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Abstract—This paper integrates analysis of probabilistic cache
related pre-emption delays (pCRPD) and static probabilistic
timing analysis (SPTA) for multipath programs running on a
hardware platform that uses an evict-on-miss random cache
replacement policy. The SPTA computes an upper bound on the
probabilistic worst-case execution time (pWCET) of the program,
which is an exceedance function giving the probability that the
execution time of the program will exceed any given value on any
particular run. The pCRPD analysis determines the maximum
effect of a pre-emption on the pWCET. The integration between
SPTA and pCRPD updates the pWCET to account for the effects
of one or more pre-emptions at any arbitrary points in the
program. This integration is a necessary step enabling effective
schedulability analysis for probabilistic hard real-time systems
that use pre-emptive or co-operative scheduling. The analysis is
illustrated via a number of benchmark programs.

I. INTRODUCTION

Critical real-time systems such as those deployed in space,
aerospace, transport, and medical applications require guar-
antees that the probability of the system failing to meet its
timing constraints is below an acceptable threshold (e.g. a
failure rate of less than 10−9 per hour). Advances in hardware
technology and the large gap between processor and memory
speeds, bridged by the use of cache, make it difficult to provide
such guarantees without significant over-provision of hard-
ware resources. The use of deterministic cache replacement
policies means that pathological worst-case behaviours need
to be accounted for, even when in practice they may have a
vanishingly small probability of actually occurring. Further,
the quality of deterministic WCET estimates for such sys-
tems can be highly sensitive to missing information, making
them overly pessimistic. Random cache replacement policies
negate the effects of pathological worst-case behaviours while
still achieving efficient average-case performance, hence they
provide a means of increasing guaranteed performance in hard
real-time systems [15]. Determining the timing behaviour of
applications running on a processor with a random cache
replacement policy requires probabilistic analysis of worst-
case execution times and cache related pre-emption delays.

In this paper, we describe a Static Probabilistic Timing
Analysis (SPTA) that can be used to compute an upper bound
on the exceedance function (1 - CDF) for the probabilistic
Worst-Case Execution Time (pWCET) of a program. An
example exceedance function is given in Figure 1(b). From the
exceedance function, it is possible to read off for a specified

probability, an execution time that has that probability of being
exceeded on any single run. SPTA computes the upper bound
pWCET distribution for a program or task1 assuming that it
is executed non-pre-emptably. Pre-emption by another task re-
sults in execution of instructions belonging to the pre-empting
task which have an impact on the probabilities of cache hits
and misses for subsequent instructions executed by the pre-
empted task. We refer to this effect as probabilistic Cache
Related Pre-emption Delay (pCRPD). Analysis of pCRPD is
essential in providing schedulability analysis for probabilistic
hard real-time systems that use pre-emptive or co-operative
scheduling, or partitioned scheduling where interrupt handlers
use the same cache.

A. Related Work

Temporal analysis of probabilistic real-time systems where
at least one parameter, e.g. execution time, is described by a
random variable, was first investigated by Lehoczky in 1990
[12] who extended queuing theory under real-time hypotheses.
This work was improved upon in 2002 by Zhu et al. [18];
however, the main limitation remained the use of the same
probability law for the execution times of all tasks, which is
not always realistic. Gardner et al. in 1999 [9] and Tia et al. in
1995 [16] also considered execution times as random variables
with special assumptions made about the critical instant.
Schedulability analysis for real-time systems with probabilistic
execution times was given by Diaz et al. in 2002 [8] and
refined by Lopez et al. in 2008 [13]; however, the analysis
was difficult to use in practice for computational reasons.
Improvements based on re-sampling of random variables were
proposed by Maxim et al. in 2012 [14].

In 2009, Quinones et al. [15] investigated the use of random
cache replacement policies as a means of obtaining real-time
performance less dependent on execution history. In 2012,
Cucu-Grosjean et al. [6] and Cazorla et al. [5] introduced
SPTA for single-path programs, assuming an evict-on-access
random cache replacement policy.

For deterministic systems, the integration of cache re-
lated pre-emption delays into schedulability analysis for fixed
priority pre-emptive scheduling has been considered by (i)
analysing the effect of the pre-empting task (Busquets-Mataix
et al. in 1996 [4]), (ii) analysing the effect on the pre-empted

1In this paper, we use ’program’ and ’task’ interchangeably.



task (Lee et al. in 1998 [11]), or (iii) a combination of both
(Altmeyer et al. in 2011 [2] and 2012 [3]).

In this paper, we build on the idea of using random cache re-
placement policies in hard real-time systems proposed in [15],
and the SPTA for the evict-on-access random cache replace-
ment policy introduced in [6] and [5]; however, we assume
an evict-on-miss policy because its performance dominates
that of evict-on-access in terms of the pWCET distributions
(exceedance functions) obtained. We extend previous work on
SPTA for single path programs given in [6] and [5], both
integrating analysis of pCRPD, and introducing for the first
time a method of analysing multipath programs.

Section II presents our system model, terminology and
notation. In Section III we provide SPTA for single-path pro-
grams assuming an evict-on-miss random cache replacement
policy. In Section IV we derive analysis of pCRPD, based
on the effect on the pre-empted program. In section V we
extend our SPTA and pCRPD analysis to multi-path programs.
Section VI applies our analysis to a number of benchmarks,
while Section VII concludes with a summary and discussion
of future work.

II. SYSTEM MODEL, TERMINOLOGY AND NOTATION

The system we consider is based on a processor with an
instruction cache and no data cache. Programs running on this
processor are composed of machine code instructions. Each
instruction is associated with a memory block m in which
it is stored. Each memory block may contain a number of
instructions (typically 4 or 8) hence multiple instructions may
be associated with the same memory block.

A. Random Cache Replacement Policy

We consider a fully associative cache with an evict-on-
miss random replacement policy [15]. Here, if the requested
instruction is not in the cache, then a cache line is randomly
selected for eviction, and the memory block containing the
instruction is fetched from main memory and loaded into the
evicted location. Thus each cache line has the same probability
of being evicted on a miss i.e. for an N -way associative cache,
the probability of each cache line being evicted is 1

N .

B. Instruction Modelling

We assume that the processor executes each instruction in a
fixed number of clock cycles, and hence that the only source
of instruction timing variation comes from the cache. Each
instruction is characterised by two discrete latencies. For a
cache hit, H is the time to load the instruction from cache and
execute it, and for a cache miss, M is the time to check the
cache, fetch the instruction from memory, load the instruction
from cache and execute it. For convenience, we assume that
the processor takes the same time to execute each instruction
once it has been loaded, and hence H and M are the same
for every instruction. In practice, a processor may take a
different number of cycles to execute different instructions, in
which case the analysis we present can be applied with simple
modifications provided that the cache miss penalty (M−H) is

consistent for all instructions. In the remainder of the paper, we
overload the term execution time to mean the overall latency.

We are interested in single-path and multi-path programs. A
program path is a sequence of instructions which we represent
by a sequence of symbols, one for each instruction, identifying
the memory block in which the instruction is stored; for
example a, b, a, c, . . ..

Definition 1 (Re-use Distance): Given an arbitrary se-
quence of instructions, then the re-use distance k of a particu-
lar instruction is defined by the maximum possible number of
evictions2 since the last access to the memory block containing
that instruction.

The re-use distance of an instruction dictates its overall
probability of being a hit, with larger re-use distances indica-
tive of a higher probability of a cache miss. We return to the
calculation of these probabilities in Section III.

Example 1: For a single-path program described by the
following sequence of symbols giving the memory block
for each instruction a, b, a, c, d, b, c, d, a, e, b, f, e, g, a, b, h,
its possible representation including re-use distances is
a, b, a1, c, d, b3, c2, d2, a5, e, b4, f, e2, g, a5, b4, h.

In the above example, the superscripts give the finite re-
use distances. As we consider the cache to be initially empty,
the re-use distance for the first access to any instruction is
∞. When consecutive instructions are in the same memory
block, then the second instruction has a re-use distance of
zero. This is because its memory block is definitely in the
cache after the previous instruction. A re-use distance of zero
corresponds to always hit and so with an evict-on-miss policy,
such instructions do not contribute to the re-use distance of
subsequent instructions as they do not result in evictions3. For
example, with 4 instructions per memory block we may obtain
the following sequence of memory block accesses and re-use
distances: a, a0, b, b0, b0, b0, a1.

Each instruction has a probability of being a cache hit
P{hit}, and of being a cache miss P{miss} = 1− P{hit}.
Thus each instruction I is described by a discrete random
variable4 I representing the execution time of the instruction
based on the history of previous accesses. Formally, the
Probability Mass Function (PMF) of instruction I is

I =

(
H M

P{hit} P{miss} = 1− P{hit}

)
(1)

C. Program Modelling

Probabilistic real-time analysis focusses on random vari-
ables, the notion of independence, and the “summation” of
random variables via the convolution operator.

For two random variables X1 and X2 defined on the same
probability space, the joint distribution defines the proba-

2Actually, the number of evictions in the same cache set; however, as we
assume a fully associative cache, there is only one cache set.

3Technically, such an access could result in a cache miss and an eviction,
but only if it were immediately preceded by a pre-emption; however, in that
case we consider the extra eviction as due to the pre-emption.

4We make use of calligraphic symbols to denote random variables.



bility of events5 defined in terms of the random variables,
F (x1, x2) = P{X1 ≤ x1,X2 ≤ x2}. The joint probability is
different for dependent and independent events.

Definition 2 (Independence): Two random variables X and
Y are independent if they describe two events such that the
outcome of one event does not have any impact on the outcome
of the other.

The sum Z of two independent random variables X1 and X2

is obtained via convolution: Z = X1⊗X2. For discrete random
variables P{Z = z} =

∑+∞
k=−∞ P{X1 = k}P{X2 = z − k}.

Convolution is commutative, i.e., X1 ⊗X2 = X2 ⊗X1 .
Definition 3 (Greater than or equal to - Diaz et al. [13]):

Let X and Y be two random variables. Y is greater than
or equal to X (alternatively, X is less than or equal to Y)
denoted by Y � X (Y � X ) if P{Y ≤ v} ≤ P{X ≤ v} for
any v (P{Y ≤ v} ≥ P{X ≤ v} for any v).

Since the execution time of a program can only take discrete
values that are multiples of the processor clock cycle, the
execution time of a program path i, assuming the worst-
case (empty) initial cache state is given by a discrete random
variable Ci. Thus the execution time of path i has a Probability
Mass Function (PMF) fCi(·), with fCi(c) = P{Ci = c} giving
the probability that the path has an execution time equal to c.
Ci can be represented as follows:

Ci =
(

C0
i = Cmin

i C1
i · · · Cni

i = Cmax
i

fCi(C
min
i ) fCi(C

1
i ) · · · fCi(C

max
i )

)
(2)

where
∑ni

j=0 fCi(C
j
i ) = 1.

As an example, a path i might have an execution time

Ci =
(

2 3 4 5
0.1 0.3 0.4 0.2

)
(3)

meaning that for any given run, there is probability of 0.1
that its execution time will be 2, a probability of 0.3 that its
execution time will be 3, and so on.

The execution time of a path can also be described us-
ing its Cumulative Distribution Function (CDF) FCi(x) =∑x

c=0 fCi(c), or by the 1-CDF F ′Ci(x) = 1−
∑x

c=0 fCi(c) ≡
P{Ci ≥ x}.

Definition 4 (probabilistic Worst-Case Execution Time):
The probabilistic Worst-Case Execution Time (pWCET)
distribution Z of a program is a tight upper bound on the
execution time Ci of all possible paths. Hence, ∀i, Z � Ci.

III. STATIC PROBABILISTIC TIMING ANALYSIS

In this section, we derive a lower bound on the probability of
a cache hit for each instruction in a single-path program. This
lower bound is crucially independent of the previous sequences
of cache hits and misses, and instead depends only upon the
re-use distance of the instruction. Hence we show how SPTA
can be used to determine an upper bound on the pWCET
distribution for single-path programs assuming an evict-on-
miss random cache replacement policy. Extensions to SPTA
for the multi-path case are given in Section V.

5Here an event is defined by the fact that one or more instructions have a
given value for the execution time.

With an evict-on-miss random cache replacement policy, the
probability of evicting a given cache line is 1/N on each miss,
where N is the number of cache lines in a set. (As we assume
a fully associative cache, N equates to the total number of
cache lines). In 2010, Zhou [17] gave the following formula
for the overall probability of a hit on a particular access to
such a cache

Phit =

(
N − 1

N

)k

(4)

where k is the re-use distance of the instruction.
Unfortunately, with an evict-on-miss policy, the probabil-

ity that an instruction in memory block b is a hit is not
independent of whether previous instructions since the last
access to b were hits or misses, neither does a sequence of all
misses necessarily provide the worst-case scenario. This lack
of independence is reflected in the conditional probability. If
we know that memory block a was not evicted because we
observe a hit, then the probability that b was evicted instead
may be higher than if we observed a miss for a; effectively
there is a dependence via the finite size of the cache. We
illustrate this via a simple example.

Consider the sequence of instructions represented by their
memory blocks a, b, c, b, a, assuming a cache of size N = 2.
If the second access to b is a hit, then both b and c must be in
the cache at that point, and hence the conditional probability
that the second access to a is also a hit is zero. Thus the joint
probability that the second accesses to both a and b are hits is
zero. This differs from the probability of 1/16 that would be
obtained by assuming that all accesses were independent and
could potentially be misses causing evictions.

Computing conditional probabilities is exponential in the
re-use distance and so quickly becomes intractable. Instead,
we derive a lower bound on the probability of a hit that is a
function of the re-use distance but independent of the pattern
of hits and misses for previous instructions. We achieve this by
considering the maximum amount of information that could be
known due to the behaviour of intervening instructions (e.g.
by them being hits). An upper bound on this information
is obtained by assuming that the intermediate instruction
addresses are all unique and in different memory blocks, which
remain in the cache for all of the re-use distance. This reduces
the effective size of the cache available to the instruction of
interest.

For an instruction with a re-use distance of k, then the
probability of a hit can be lower bounded for each value of
h = 0 · · · k, where h is the number of potentially evicting
accesses that are actually hits. Each such hit reduces the
number of evictions by 1; however, it can also have an impact
on the number of cache blocks that are available to the
instruction of interest. In the worst-case, each such hit can
be safely modelled as resulting from a memory block that is
in the cache for the entire re-use distance of the instruction of
interest, thus reducing the effective cache size by 1. Hence a
lower bound on the probability of a hit Phit(h) given h hits



out of the k potentially evicting accesses is given by:

Phit(h) =

(
N − h− 1

N − h

)k−h

(5)

provided that h < N , otherwise the effective cache size is
zero, as is the lower bound on the probability of a hit.

The function Phit(h) is a monotonically increasing func-
tion for 0 ≤ h ≤ k < N , and hence Phit(0) =
min0≤h≤k<N Phit(h). (Proof is given in the appendix). Thus
a lower bound on the probability of a hit for arbitrary h is
given by:

Phit =

{ (
N−1
N

)k
if k < N

0 if k ≥ N,
(6)

Phit provides a lower bound on the probability of a hit
P{hit} that is independent of the previous pattern of hits or
misses. Hence substituting P{hit} = Phit in (1) delivers an
upper bound on the 1-CDF of the instruction, and a PMF that
can be convolved. Phit is monotonically non-increasing with
respect to k.

It is interesting to compare the formula for Phit given by (6)
for the evict-on-miss policy, with the equivalent formula given
in [5] and [6] for evict-on-access6. This formula is reproduced
below.

Phit
EoA =

{ (
N−(k−1)−1
N−(k−1)

)k
if k < N

0 if k ≥ N,
(7)

We observe that the bound for evict-on-miss dominates
the equivalent bound for evict-on-access in the sense that it
provides, for every instruction, a probability of a hit that is
larger ∀k < N . This is because evict-on-miss results in smaller
re-use distances7, and evict-on-access reduces the effective
size of the cache by the re-use distance (see [5] and [6]).
As an example, with N = 256, k = 104, Phit

EoA = 0.5 for
evict-on-access and Phit = 0.66 for evict-on-miss.

For a single-path program, SPTA computes an upper bound
on the pWCET distribution as the joint distribution of the
composing instructions. As the lower bound probability of
a hit for each instruction, given by (6), is valid irrespective
of the previous sequence of hits and misses, we effectively
have independence and hence an upper bound on the pWCET
distribution Cj can be obtained via convolution:

Cj = I1 ⊗ I2 ⊗ . . . , (8)

where Ii are the instructions, and Ii their distributions.

6With evict-on-access, on each request for an instruction a cache line is
selected at random and evicted. The cache is then checked to see if the
instruction is present and if not its memory block is loaded into the evicted
location in cache from main memory. This has the disadvantage that a request
for an instruction may evict its own memory block.

7If the re-use distance for an instruction is k with evict-on-miss, then it is
at least k+1 with evict-on-access, as the access for the instruction causes an
additional eviction in that case.

A. Program Representation

In our model, the only information needed to characterize
a memory access is its re-use distance, hence a sequence of n
instructions can be represented by the corresponding sequence
of re-use distances

Q = {k1, k2, . . . kn}. (9)

Further, as convolution is commutative, such a sequence Q can
be reordered without changing the final result i.e. the computed
upper bound on the pWCET distribution. For ease of use later,
we consider Q ordered by increasing re-use distance.

Example 2: The sequence of accesses
a, b, a1, c, d, b3, c2, d2, a5, e, b4, f, e2, g, a5, b4, h from
Example 1 results in the set of re-use distances8.
Q = {−,−, 1,−,−, 3, 2, 2, 5,−, 4,−, 2,−, 5, 4,−} where −
stands for an infinite re-use distance. It can be reordered as
QPROG = {1, 2, 2, 2, 3, 4, 4, 5, 5,−,−,−,−,−,−,−,−}.

We use QPROG to denote the set of re-use distances for all
of the instructions in a single path program. The upper bound
pWCET distribution for a program comprising the sequence
of instructions given in Example 2 is depicted in Figure 1.
Here, the maximum execution time is obtained when all of the
instructions are misses. Note, the latency of a hit and a miss
(H,M ) are 1 and 10 cycles respectively, and the cache size
N = 256. An execution time of 142 cycles has a probability
of slightly less than 10−9 of being exceeded on any given run.

B. Complexity of convolution

The complexity of convolving n instructions (8) might seem
to be O(2n) (i.e. exponential), and indeed this would be the
case if the PMF of each instruction contained two arbitrary
values. However, the maximum value in the PMF for each
instruction is a small constant (M in our model), hence after
n convolutions, the largest value in the resulting PMF is
nM , and hence a maximum of 2nM operations are required
to convolve the PMF of the (n + 1)-th instruction. Thus
the complexity is in fact pseudo-polynomial O(Mn2) where
M is a small constant. This makes the method tractable in
practice even for quite large values of n. Further, re-sampling
techniques can be used to significantly reduce the size of the
resulting distributions, with little reduction in precision [14].

IV. PROBABILISTIC CRPD

In this section we study the effect of pre-emption, referred to
as the probabilistic cache related pre-emption delay (pCRPD),
on the pWCET of single-path programs. (Extensions to the
multi-path case are given in Section V). First, we model
the effect of pre-emption on single instructions, from this
we derive analysis of the pre-emption effect on multiple
instructions due to pre-emption at a specific point in the
program. We then derive an upper bound on the pre-emption
effect at any arbitrary point in the program, and finally the
effect of multiple pre-emptions at arbitrary points.

8Strictly, the multiset of re-use distances.
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Fig. 1. Upper bound pWCET of the program in Example 2 with no pre-
emptions (PROG - solid line) and with one pre-emption at an arbitrary point
(P ∗ - dashed line). With no pre-emptions, an exceedence probability of 10−9

corresponds to an execution time of 142, while an execution time of 98 has
a probability of being exceeded of around 10−2.

Assuming a sequence of instructions for a program, we use
Pp to refer to a pre-emption point after the p-th instruction
in the sequence, hence P1 refers to pre-emption after the
first instruction, and so on. Pre-emption at point Pp changes
the sequence of instructions executed by effectively inserting
a sub-sequence of new instructions. These new instructions
are executed prior to the program being resumed and its
remaining instructions being executed. Instructions belonging
to the program that are contained in memory blocks that
are accessed both prior to and after point Pp have the re-
use distance of their first occurrence after point Pp increased
as a result of the pre-emption. We use the notation Qp to
represent the set of re-use distances of instructions affected
by pre-emption at point Pp. Instructions that are in memory
blocks not accessed prior to Pp or not accessed after Pp do not
suffer any change in their re-use distances. (We note that the
sets of instructions whose re-use distances are affected by pre-
emption have some similarities with the sets of Useful Cache
Blocks used in the analysis of deterministic cache replacement
policies [11]). The increase in re-use distances provides a way
of bounding the effect of pre-emption on a per instruction
basis, and hence the effect on the overall execution time of
the program.

For a single affected instruction I , pre-emption has the

effect of changing its distribution from I to I ′. We note that
the latencies do not change but the probabilities do, and they
change according to (6) such that if k is the re-use distance
without pre-emption, then the re-use distance with pre-emption
becomes k′ = k + d, where d is the maximum number
of evictions that could be caused due to the pre-emption.
Hence pre-emption decreases the probability of a cache hit
and increases the probability of a cache miss. Modelling the
increased re-use distance in this way gives a safe upper bound
on the pre-emption effect, but requires precise information
about the increase in the re-use distance caused by the pre-
emption (i.e. knowledge of the potentially nested pre-empting
tasks).

A simpler upper bound which we consider in this paper is
obtained by assuming pessimistically that pre-emption flushes
the cache, i.e. evicts all of the cache contents. This can
be modelled via the random variable BI representing the
bounding instruction with an infinite re-use distance, and hence
Phit = 0 and Pmiss = 1. At the instruction level, intuitively
the pre-emption effect is the difference between I and BI .
The bigger this difference, the larger the pre-emption effect
on instruction I .

Recall that QPROG is a representation of the program with-
out pre-emption. We can obtain a representation QPROG

Pp
of

the program including the effect of pre-emption at some point
Pp by removing the values in Qp from QPROG and replacing
them with |Qp| infinite re-use distances. We introduce the
binary operator pre which does this.

QPROG
Pp

= pre(QPROG,Qp). (10)

The instruction distributions corresponding to QPROG
Pp

can
then be convolved to obtain an upper bound pWCET distribu-
tion CPp for the program with pre-emption at point Pp.

Example 3: Returning to our running example
a, b, a1, c, d, b3, c2, d2, a5, e, b4, f, e2, g, a5, b4, h, pre-emption
after the first a affects just a1, while pre-emption after
the first d modifies a5, b3, c2, and d2. Hence Q1 = {1}
and Q5 = {2, 2, 3, 5} represent the sets of instructions
affected by pre-emption at points P1 and P5, respectively.
Without pre-emption, the sequence can be represented by
QPROG = {1, 2, 2, 2, 3, 4, 4, 5, 5,−,−,−,−,−,−,−,−},
accounting for pre-emption at point P5, gives
QPROG

P5
= {1, 2, 4, 4, 5,−,−,−,−,−,−,−,−,−,−,−,−}.

Our pCRPD analysis makes use of the concept of domi-
nance between the effects of pre-emption at different points
in the program.

Definition 5 (Dominance among Pre-emption Points): The
pre-emption effect due to preemption at a point Px is said to
dominate that due to preemption at a point Py if CPx � CPy

where CPx (CPy ) is the upper bound pWCET distribution of
the program assuming pre-emption at point Px (Py). (See
Definition 3 and Diaz et al. [13] for the definition of �).

A. Pre-emption Effects on Single Instructions

We now consider dominance among pre-emption effects on
single instructions.



Theorem 1 (Instruction Dominance): For a program con-
taining instructions Ix and Iy where the re-use distance of
Ix is less than or equal to the re-use distance of Iy and
hence Ix � Iy (see (6)), then the effect of pre-emption at
point Pv affecting only instruction Ix dominates the effect
of pre-emption at point Pw affecting only instruction Iy , i.e.
CPv � CPw .

Proof: The upper bound on the pWCET distribution of
the program without any pre-emption may be expressed as
C = Ix ⊗ Iy ⊗Z , where Z represents the convolution of the
distributions for other instructions. Assuming a pre-emption
at point Pv affecting only instruction Ix, then the pWCET
distribution of the program is upper bounded by CPv = BI ⊗
Iy⊗Z . (Obtained by replacing the distribution for instruction
Ix with that given by BI ). Similarly, for a pre-emption at
point Pw affecting only instruction Iy , the pWCET distribution
of the program is upper bounded by CPw = Ix ⊗ BI ⊗ Z .
By Lemma 1 given below, the fact that Iy � Ix, and the
commutativity of convolution, it follows that CPv � CPw

Lemma 1 (Convolution Monotonicity): Considering three
discrete random variables X , Y and Z with Z � Y , then
X ⊗ Z � X ⊗ Y .

Proof: Given Z � Y (i.e. P{Z ≤ v} ≤ P{Y ≤ v} for
any v), we have

P{X ⊗ Z ≤ v} =
∑
x

∑
v′≤v

P{X = x}P{Z = v′ − x}

=
∑
x

P{X = x}

∑
v′≤v

P{Z = v′ − x}


=
∑
x

P{X = x}

∑
l′≤l

P{Z = l′}


with l = v − x and l′ = v′ − x.

=
∑
x

P{X = x}P{Z ≤ l}

≤
∑
x

P{X = x}P{Y ≤ l}

since Z � Y;

=
∑
x

P{X = x}

∑
l′≤l

P{Y = l′}


=
∑
x

P{X = x}

∑
v′≤v

P{Y = v′ − x}


=
∑
x

∑
v′≤v

P{X = x}P{Y = v′ − x} = P{X ⊗ Y ≤ v}

Then P{X⊗Z ≤ v} ≤ P{X⊗Y ≤ v}, hence X⊗Z � X⊗Y

B. Pre-emption Effects on Multiple Instructions

We now consider the effect of pre-emption on multiple
instructions. Our aim is to determine an upper bound on the
effect of pre-emption at any arbitrary point in the program. For

mathematical convenience and without loss of generality, we
assume that the sets of re-use distances for the instructions
affected by each pre-emption point are padded with infinite
re-use distance values so that they are all of the same length.
For example, Q1 = {1,−,−,−} is equivalent to Q1 = {1}.
We note that this does not change the pre-emption effect
represented, as replacing the distribution for an infinite re-use
distance instruction by BI results in no change. In any case,
such padded values will not appear in the final analysis.

We now introduce a binary operator min+ which applies
to our extended (padded) sets of re-use distances. Let Qi =
{ki,1, ki,2, . . . , ki,n} where ki,r are the re-use distances in
order smallest first, and similarly for Qj . Note |Qi| = |Qj |.

min+(Qi,Qj) = {kr = min(ki,r, kj,r) ∀ r ≤ |Qi|} (11)

Hence for the sets Q1 = {1}, Q5 = {2, 2, 3, 5} referred to
earlier, we have min+(Q1,Q5) = {1, 2, 3, 5}. We note that
min+() is associative; for brevity in the remainder of the
paper, we assume that it may take multiple parameters.

Theorem 2 (Pre-emption Point Dominance): The effect of
pre-emption at point Px dominates the effect of pre-emption at
point Py (i.e. CPv � CPw ) if Qx = min+(Qx,Qy), where Qx

and Qy are the extended representations of the re-use distances
of the instructions affected by pre-emptions at points Px and
Py respectively.

Proof: Follows by applying Theorem 1 to the pairs of
instructions and re-use distances represented by corresponding
elements of Qx and Qy (i.e. kx,r and ky,r ∀r), and the fact
that convolution is commutative

Corollary 1 (Pre-emption Point Distributions): It follows
from the proof of Theorem 2, that the effect of pre-emption
at point Px dominates that for pre-emption at point Py if
X � Y where X (Y) is the convolution of the distributions
of the extended (padded) set of instructions affected by
pre-emption at point Px (Py).

Theorem 2 and the min+ operator allow us to construct
the pre-emption effect of a virtual pre-emption point P ∗ that
dominates the effect of pre-emption at any point, and hence
upper bounds the effect of pre-emption at any arbitrary point
in the program.

Q∗ = min+(Q1,Q2, . . . ,Qn) (12)

We note that Q∗ does not include any infinite re-use distances,
but may include re-use distances obtained from a number of
real pre-emption points. Hence the pre-emption effect captured
by this virtual pre-emption point is a safe upper bound, but
may be pessimistic.

Theorem 3 (Dominant Pre-emption Point): The upper
bound CP∗ on the pWCET distribution of the program
assuming the pre-emption effect represented by the virtual
pre-emption point P ∗, is greater than or equal to the upper
bound on the pWCET distribution CPx assuming pre-emption
at any single arbitrary point Px (i.e. CP∗ � CPx ).

Proof: Follows from the fact that each instruction affected
by pre-emption at point Px gives rise to a re-use distance that



may be paired with a re-use distance in Q∗ that is no larger.
Application of the proof of Theorem 1 to each instruction
affected by pre-emption at point Px then suffices to prove the
theorem

An upper bound on the pWCET of a program assuming
a single pre-emption at any arbitrary point can therefore be
obtained by applying the effect Q∗ of the virtual pre-emption
point to the sequence of instructions of the program and their
re-use distances, as represented by QPROG, via:

QPROG
P∗ = pre(QPROG,Q∗). (13)

The set of instruction distributions represented by QPROG
P∗

may then be convolved to produce an upper bound pWCET
CP∗ for the program which is valid for a single pre-emption
at any arbitrary point.

Example 4: Returning to our running example,
a, b, a1, c, d, b3, c2, d2, a5, e, b4, f, e2, g, a5, b4, h, there are 16
pre-emption points with Q1 = {1}, Q2 = {1, 3}, Q3 = {3, 5},
Q4 = {2, 3, 5}, Q5 = {2, 2, 3, 5}, Q6 = {2, 2, 4, 5},
Q7 = {2, 4, 5}, Q8 = Q9 = {4, 5}, Q10 = Q11 =
Q12 = {2, 4, 5}, Q13 = Q14 = {4, 5}, Q15 = {4},
Q16 = {}. Hence, the virtual pre-emption point P ∗ results in
Q∗ = min+

r∈{1,...,16}{Qr} = {1, 2, 3, 5}.
Figure 1 illustrates the PMF and (1-CDF) of this program

with no pre-emption (PROG) and accounting for one arbitrary
pre-emption (P ∗). In the non-pre-emptive case, an execution
time of 142 cycles has a probability of 10−9 of being exceeded
on any given run, whereas with a single arbitrary pre-emption
modelled by P ∗ this increases to 161 cycles.

C. Modelling Multiple Pre-emptions

In the previous sub-section we characterized the effect of
single pre-emptions. We now extend our approach to cater
for multiple preemptions. An upper bound QPROG

nP∗ on the
pWCET of a program assuming n pre-emptions at arbitrary
points can be obtained by recursively applying the effect Q∗
of the virtual pre-emption point n times:

QPROG
xP∗ = pre(QPROG

(x−1)P∗ ,Q
∗) (14)

This holds because Q∗ remains a valid, though potentially
pessimistic, upper bound on the maximum effect of the 2nd,
3rd, 4th ... nth arbitrary pre-emption. We note that the values in
n×Q∗ may not all appear in QPROG, indeed, |n×Q∗| may be
larger than |QPROG|. To correctly account for n preemptions,
we must use the following rules when processing the values
in Q∗: If the value is present in QPROG

(x−1)P∗ , then we replace
it with ’−’ meaning infinite re-use distance (i.e. the bounding
instruction). If the value is not present in QPROG

(x−1)P∗ , then we
take the next larger value remaining in QPROG

(x−1)P∗ and replace
it with the bounding instruction. We note that this is safe as
such a mismatch is a result of pessimism in the analysis of
multiple pre-emptions. It indicates that n pre-emptions cannot
affect instructions with this value of re-use distance n times;
however, instructions with larger re-use distances could still
be affected, and so these re-use distances must be replaced

instead.
Example 5: Given a program described by

a, b, c, d, a3, b3, c3, d3, d0, d0, d0, d0, d0, d0 then
Q∗ = {0, 3, 3, 3}. Assuming that we are interested
in the effect of four pre-emptions, then the resultant
value of QPROG

4P∗ , accounting for 4 pre-emptions is:
{0, 0,−,−,−,−,−,−,−,−,−,−,−,−}. We note that in
this case, 4×Q∗ has 16 elements whereas QPROG is only of
size 14, nevertheless, 4 pre-emptions are insufficient to make
all of the re-use distances infinite.

D. Complexity of pCRPD

The complexity of pCRPD analysis can be described in
terms of the number of instructions n, the total number of
memory blocks S, and the number of pre-emptions Z (where
S < n and Z < n). The time complexity of the steps in
pCRPD analysis are as follows: (i) finding the re-use distance
at each program point (or instruction) - O(n) using an array of
S values, (ii) computing the representation of the pre-emption
cost at every pre-emption point - O(nS), (iii) sorting the
values in each of those pre-emption cost representations and
combining them to build a representation of the virtual pre-
emption point P ∗ - O(nSlog(S)), (iv) sorting the program
representation QPROG - O(nlog(n)), and (v) combining it
with the representation of the virtual pre-emption point Z
times to bound the effect of Z pre-emptions - O(Z(n + S).
The overall complexity of pCRPD analysis is therefore upper
bounded by O(n2log(n). Convolution of the resultant program
representation (which accounts for Z pre-emptions) is then
required, and has a complexity of O(Mn2), where M is a
small constant, equating to the cost of a cache miss.

V. MULTI-PATH ANALYSIS

In practice, programs may have multiple execution paths
rather than the simple sequential execution considered so far.
In this case, the static probabilistic timing analysis required
to derive the upper bound pWCET distribution without pre-
emption is more complex because it has to take into account
all of the possible paths that the program may execute.
Further, analysis of the pCRPD is also more complex as
pre-emption may take place at any point on any path. In
this section, we present an approach to SPTA applicable to
multi-path programs. This approach collapses a multi-path
program into a synthetic, single path representation and hence
provides an upper bound pWCET distribution for non-pre-
emptive execution. We also present a method of deriving
an upper bound on the pre-emption effect at any point in
a multipath program, compatible with our analysis of the
upper bound pWCET distribution for the non-pre-emptive
case. The set of pre-emption effects for all pre-emption points
can then be reduced to a single dominant pre-emption effect
Q∗ as in the single path case, and applied to the synthetic
single path representation to compute an upper bound on the
pWCET distribution for a multipath program subject to one or
more pre-emptions. We use Lambda Calculus to express our
multipath analysis.



A. Synthetic Path

We derive one single synthetic path for each program which
over-approximates all concrete paths. We first upper-bound
at each program point (instruction) and for each memory
block the re-use distance using a simple program analysis. We
then combine all sub-paths into the single synthetic path. We
require the following two assumptions to hold: (i) each loop
in the program is bounded and (ii) the code is well-structured.
Both assumptions hold for most hard-real time systems, which
were designed with timing analysability in mind.

1) Program Analysis: We assign each program point a
function rd that maps a memory block m to an upper bound
on its re-use distance. This means rd(m) at program point
P gives the maximal number of evictions since a previous
access to m up to program point P . Hence, the domain of the
analysis is defined as rd : M→ N∞, with an initial valuation
that assigns∞ to each memory block (since we cannot assume
any prior use of any memory block):

∀m ∈M : rdinit(m) =∞ (15)

The transfer function updates the domain of the analysis at
each access to a memory block m. If the re-use distance of
memory block m was previously zero, then the block is in the
cache and the subsequent access is always a hit, and so does
not increase the re-use distances of other instructions. Hence,
in this case, the transfer function copies the previous values.
Otherwise, memory block m is assigned a re-use distance of
0, and the re-use distances of all other blocks are increased
by one.

tf : (M→ N∞)×M→ (M→ N∞)

tf(rd,m) = rd′ (16)

with

rd′(m′) =

 0 m = m′

rd(m′) rd(m) = 0
rd(m′) + 1 otherwise

(17)

As we are interested in upper bounds on the re-use distances,
we compute the maximum of the re-use distances at program
joins.⊔

: (M→ N∞)× (M→ N∞)→ (M→ N∞) (18)(
rd1

⊔
rd2

)
(m) = max(rd1(m), rd2(m)) (19)

Using these definitions, we can compute a fixed-point of rd on
the control-flow graph, which delivers valid upper bounds on
the re-use distances for each memory block at each program
point. We then replace the nodes within the control-flow graph
with the corresponding re-use distance of the memory access.

For a given program point (instruction) accessing m, the
re-use distance is given by the maximum value of rd(m) for
any immediately preceding program point (instruction).

2) Path Combination: We are interested in a synthetic path
representing all concrete paths of a program. Explicit enumer-
ation of all paths within a program is however computationally

Region R

. .
.

QR1

QR2

.

.

.
. .

(a) Basic Control Flow Graph with an Inner Region R

. . . .
QR = max+(QR1 ,QR2 )

(b) Region Collapse, Inner Synthetic Path

. . . .
QL = QB ∪ . . . ∪ QB

(c) Loop replacement

Fig. 2. Steps of the Path Combination.

infeasible. The number of paths grows exponentially with the
number of loop-iterations and control-flow splits. For instance,
the control-flow graph depicted in Figure 2 has up to 2l

different paths, where l is the loop bound. So, we aim for
a recursive computation of the synthetic path. To this end,
we split the control-flow graph into single-entry, single-exit
(SESE) regions and compute a synthetic path for each region.
Later on, we combine these regions into a single synthetic path
for the whole program.

We start with an inner-most SESE region R, which does
not contain any loop (see Figure 2(a)). We derive all sub-
paths QR1 , . . . ,QRn from the entry to the exit of the region
and replace the complete region with a synthetic path (see
Figure 2(b)):

QR = max+(QR1 ,QR2 , . . . ,QRn) (20)

where max+ is defined in a similar way to min+, i.e.

max+(QRi ,QRj ) = {kr = max(ki,r, kj,r) ∀ r ≤ |QRi |} (21)

however, in this case the sets QRi representing the sub-paths
are padded with zeros until they are all of the same length,
before being sorted, smallest value first. This ensures that the
pWCET distribution for QR upper bounds those for QRi with
a minimum amount of pessimism.

For each loop, we first compute the synthetic path of the
loop body region QR and create a new path for the loop, in
which we duplicate QB (representing the loop body) l-times,
where l denotes the upper loop bound (see Figure 2(c)):

QL = QB ∪ . . . ∪QB︸ ︷︷ ︸
l

(22)

We recursively repeat these steps until we end up with one
single synthetic path.



B. Pre-emption Effects

We now derive a representation of the pre-emption effect
at each point in a multi-path program. As enumerating all
possible paths is typically intractable, we instead consider
program points on the control flow graph. We assume that
each node (program point) on the control flow graph has an
associated upper bound re-use distance for its memory access
that has been computed as described previously.

1) Program Analysis: We assume that at each program
point P , we have computed (via the fixed point of rd),
the maximum re-use distance rdk for the memory access m
at that point. We assign each program point a function pe
(pre-emption effect) that maps each memory block m to the
minimum re-use distance for that block that could be affected
by pre-emption immediately prior to the program point. (Note
these minimum values are computed with respect to the
maximum re-use distances rdk assumed in the computation of
the upper bound pWCET distribution for the non-pre-emptive
case. This ensures that the treatment of pre-emption effects
provides a safe upper bound when applied to the pWCET of
the non-pre-emptive case. Larger pre-emption effects could be
observed in practice, but only on an instruction where the
actual re-use distance is smaller than that assumed by the
pWCET analysis. In this case part of the pre-emption effect is
already captured as pessimism in the pWCET analysis. This
is similar to the deterministic case where CRPD analysis only
needs to consider accesses that are not already considered as
cache misses by the timing analysis [1]).

The function pe(m) is computed by backwards analysis,
starting at the end of the program and working towards the
start. The initial valuation assigns ∞ to each memory block,
since there is no further use of any memory block after the
end of the program.

∀m ∈M : peinit(m) =∞ (23)

The transfer function updates the domain of the analysis at
each access to a memory block:

tf(pe,m) = pe′ (24)

with
pe′(m′) =

{
rdk m = m′

pe(m′) otherwise (25)

As we are interested in the largest pre-emption effects, then
on program joins the minimum values for re-use distances are
taken: (

pe1
⊔

pe2

)
(m) = min(pe1(m), pe2(m)) (26)

Using this definition of pe(m), we can compute a fixed
point of pe on the control flow graph. The fixed point of
pe at each program point gives the set of re-use distances
describing the maximum effect of pre-emption immediately
prior to that program point. These values may be described
in the Q notation. The Q values for all possible pre-emption
points can then be combined to form a representation Q∗ of
the maximum effect of pre-emption at any arbitrary point in

the program, via (12) as per the single path case. The upper
bound pWCET distribution for the program, assuming one or
more pre-emptions at arbitrary points, may then be obtained by
applying Q∗ to the synthetic, single path representation using
the techniques derived for the single path case. (We note that
due to pessimism in the analysis for the multi-path case, not
all of the values in Q∗ may appear in QPROG. This is similar
to the multiple pre-emption case for single path programs and
the same rules for processing Q∗ apply).

VI. EXPERIMENTAL EVALUATION

We applied our integrated probabilistic analysis approach
to the FAC, FIBCALL, FDCT, JFDCTINT (single-path with
loops) and BS, INSERTSORT, FIR (multi-path) benchmarks
from the Mälardalen benchmark suite [10].

We investigated the effect of multiple pre-emptions on the
upper bound pWCET distribution (1-CDF) of each program,
for both the evict-on-miss and the evict-on-access [6] random
cache replacement policies. (We extended the basic analysis
of the evict-on-access policy [6] to account for the effect of
pre-emptions and multiple paths).

We carried out 4 experiments on each benchmark:
1) Varying the number of pre-emptions: 0, 1, 2, 3, and so

on, for a memory block size of 1 and a cache size of
N = 128 blocks (512 bytes).

2) Varying the number of pre-emptions: 0, 1, 2, 3, and so
on, for a memory block size of 4 and a cache size of
N = 128 blocks (2048 bytes).

3) Varying the memory block size, corresponding to 1, 2,
4, and 8 instructions (i.e. 4, 8, 16, 32 bytes, given that
instructions are 4 bytes), with the cache size correspond-
ing to N = 128 blocks (so 512, 1024, 2048, and 4096
bytes respectively).

4) Varying the memory block size, corresponding to 1, 2,
4, and 8 instructions, with the cache size fixed at 1024
bytes (so N = 256, N = 128, N = 64, and N = 32
respectively).

Our experiments assumed cache hit and miss latencies of 1
and 10 respectively. For reasons of space and clarity, here we
only present results for the first two experiments for the simple
FAC benchmark, results for the other experiments and for the
BS, FDCT, FIBCALL, FIR, JFDCTINT, and INSERTSORT
benchmarks can be found in the technical report [7].

Figure 3 compares the pre-emption effect for every pre-
emption point in the FAC benchmark, together with the
resulting dominant virtual pre-emption point P ∗, shown by the
bold lower line (downwards staircase). This graph shows the
1-CDF of the (padded) set of instructions affected by the pre-
emption that are replaced by a set containing an equal number
of bounding instructions. Thus an intuitive interpretation is that
the pre-emption effect corresponds to the area between the
line running horizontally across the top of the graph and then
vertically down (the bounding instructions) and the staircase
corresponding to each pre-emption point. Thus the largest
effect is for the virtual pre-emption point P ∗. In this case, at
most 8 instructions can be affected by a single pre-emption.
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Fig. 3. FAC: 1-CDF representation of the pre-emption effect at every pre-
emption point Px, and also for the virtual pre-emption point P ∗, assuming a
memory block size of 1, cache size of N = 128.
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Fig. 4. FAC: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-MISS.
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Fig. 5. FAC: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-ACCESS.

In our first experiment, we compared the upper bound
pWCET distribution (1-CDF) of the program for the evict-on-
miss and evict-on-access random cache replacement policies
accounting for 0, 1, 2, 3, . . . arbitrary pre-emptions, assuming
a memory block size of 4 bytes (1 instruction) and a cache
size of 512 bytes (N = 128). Figures 4 and 5 illustrate
these results for the FAC benchmark. The black lines in
the figures are the computed upper bounds for 0, 1, 2, 3, . . .
arbitrary pre-emptions, whereas the shorter red lines are for
the corresponding execution time distribution (1-CDF) for
0, 1, 2, 3, . . . pre-emptions obtained from 107 runs of the

program in a simulator. In the simulation, the pre-emption
points were chosen at random on each run, and pre-emption
was assumed to flush the cache. We note that the 1-CDF
pWCET distribution computed according to our analysis forms
an upper bound on the observed results, with and without pre-
emption. From the graphs, we may read off where each 1-CDF
line crosses the horizontal dotted line for a given probability
such as 10−9, thus the effect of pre-emption can be interpreted
as increasing the execution time that has that probability of
being exceeded on each run. Comparing figures 4 and 5, we
observe that evict-on-miss has marginally better performance
than evict-on-access in each case. Note that after 5 pre-
emptions, the analysis indicates that all of the instructions
could become misses, hence the final vertical line at the right
hand side of both graphs.
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Fig. 6. FAC: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-MISS.

0 100 200 300 400 500 600
Execution time

P
ro
ba
bi
lit
y

1e-15

1e-11
1e-09

1e-04

0.1

PROG
P*
nxP*

Fig. 7. FAC: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-ACCESS.

Our second experiment was effectively a repeat of the first,
but this time with a memory block size of 4 instructions
and a commensurately larger cache of 2048 bytes (i.e again
N = 128 blocks). Figures 6 and 7 illustrate these results for
the FAC benchmark for the evict-on-miss and evict-on-access
policies respectively. We observe that both the upper bound
pWCETs and the results from simulation are significantly
reduced compared to the same experiments with a memory
block size of 1 instruction. In this case, both the evict-on-miss
and the evict-on-access policies benefit from the increased



memory block size, as instructions that were previously in
different memory blocks now share the same memory block
which reduces the re-use distances. Further, the performance
of evict-on-miss is now significantly better than that of evict-
on-access. This is due to the large number of instructions that
have a re-use distance of zero with evict-on-miss, and so do
not increase the re-use distances of subsequent instructions.
Further, over 25 pre-emptions are now required to reduce all
of the instructions to misses, compared to just 5 in the previous
experiment with a block size of 4 bytes (1 instruction). This
is because an individual pre-emption is needed to reduce each
zero re-use distance instruction to a miss. This can be seen in
the spacing of the lines towards the right hand side of each
graph which are vertical and 9 time units apart, representing
a single additional instruction that is altered from always hit
to always miss. We note that FAC is a very small program
that nevertheless includes loops and conditional statements.
For larger programs, a very large number of pre-emptions are
required before the pWCET is reduced to the equivalent of all
misses, for example, in the case of INSERTSORT, over 500
pre-emptions are required to do this.

In our third and fourth experiments, we compared the
upper bound pWCET distribution of the program without pre-
emption, assuming memory block sizes of 1, 2, 4, and 8
instructions. In the third experiment this was done for cache
sizes corresponding to N = 128 blocks (so 512, 1024, 2048,
and 4096 bytes respectively), and in the fourth experiment
with the size of the cache fixed at 1024 bytes (i.e. N = 256,
N = 128, N = 64, and N = 32 blocks respectively). Detailed
results can be found in the technical report [7]. We observed
that as expected, increasing the memory block size while
also increasing the cache size so that it is constant in terms
of the number of memory blocks significantly improves the
pWCET of the program, with the best performance obtained
for memory blocks of size 8. As the memory block size
increased, so did the advantage of evict-on-miss over evict-on-
access. Further, when the size of the cache is held constant,
then the largest memory block size does not always result
in the best overall performance depending upon the re-use
distances for key elements the program (e.g. code in loops).

The appendix of the technical report [7] contains the results
of the four experiments for the BS, FDCT, FIBCALL, FIR,
JFDCTINT, and INSERTSORT benchmarks. There results are
shown for up to a maximum of 10 pre-emptions, as some
of the benchmarks require a large number of pre-emptions to
reduce performance to the equivalent of all cache misses.

VII. CONCLUSIONS AND FUTURE WORK

Random cache replacement policies have the potential to
provide an increase in the level of performance of hard
real-time systems that can be guaranteed with respect to an
acceptable threshold for the timing failure rate [5]. This is
achieved by making the probability of any pathological cases
vanishingly small.

The main contribution of this paper is the introduction
of integrated probabilistic cache related pre-emption delay

(pCRPD) analysis and static probabilistic timing analysis
(SPTA) for multi-path programs running on hardware that uses
an evict-on-miss random cache replacement policy. The SPTA
provides an upper bound on the exceedance function (1-CDF)
for the probabilistic worst-case execution time (pWCET) of
a program, using only information about the structure of the
program, the re-use distances of its instructions, and the size
of the cache. The pCRPD analysis determines the maximum
effect that pre-emption of the program has on its pWCET. The
integration between SPTA and pCRPD updates the pWCET
to account for the effects of one or more pre-emptions at
arbitrary points. Our analysis is based on a lower bound
on the probability of a cache hit for each instruction that
is crucially independent of the previous history of hits and
misses, depending instead only upon the re-use distance. We
showed that this lower bound for the evict-on-miss policy
dominates that for evict-on-access given in [5] and [6]. We
demonstrated the viability of our approach on a number of
programs from the Mälardalen benchmark suite [10].

Finally, we note that a number of extensions are possible
to our research. In future, we intend to make improvements
to the pWCET and pCRPD analysis using techniques such as
loop unrolling. Further, we will make comparisons with state-
of-the-art deterministic analysis for systems with traditional
cache replacement policies. We also intend to fully integrate
our approach with schedulability analysis.
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APPENDIX

Theorem 4 (Monotonicity of Phit(h)): The formula for the
probability of a hit in the case of the evict-on-miss random
cache replacement policy given by

P (hit) =

 min

{(
N−h−1
N−h

)k−h}
N > k

0 otherwise
(27)

can be simplified to

P (hit) =

{ (
N−1
N

)k
N > k

0 otherwise
(28)

Proof: We prove the correctness of the simplification by
showing that the inner function

g(h) =

(
N − h− 1

N − h

)k−h

(29)

is monotonically increasing in h ∈ {0, . . . N} if N > k and
hence, is minimal if h = 0. First, we reformulate g(h) by
replacing h = N − x:

f(x) =

(
x− 1

x

)x−(N−k)

and show that f(x) is monotonically decreasing in x ∈
{min(1, N − h), . . . , N} if N > k, i.e.,

∀x : f(x) ≥ f(x+ 1)

∀x :f(x) ≥ f(x+ 1)

⇔
(
x− 1

x

)x−(N−k)

≥
(

x

x+ 1

)x+1−(N−k)

⇔
(
x− 1

x

)x−(N−k)(
x+ 1

x

)x−(N−k)

≥ x

x+ 1
,∀x ≥ 1

⇔
(
(x− 1)(x+ 1)

x2

)x−(N−k)

≥ x

x+ 1
,∀x ≥ 1

⇔
(
x2 − 1

x2

)x−(N−k)

≥ x

x+ 1
,∀x ≥ 1 and N > k

⇐
(
x2 − 1

x2

)x−1

≥ x

x+ 1
,∀x ≥ 1

⇔
(
x2 − 1

x2

)x

≥ x(x2 − 1)

(x+ 1)x2
,∀x ≥ 1

⇔
(
x2 − 1

x2

)x

≥ x− 1

x
,∀x ≥ 1

⇔(x2 − 1)x ≥ x2x − x2x−1,∀x ≥ 1

⇔
x∑

i=0

(
x

i

)
x2(x−i)(−1)i ≥ x2x − x2x−1,∀x ≥ 1

⇔x2x − x · x2(x−1) +

x∑
i=2

(
x

i

)
x2(x−i)(−1)i

≥ x2x − x2x−1,∀x ≥ 1

⇔
x∑

i=2

(
x

i

)
x2(x−i)(−1)i ≥ 0,∀x ≥ 1

To prove the last inequality, we show that the sum of two
succeeding terms starting with an even i is positive ∀x ≥ 1:(

x

i

)
x2(x−i)(−1)i +

(
x

i+ 1

)
x2(x−(i+1))(−1)(i+1) ≥ 0

⇔
(
x

i

)
x2(x−i) −

(
x

i+ 1

)
x2(x−i−1) ≥ 0

⇔
(
x

i

)
x2x−2i ≥

(
x

i+ 1

)
x2x−2i−2

⇔
(
x

i

)
≥
(

x

i+ 1

)
x−2

⇔
(
x

i

)
≥ x!(i+ 1)

(i)!(x− i− 1)!x2

⇔
(
x

i

)
≥ x!i

(i)!(x− i)!x2

⇔
(
x

i

)
≥
(
x

i

)
i(x− i)

x2

⇔1 ≥ i(x− i)

x2

⇔x2 ≥ i(x− i)

which holds since x ≥ i.
Note that there is one additional positive term if x is even.


