhibition (DATE), March 2014.

[12] J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multi-
processors using task grouping,” in Real-Time Systems (ECRTS), 27th
Euromicro Conference on, July 2015.

