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Abstract—The Vestal model [6] in widely used in the real-
time scheduling community for representing mixed-criticality
real-time workloads. This model requires that multiple WCET
estimates – one for each criticality level in a system – be obtained
for each task. Burns suggests [3] that being required to obtain too
many WCET estimates may place an undue burden on system
developers, and proposes a simplification to the Vestal model that
makes do with just two WCET estimates per task. Burns makes
a convincing case in favor of adopting this simplified model;
here, we report on our attempts at comparing the two models –
Vestal’s original model, and Burns’ simplification – with regards
to expressiveness, as well as schedulability and the tractability of
determining schedulability.

I. INTRODUCTION

In the model for real-time mixed-criticality (MC) workloads

that was proposed by Vestal [6] and forms the basis of a

significant fraction of the research being conducted within

the mixed-criticality real-time scheduling community, each job

in an MC system with L distinct criticality levels is charac-

terized by L worst-case execution time (WCET) estimates,

one corresponding to each criticality level in the system under

analysis. Burns recently proposed (in, e.g., the addendum [3]

to his keynote presentation at the Dagstuhl Seminar Mixed
Criticality on Multicore/Manycore Platforms) a simplification

to this model, in which each job Ji is characterized by just

two WCET estimates regardless of the number of distinct

criticality levels in the system. One, denoted Ci(SELF) or

Ci(SF), is determined at a level of assurance that is consistent

with its own criticality level (denoted χi); a second, denoted

Ci(NORMAL) or Ci(NL), is determined at a level of assurance

that is consistent with the lowest (i.e., least critical) criticality

level in the entire system. (For jobs of criticality equal to the

lowest criticality level in the system, these two estimates are

the same.) The run-time behavior desired of the system is as

follows:

• If each job Ji executes for no more than its Ci(NL) value

then all jobs’ deadlines are met; intuitively, this represents

the “normal” behavior of the system.

• Each job Ji is prevented, by run-time monitoring, from

executing for a duration greater than Ci(SF).
• If any job Ji of criticality level χi executes for more than

Ci(NL), then

– jobs that are less critical than Ji are no longer

guaranteed.

– the remaining jobs all complete by their deadlines,

provided each such job Jj executes for no more than

Cj(SF) if χj = χi, and for no more than Cj(NL) if

χj denotes a greater criticality level than χi (i.e., Jj
is more critical than Ji.)

In other words, the only jobs that are guaranteed to com-

plete execution by their deadlines are those of criticality

greater than, or equal to, the criticality of the greatest-

criticality job Ji to execute beyond its Ci(NL) value.

Burns [3] makes a strong and convincing case justifying

his simplification of the Vestal model from a pragmatic

implementation-oriented perspective. Burns’ model turns out

to bear some similarities with an earlier model proposed by

de Niz et al. [4], which, too, was inspired by the experience of

de Niz et al. in implementing mixed-criticality systems. The

evidence is thus strong that this model is a very reasonable and

potentially useful one, meriting deeper analysis. We have initi-

ated such an analysis from a scheduling-theoretic perspective;

in this paper, we report on out initial findings. We restrict

attention here to the scheduling of mixed-criticality systems

that are modeled as collections of independent jobs executing

upon a preemptive uniprocessor. Our findings thus far may be

summarized as follows.

The Burns model is strictly less expressive than the Vestal
model. Determining whether a given instance can be scheduled
correctly remains NP-hard in the strong sense. Lower bounds
on schedulability, as quantified using the speedup factor
metric, are no better for the Burns model than for the Vestal
model.

That is, although the reduced expressiveness of the Burns

model makes it easier to use in many practical contexts, it

does not reduce the inherent intractability of schedulability

analysis, nor make the scheduling problem any easier.

Organization. The remainder of this paper is organized as

follows. We formally describe the Vestal and Burns models,

and state some more-or-less obvious facts concerning the

relationship between them, in Section II. In Section III we

show that scheduling instances specified using the simpler

Burns model appears to be as difficult as scheduling instances

specified using the Vestal model. We conclude in Section IV

with some pointers to future work.

II. MODEL

In this section, we start out in Section II-A briefly reviewing

the Vestal model [6], and provide definitions of the major

concepts – behavior, criticality level of a behavior, correctness
criteria, clairvoyant schedulability, MC schedulability, etc. —



of mixed-criticality scheduling, and summarize some prior

results concerning the preemptive uniprocessor scheduling of

mixed-criticality systems that are modeled as collections of

independent jobs executing upon a preemptive uniprocessor.

Next, we briefly describe the Burns model [3] in Section II-B,

explaining how the concepts of MC scheduling are adapted

to apply to the Burns model. In Section II-C, we make

some rather straightforward observations concerning the Burns

model, and its relationship with the Vestal model, with regards

to the preemptive uniprocessor scheduling of collections of

independent jobs.

A. The Vestal model

In the Vestal model [6], a mixed-criticality (MC) job is char-

acterized by a 4-tuple of parameters: Ji = (Ai, Di, χi, Ci),
where

• Ai ∈ R+ is the release time.

• Di ∈ R+ is the deadline. We assume that Di ≥ Ai.

• χi ∈ N+ denotes the criticality of the job, with a larger

value denoting higher criticality.

• Ci : N
+ → R+ specifies the worst case execution time

(WCET) estimate of Ji for each criticality level. (It is

reasonable to assume that Ci(�) is monotonically non-

decreasing with increasing �.)

An MC instance is specified as a finite collection of such

MC jobs: I = {J1, J2, . . . , Jn}. Given such an instance,

we are concerned here with determining how to schedule it

to obtain correct behavior; in this document, we restrict our

attention to scheduling on preemptive uniprocessor platforms.

Behaviors. The MC job model has the following semantics.

Each job Ji is released at time-instant Ai, needs to execute

for some amount of time γi, and has a deadline at time-

instant Di. The values of Ai and Di are known from the

specification of the job. However, the value of γi is not known

from the specifications of Ji, but only becomes revealed by

actually executing the job until it signals that it has completed

execution. γi may take on very different values during different

execution runs: we will refer to each collection of values

(γ1, γ2, . . . , γn) as a possible behavior of instance I .

The criticality level of the behavior (γ1, γ2, . . . , γn) of I is

the smallest integer � such that γi ≤ Ci(�) for all i, 1 ≤ i ≤ n.

(If there is no such �, then we define that behavior to be

erroneous.)

Scheduling strategies. A scheduling strategy for an instance I
specifies, in a completely deterministic manner for all possible

behaviors of I , which job (if any) to execute at each instant

in time. A clairvoyant scheduling strategy knows the behavior

of I — i.e., the value of γi for each Ji ∈ I — prior to

generating a schedule for I . By contrast, an on line scheduling

strategy does not have a priori knowledge of the behavior of

I: for each Ji ∈ I , the value of γi only becomes known by

executing Ji until it signals that it has completed execution.

Since these actual execution times – the γi’s – only become

revealed during run-time, an on-line scheduling strategy does

not a priori know what the criticality level of any particular

behavior is going to be; at each instant, scheduling decisions

are made based only on the partial information revealed thus

far.

Correctness. A scheduling strategy is correct if it satisfies

the following criterion for each � ≥ 1: when scheduling any

behavior of criticality level �, it ensures that every job Ji
with χi ≥ � receives sufficient execution during the interval

[Ai, Di) to signal that it has completed execution.

MC schedulability. Let us define an instance I to be MC

schedulable if there exists a correct on-line scheduling strategy

for it. The MC schedulability problem then is to determine

whether a given MC instance is MC schedulable or not.

Some prior results. In the following, let sL denote the root

of the equation

xL = (1 + x)L−1. (1)

For L ← 2, this is root of the equation x2 = x + 1; it takes

on the value (
√
5 + 1)/2 and is commonly called the Golden

Ratio or the Divine Proportion, notated Φ.

• Determining whether a given instance is MC-schedulable

is NP-hard in the strong sense [2]. This holds even if all

the jobs in the instance have the same release date, and

there are just two distinct criticality levels in the instance.

• It was also shown [2] that there are instances with L
distinct criticality levels that are clairvoyantly schedulable

upon a unit-speed processor but not scheduled correctly

upon a speed-s processor by any fixed-priority (FP)

algorithm1, for each s < sL.

• An FP algorithm called OCBP was defined [1] for

scheduling MC instances upon a preemptive uniprocessor.

It was shown [2] that any instance with L distinct

criticality levels that is MC-schedulable upon a unit-

speed processor is scheduled correctly by OCBP upon a

speed-sL processor. This speedup bound for OCBP was

shown to be tight: there are instances with L distinct

criticality levels that are MC-schedulable upon a unit-

speed processor but not scheduled correctly upon a speed-

s processor by OCBP for each s < sL.

B. The Burns model

In the Burns model [3], a mixed-criticality (MC) job
is characterized by a 5-tuple of parameters: Ji =
(Ai, Di, χi, Ci(NL), Ci(SF)), where Ai, Di, and χi have

exactly the same interpretation as in the Vestal model, and

• Ci(NL) ∈ R+ specifies the WCET estimate of Ji at

criticality level 1 (the lowest criticality level)

• Ci(SF) ∈ R+ specifies the WCET estimate of Ji at

the criticality level χi. (It is reasonable to assume that

Ci(NL) ≤ Ci(SF).

1An FP algorithm determines, prior to run-time, a total ordering of the
jobs in a priority list and during run-time executes at each moment in time
the currently active job with the highest priority. Note that EDF is an FP
algorithm according to this definition.



The notion of instance and behavior is the same for the Burns

and the Vestal models. The criticality level of the behavior

(γ1, γ2, . . . , γn) is defined as follows:

• If γj > Cj(SF) for any j, 1 ≤ j ≤ n, then the behavior

is erroneous.

• Else, the criticality level of the behavior is defined to be

the criticality level of the greatest-criticality job Jj with

execution exceeding its Cj(NL) value:

n
max
j=1

{χj | γj > Cj(normal)}

The notions of scheduling strategy, clairvoyance, correctness,

and MC-schedulability are identical for the Vestal and Burns

models.

C. Some observations

Since correctness requirements (i.e., which jobs are required

to complete execution by their deadlines for the execution to be

considered correct) for mixed-criticality instances are specified

in a manner that depends upon the criticality level assigned to

behaviors, we first investigate, in Propositions 1 and 2 below,

whether the Vestal and Burns models assign behaviors the

same criticality level or not.

Proposition 1: Any instance represented in the Burns model

can be represented exactly in the Vestal model.

Proof: A job Ji that is specified according to the Burns model

can be completely represented in the Vestal model by setting

the WCET parameter values as follows:

Ci(�) ←
{

Ci(NL) if � < χi

Ci(SF) otherwise (i.e., if � ≥ χi)

Consider any instance I in the Burns model, and let I ′

denote the instance in the Vestal model that is obtained by

applying the above transformation t each job in I . Consider

any behavior (γ1, γ2, . . . , γn) of instance I; this can also be

considered a behavior of the Vestal instance I ′. It follows

from the definitions in Sections II-A and II-B above that this

behavior is assigned exactly the same criticality level for I
and I ′; hence, the correctness requirements for both I and I ′

are identical.

Proposition 2: Instances represented in the Vestal model

cannot always be represented exactly in the Burns model.

Proof: We illustrate this by an example. Consider the following

instance I = {J1, J2, J3} represented in the Vestal model:

Ji Ai Di χi Ci

J1 0 3 1 〈1, 1, 1〉
J2 0 3 2 〈1, 1, 1〉
J3 0 3 3 〈1, 2, 3〉

Its representation in the Burns model would be as follows:

Ji Ai Di χi Ci(NL) Ci(SF)
J1 0 3 1 1 1

J2 0 3 2 1 1

J3 0 3 3 1 3

Under the Vestal model, a behavior of the instance with

γ1 = γ2 = 1, γ3 = 2 has criticality level equal to 2

and hence requires that jobs J2 and J3 both complete by

their deadlines. Under the Burns model, however, this same

behavior has a criticality level equal to 3, and requires only

that J3 complete by its deadline: this is a weaker requirement

than was mandated in the original (i.e., in the Vestal model).

It is evident that the Vestal model requires more parameters

than the Burns model in order to specify an instance. What

Proposition 2 illustrates is that these additional parameters in

the Vestal model do indeed allow for the specification of a

more nuanced set of requirements for a given instance. Taken

together, Propositions 1 and 2 above consequently yield the

(not unexpected) conclusion that the Vestal model is strictly
more expressive than the Burns model.

Next, we explore whether this reduced expressiveness buys

us anything in terms of tractability of analysis with respect to

determining whether a given instance is MC-schedulable or

not; Proposition 3 reveals that it does not:

Proposition 3: Determining whether a given instance spec-

ified according to the Burns model is MC-schedulable is NP-

hard in the strong sense. This holds even if all the jobs in the

instance have the same release date, and there are just two

distinct criticality levels in the instance.

Proof Sketch: It may be verified that the intractability proof

for the Vestal model [2, Theorem 1] only involves instances

with just two criticality levels, in which all jobs have the same

release date. Since the Vestal and Burns models are identical

for two criticality levels, this proof hold unchanged for the

Burns model as well, and its conclusion continues to hold for

the Burns model.

III. PRIORITY-BASED SCHEDULING

As a consequence of Proposition 3, we are unlikely to

be able to design an exact schedulability test to efficiently

determine whether a given instance specified in the Burns

model is MC-schedulable or not. But what about sufficient
schedulability tests? Here, Proposition 1 means that we may

use prior results that were developed for instances represented

using the Vestal model to schedule instances that are specified

using the Burns model as well. In particular, prior algorithms

such as OCBP [1], MC-EDF [5], etc. may continue to be used

for scheduling MC instances specified using the Burns model;

their performance metrics are guaranteed to be no worse for

Burns instances than for Vestal instances. In particular, we

may conclude from prior results [2] that OCBP has a speedup

bound no worse than sL (recall that sL is defined to be the

root of Equation 1) in scheduling any instance with L distinct

criticality levels.

A natural question to ask at this point in time is, do

these algorithms offer better performance guarantees when

scheduling instances specified using the Burns model than

they do when scheduling instances specified using the more

expressive Vestal model? Somewhat surprisingly, the answer



turns out to be “no.” A close examination of the proofs of the

analogous results in [2] reveal that

1 There are instances with L distinct criticality levels that

are MC-schedulable upon a unit-speed processor but not

scheduled correctly upon a speed-s processor by OCBP for

each s < sL.

2 There are instances with L distinct criticality levels that are

clairvoyantly schedulable upon a unit-speed processor but

not scheduled correctly upon a speed-s processor by any
fixed-priority (FP) scheduling policy, for each s < sL.

Both these results may be proved using techniques essentially

identical to the ones used in proving the corresponding results

in [2] for instances specified using the Vestal model; for the

sake of completeness, we formally present the second result

as Theorem 1 below, and provide a complete proof.

Theorem 1: There are MC instances with L distinct

criticality levels specified using the Burns model that are

clairvoyantly-schedulable, but that are not Π-schedulable for

any fixed priority policy Π on a processor that is less that sL
times as fast.

Proof: Consider an instance with L criticality levels and L
jobs:

Ai Di χi Ci(NL) Ci(SF)
J1 0 D1 1 D1 D1

Ji (∀i ≥ 2) 0 Di i Di −Di−1 Di

where the values of the Di’s will be specified later and shown

to satisfy Di > Di−1 for all i, 1 < i ≤ L.

For example, this instance would look as follows for L ← 3:

Ji Ai Di χi Ci(NL) Ci(SF)
J1 0 D1 1 D1 D1

J2 0 D2 2 D2 −D1 D2

J3 0 D3 3 D3 −D2 D3

The system is clairvoyantly schedulable since, for a behav-

ior of criticality-level �, a clairvoyant scheduler could have

each job complete by its deadline by

• not executing jobs J1, . . . , J�−1 at all;

• executing job J� for a duration C�(SF) = D� over the

interval [0, D�); and

• executing each job Jj ∈ {J�+1, . . . , JL} for a duration

C�(NL) = Dj −Dj−1 over the interval [Dj−1, Dj).

In the remainder of this proof, we will derive values for

the Di parameters such that this instance cannot be scheduled

correctly by any FP scheduling algorithm. That will serve to

show that this instance is clairvoyantly schedulable but not

FP-schedulable, and hence establish the correctness of the

theorem.

In any FP algorithm, some job from amongst the L jobs

J1, . . . , JL in the instance must be assigned the lowest priority.

Suppose that that job were Ji, and consider a behavior of the

instance of criticality level i in which

• each job Jj with criticality lower than that of Ji executes

for an amount Cj(SF) = Dj ,

• each job Jj with criticality greater than that of Ji executes

for an amount Cj(NL) = Dj −Dj−1, and

• job Ji executes for an amount equal to Ci(SF) = Di.

Since Ji is the lowest-priority job, it will only complete after

an amount of execution equal to

(i−1∑
j=1

Dj

)
+Di +

( L∑
j=i+1

(Dj −Dj−1)
)

=
(i−1∑
j=1

Dj

)
+DL

has completed. For Ji to meet its deadline on a speed-s
processor, we therefore need this amount to be ≤ s×Di:

sDi ≥
(i−1∑
j=1

Dj

)
+DL

⇔ s ≥ DL +
∑i−1

j=1 Dj

Di

Since some job from amongst the L jobs {J1, J2, . . . , JL}
must be assigned lowest priority by a fixed-priority policy, it

follows that

min
1≤i≤L

{DL +
∑i−1

j=1 Dj

Di

}
(2)

is a lower bound on the speedup necessary for a fixed-priority

scheduling policy to successfully guarantee to schedule the

instance correctly. This minimum is maximized when all L
of the terms are equal to each other (and thus define the

minimum). Let x be this maximum value. Instantiating the

term in Expression 2 for i ← L− 1, we have

x =
DL +

∑L−2
j=1 Dj

DL−1

⇔ xDL−1 = DL +

L−2∑
j=1

Dj (3)

Next instantiating the term in Expression 2 for i ← L, we

have

x =
DL +

∑L−1
j=1 Dj

DL

=

(
DL +

∑L−2
j=1 Dj

)
+DL−1

DL
(Rearranging terms)

=
xDL−1 +DL−1

DL
(By Eqn 3 above)

=
(1 + x)DL−1

DL
(4)



Hence we have

DL =
(1 + x

x

)
DL−1

=
(1 + x

x

)2

×DL−2

=
(1 + x

x

)3

×DL−3

· · ·
=

(1 + x

x

)L−1

×D1 (5)

Finally instantiating the term within Expression 2 for i ← 1,

we have

x =
DL

D1
(6)

From Equations 5 and 6 above, we are able to conclude that

x =
(1 + x

x

)L−1

⇔ xL = (1 + x)L−1

which is exactly Equation 1. It’s solution is therefore equal to

sL, and the theorem is proved.

IV. CONTEXT AND CONCLUSIONS

The Burns model for mixed-criticality workloads was pro-

posed [3] as a simplification of the Vestal model [6] that

has formed the basis of a large volume of research in real-

time scheduling theory. From a pragmatic perspective and in

terms of ease of use, there are undoubted benefits in using

the Burns model in preference to the Vestal model — some of

these benefits are persuasively articulated in [3]. However, this

ease of use does come with some loss of expressiveness (as

illustrated in Proposition 2). In our research, we are seeking to

better understand whether this reduced expressiveness yields

any analytical benefits in terms of reduced complexity of

feasibility analysis, less schedulability loss, etc. Thus far, our

results have been negative – we have not identified any such

benefits.

In this paper, we have restricted attention to MC instances

that are characterized as collections of independent jobs. In

the future, we plan to study systems that are modeled as

collections of recurrent tasks, as well as more general (e.g.,

multiprocessor) platforms.
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