
Evaluation of Cache Partitioning
for Hard Real-Time Systems

Sebastian Altmeyer∗ Roeland Douma∗
∗University of Amsterdam

Amsterdam, The Netherlands
{altmeyer, r.j.douma}@uva.nl

Will Lunniss† Robert I. Davis†
†University of York

York, UK
{wl510, rob.davis}@york.ac.uk

Abstract—In hard real-time systems, cache partitioning is
often suggested as a means of increasing the predictability
of caches in pre-emptively scheduled systems: when a task is
assigned its own cache partition, inter-task cache eviction is
avoided, and timing verification is reduced to the standard worst-
case execution time (WCET) analysis used in non-pre-emptive
systems. The downside of cache partitioning is the potential
increase in execution times.

In this paper, we evaluate cache partitioning for hard real-
time systems in terms of overall schedulability. To this end, we
examine the sensitivity of task execution times to the size of
the cache partition allocated and present a cache partitioning
algorithm that is optimal with respect to taskset schedulability.
We then evaluate the performance of cache partitioning compared
to state-of-the-art pre-emption cost analysis based on benchmark
code and on a large number of synthetic tasksets. This allows
us to derive general conclusions about the usability of cache
partitioning and identify taskset and system parameters that
influence the relative effectiveness of cache partitioning.

I. Introduction
Cache partitioning is often suggested as a means of increas-

ing the predictability of caches in pre-emptively scheduled hard
real-time systems. The rationale behind this argument is that
when a task is assigned its own cache partition, inter-task cache
eviction is avoided, and timing verification is reduced to the
standard worst-case execution time (WCET) analysis used in
non-pre-emptive systems. Cache partitioning comes at a cost.
The reduced amount of cache available to each task potentially
increases intra-task cache conflicts, trading an increase in (non-
pre-emptive) execution times for reduced cache related pre-
emption delays (CRPD).

Despite the wealth of publications on cache partitioning
for real-time systems, little work has been done on the ef-
fectiveness of cache partitioning compared to systems where
tasks make unconstrained use of the cache. Pre-emptive multi-
tasking systems with unconstrained caches were considered
unpredictable. Given recent advances in the analysis of cache
related pre-emption delays, we consider this view outdated.

In this paper, we evaluate cache partitioning for hard real-
time systems in terms of overall schedulability. To this end, we
first determine the sensitivity of task execution times to the size
of the available cache partition using application code from
real-time benchmarks. Contrary to the implicit assumptions
in prior work, the worst-case execution time of a task is not
necessarily monotonic in the partition size. We show how the
monotonicity property can be re-established using a monotonic
upper bound function for the execution times. We then present

a cache partitioning algorithm that aims at optimizing taskset
schedulability. Under the assumption of monotonic execution
times, the algorithm is optimal in the sense that it finds
a schedulable cache partitioning whenever one exists. The
algorithm is based on a branch-and-bound approach and is
agnostic with respect to the schedulability test used, i.e., it is
valid for any, sustainable schedulability test [6] and scheduling
algorithm.

We evaluate the performance of cache partitioning vs. a
non-partitioned cache, using state-of-the-art pre-emption cost
aware schedulability analysis, based on two different bench-
mark sets (PapaBench and Mälardalen Benchmark Suite) and
on a large number of synthetic tasksets. The evaluation using
synthetic tasksets enables us to derive results that are valid
in general, and not just for a small selection of use-cases. In
addition, we identify how different parameter settings affect
the relative performance of the partitioned vs. non-partitioned
approaches. Finally, we quantify the error margin introduced
by the assumption of monotonic execution times.

We focus on a completely analytical approach, where we
compare the schedulability of real-time systems assuming fixed
priority pre-emptive scheduling and a direct mapped cache. In
both cases, partitioned and non-partitioned cache, we rely on
bounds on the execution times obtained via WCET analysis,
and in the non-partitioned case, also on analytical bounds on
the CRPD. We concentrate on direct-mapped caches and fixed
priority pre-emptive scheduling.

The paper is structured as follows: In Section II, we intro-
duce the required terminology and notation. In Section III, we
review existing approaches to cache partitioning. Section IV
explains the sensitivity of the worst-case execution times of
tasks with respect to the size of their allocated cache parti-
tions. The optimal cache partitioning algorithm is presented
in Section V, the results of the case study in Section VI and
the evaluation based on synthetic tasksets in Section VI-C.
Section VII concludes with a summary and discussion of future
work.

II. SystemModel, Terminology and Notation
We consider the fixed priority scheduling of a set of

sporadic tasks (or taskset) on a single processor. Each taskset
Γ comprises n tasks Γ = {τ1, . . . , τn}, where n is a positive
integer. We assume that the index i of task τi represents its
priority, hence τ1 has the highest priority, and τn the lowest.
We assume a discrete time model, where all task parameters
are positive integers. We use the notation hp(i) (and lp(i)) to
mean the set of tasks with priorities higher than (and lower

than) i, and the notation hep(i) (and lep(i)) to mean the set
of tasks with priorities higher than or equal to (lower than or
equal to) i.

Each task τi is characterized by its bounded worst-case
execution time Ci obtained assuming no pre-emption (i.e. not
including any cache related pre-emption delays), minimum
inter-arrival time or period Ti, and relative deadline Di. Each
task τi therefore gives rise to a potentially unbounded sequence
of invocations or jobs, each of which has an execution time
upper bounded by Ci, an arrival time at least Ti after the arrival
of its previous job, and an absolute deadline that is Di after
its arrival. Further, each task has a bounded release jitter of Ji,
representing the maximum time from its notional arrival to it
being ready to execute on the processor. In an implicit-deadline
taskset, all tasks have Di = Ti, in a constrained-deadline
taskset, all tasks have Di ≤ Ti while in an arbitrary-deadline
taskset, task deadlines are independent of their periods. In
this paper, we assume constrained deadline tasksets. The tasks
are assumed to be independent and so cannot block each
other from executing by accessing mutually exclusive shared
resources, with the exception of the processor. (We note that
this restriction is only made to simplify comparisons between
the different approaches, resource sharing can be accounted for
by schedulability analysis that incorporates CRPD as shown
in [2, 3]).

The worst-case response time Ri of a task τi is given by the
longest possible time from release of a job of the task until it
completes execution. Thus task τi is schedulable if and only if
Ri ≤ Di − Ji , and a taskset is schedulable if and only if all of
its tasks are schedulable. The utilization Ui, of a task is given
by its execution time divided by its period (Ui = Ci/Ti). The
total utilization U of a taskset is the sum of the utilizations of
all of its tasks.

A. Pre-emption Costs
We now extend the sporadic task model to include pre-

emption costs. To this end, we need to explain how pre-
emption costs can be derived. To simplify the following
explanation and examples, we assume direct-mapped caches.

The additional execution time due to pre-emption is mainly
caused by cache eviction: the pre-empting task evicts cache
blocks of the pre-empted task that have to be reloaded after
the pre-empted task resumes. The additional context switch
costs due to the scheduler invocation and a possible pipeline-
flush can be upper-bounded by a constant. We assume that
these constant costs are already included in Ci. Hence, from
here on, we use pre-emption cost to refer only to the cost of
additional cache reloads due to pre-emption. This cache-related
pre-emption delay (CRPD) is bounded by g×BRT where g is
an upper bound on the number of cache block reloads due to
pre-emption and BRT is an upper-bound on the time necessary
to reload a memory block in the cache (block reload time).

To analyse the effect of pre-emption on a pre-empted task,
Lee et al. [19] introduced the concept of a useful cache block:
A memory block m is called a useful cache block (UCB) at
program point P, if (i) m may be cached at P and (ii) m may
be reused at program point Q that may be reached from P
without eviction of m on this path. In the case of pre-emption
at program point P, only the memory blocks that (i) are cached
and (ii) will be reused, may cause additional reloads. Hence,
the number of UCBs at program point P gives an upper bound

on the number of additional reloads due to a pre-emption
at P. The maximum possible pre-emption cost for a task is
determined by the program point with the highest number of
UCBs. Note that for each subsequent pre-emption, the program
point with the next smaller number of UCBs can be considered.
Thus, the j-th highest number of UCBs can be counted for
the j-th pre-emption. A tighter definition is presented in [1];
however, in this paper we need only the basic concept.

The worst-case impact of a pre-empting task is given by
the number of cache blocks that the task may evict during its
execution. Recall that we consider direct-mapped caches: in
this case, loading one block into the cache may result in the
eviction of at most one cache block. A memory block accessed
during the execution of a pre-empting task is referred to as an
evicting cache block (ECB). Accessing an ECB may evict a
cache block of a pre-empted task.

In this paper, we represent the sets of ECBs and UCBs as
sets of integers with the following meaning:

s ∈ UCBi ⇔ τi has a useful cache block in cache-set s

s ∈ ECBi ⇔ τi may evict a cache block in cache-set s

Separate computation of the pre-emption cost is restricted
to architectures without timing anomalies [20] but is indepen-
dent of the type of cache used, i.e. data, instruction or unified
cache.

In the case of set-associative LRU caches1, a single cache-
set may contain several useful cache blocks. For instance,
UCB1 = {1, 2, 2, 2, 3, 4} means that task τ1 contains 3 UCBs
in cache-set 2 and one UCB in each of the cache sets 1, 3 and
4. As one ECB suffices to evict all UCBs of the same cache-
set [10], multiple accesses to the same set by the pre-empting
task does not need to appear in the set of ECBs. Hence, we
keep the set of ECBs as used for direct-mapped caches. A
bound on the CRPD in the case of LRU caches due to task
τi directly pre-empting τ j is thus given by the intersection
UCB j ∩

′ ECBi = {m|m ∈ UCB j : m ∈ ECBi}, where the result
is also a multiset that contains each element from UCB j if it
is also in ECBi. A precise computation of the CRPD in the
case of LRU caches is given in [4]. In this paper, we assume
direct-mapped caches. Note that all equations provided within
this paper are for direct-mapped caches, they are also valid for
set-associative LRU caches with the above adaptation to the
set-intersection.

B. Schedulability Test
We now recapitulate the exact (sufficient and necessary)

schedulability test for fixed priority pre-emptive scheduling of
constrained-deadline tasksets based on response time analy-
sis [5, 17, 13]. Subsequent work on integrating cache related
pre-emption delays into schedulability analysis for fixed pri-
ority pre-emptive systems is based on this analysis. The basic
form given below assumes that pre-emption costs are zero.

The response time Ri of a task necessarily contains its
execution time Ci, and in addition, τi may suffer interference
and be pre-empted by tasks with higher priority than i. Let
τ j be such a task. Within the response time Ri of τi, task τ j

executes at most
⌈

Ri+J j

T j

⌉
times, each time for at most C j. Hence,

1The concept of UCBs and ECBs cannot be applied to FIFO or PLRU
replacement policies as shown in [10].

the response time Ri of task τi is given by:

Ri = Ci +
∑
∀ j∈hp(i)

⌈
Ri + J j

T j

⌉
C j (1)

where hp(i) denotes the set of tasks with higher priority than i.
The response time Ri of task τi appears on both the left-hand
side and the right-hand side of (1). As the right-hand side is a
monotonically non-decreasing function of Ri, then a solution
may be found via fixed-point iteration:

Rx+1
i = Ci +

∑
∀ j∈hp(i)

⌈
Rx

i + J j

T j

⌉
C j (2)

Iteration starts with an initial value, typically R0
i = Ci, and

ends when either Rx+1
i > Di − Ji in which case the task is

unschedulable, or when Rx+1
i = Rx

i , in which case the task is
schedulable, with a worst-case response time Rx+1

i . We note
that convergence may be speeded up using the techniques
described in [13].

A schedulability test is sustainable [6] if any taskset
that was deemed schedulable by the test remains so if the
parameters “improve”, e.g., if the runtimes decrease or periods
increase. Note that response time analysis as well as the stan-
dard schedulability tests for systems with dynamic priorities
(e.g. EDF scheduling) are sustainable.

C. Pre-emption Cost aware Schedulability Test
To integrate pre-emption costs into response time analysis,

Busquets et al. [11] extended (1) by adding a term γi, j
representing the pre-emption cost of a job of task τ j executing
during the response time of task τi (with j ∈ hp(i)):

Ri = Ci +
∑
∀ j∈hp(i)

⌈
Ri + J j

T j

⌉
(C j + γi, j) (3)

An alternative approach was taken by Petters et al. [26] and
later Staschulat et al. [29], who based their analyses on the
following equation:

Ri = Ci +
∑
∀ j∈hp(i)

(⌈
Ri + J j

T j

⌉
C j + γ̂i, j

)
(4)

The value γ̂i, j denotes the pre-emption cost of all jobs of task
τ j executing during the response time of task τi (again with

j ∈ hp(i)). It is given by the
⌈

Ri+J j

T j

⌉
-highest pre-emption costs

of a job of task τ j executing during Ri. Although the difference
with respect to (3) is subtle, more precise analysis can be
obtained by using γ̂i, j as a bound on the overall impact of
all jobs of τ j on the response time Ri instead of a bound on
the impact of just one job of τ j.

We note that when pre-emption costs are considered explic-
itly, the worst-case scenario is not necessarily given by a syn-
chronous release of all higher priority tasks [23] and hence (3)
and (4) provide sufficient, but not exact schedulability tests.

1) Pre-emption Cost Computation: The value γi, j can be
computed in a number of different ways, which are described
in detail in [3], here, we restrict our explanations to the two
dominant approaches: ECB-Union and UCB-Union.

a) UCB-Union: Tan and Mooney [30] analysed the pre-
emption cost via an upper bound on the number of useful

cache blocks (of all pre-empted tasks) that a pre-empting task
τ j may evict. As it is only the eviction of useful cache blocks
belonging to tasks with equal or higher priority than task τi
that may increase the response time of task τi, only tasks with
intermediate priorities in the set aff(i, j) = hep(i) ∩ lp(j), need
be considered.

γUCB-U
i, j = BRT ·

∣∣∣∣∣∣∣∣
 ⋃

k∈aff(i, j)

UCBk

 ∩ ECB j

∣∣∣∣∣∣∣∣ (5)

Here, γUCB-U
i, j represents the worst-case impact a job of task

τ j can have on all (useful cache blocks of) tasks with lower
priority than task τ j down to task τi. We refer to this approach
as UCB-Union.

b) ECB-Union: Instead of considering the precise set of
ECBs of a pre-empting task and bounding all possibly affected
UCBs (as UCB-Union does), ECB-Union [2, 3] considers
the precise number of UCBs of the pre-empted task. It then
assumes that the pre-empting task τ j has itself already been
pre-empted by all tasks with higher priority. This nested pre-
emption of the pre-empting task is represented by the union
of the ECBs of all tasks with higher or equal priority than
task τ j:

γECB-U
i, j = max

∀k∈aff(i, j)

∣∣∣∣∣∣∣∣UCBk ∩

 ⋃
h∈hep(j)

ECBh

∣∣∣∣∣∣∣∣
 (6)

The UCB-Union and ECB-Union approaches are incomparable
in that there are tasks that may be deemed schedulable using
one approach but not the other and vice-versa. More precise
analysis can therefore be achieved by using a combination
of both approaches, as described in [2]. As schedulability
tests based on UCB-Union and ECB-Union are sufficient,
then if either test deems a task schedulable then it is proven
schedulable, even if it is not deemed schedulable according to
the other test.

2) Optimal Task Layout: The precise cache mapping, i.e.,
the mapping of memory block to cache sets strongly influences
the pre-emption costs. Consider for instance the extreme
situation where all tasks are aligned to the first cache-set:
Each task will definitely evict cache blocks of another task.
If tasks’ code is instead aligned sequentially in the cache, the
pre-emption costs are very likely to be smaller. In [21], Lunniss
et al. showed how to optimize the task layout with respect
to the taskset schedulability and the pre-emption costs. The
technique used determines the order in which the code for
each task is placed sequentially in memory, without leaving
any gaps. Thus unlike cache partitioning, optimizing the task
layout does not require any severe changes to the system. It
only affects the position of the code and data in the binary,
hence an appropriate layout can only improve performance.

III. Review of Cache Partitioning For Real-Time Systems
Cache partitioning [24, 27] is a technique to reduce or even

completely avoid cache-related pre-emption delays, aimed at
increasing the predictability of real-time systems. Cache parti-
tioning trades inter-task for intra-task cache conflicts, i.e. it
trades off reduced cache-related pre-emption delays against
potentially increased worst-case execution times. Partitioning
techniques can be implemented either in hardware [18] or
in software [24, 27]. Mueller et al. [24] and later Plazar et

al. [27] proposed a partitioning-aware compiler, asserting that
each task only accesses its own cache partition. This comes
at the cost of often substantial changes to the code and data
layout, which further increases task execution times; however,
as no additional hardware is needed, the memory access
delays remain unchanged. This is in contrast to hardware-based
solutions where an additional mapping layer from code/data to
main memory is needed.

Despite the wealth of publications on cache partitioning for
real-time systems, little work has been done on evaluating the
effects of cache partitioning, and in particular, its effectiveness
compared to systems where tasks make unconstrained use of
the cache. The previously cited papers either focus on the
implementation of cache partitioning [24, 27, 28], or compare
partitioned systems with systems without cache [31]. The
rationale behind this limited evaluation is the belief that pre-
emptive systems that make unconstrained use of cache are
unpredictable. Given recent advances in the analysis of cache
related pre-emption delays, this view can now be considered
somewhat outdated.

Studies on general usability of cache partitioning have been
conducted by Busquets-Mataix and Wellings [12] (to a limited
extent), and more recently by Bui et al. [9]. Busquets-Mataix
and Wellings based their evaluation on simplistic models of
task execution times and pre-emption costs. The execution time
variation was modelled according to [16], favouring efficiency
over precision, and only delivers rough estimates. The authors
also assume that each evicting cache block causes an additional
pre-emption cost, which is a very pessimistic assumption [3].

Bui et al. [9] based their evaluation on high-level execution
time models [32] and simulation. This is in stark contrast to
our work. We rely on the results of static timing analysis (both
for the WCET bounds and the pre-emption costs) as used in
safety-critical hard real-time systems.

Since finding an optimal cache partitioning is NP-hard [9],
previous approaches employed heuristics either to minimize
the number of cache misses, or to minimize the utilization [18,
12, 9, 27].

The research that we present in this paper differs in the
following aspects: As schedulability is the key criterion in
verifying the temporal correctness of hard real-time systems,
we focus on taskset schedulability as opposed to utilization.
A cache partitioning may be schedulable even though the task
utilization is not the minimum that could be obtained. Simi-
larly, minimizing the utilization does not necessarily optimize
schedulability. We present a partitioning algorithm which is
optimal under the assumption that the worst-case execution
time of each task is monotonic in the size of the partition
allocated to that task. We aim at deriving general statements
about the usability and efficiency of cache partitioning com-
pared to a non-partitioned cache analysed using state-of-the-art
pre-emption cost analyses.

IV. Partition-Size Sensitivity
In this section, we evaluate the sensitivity of the worst-

case execution times of tasks with respect to the size of their
allocated cache partitions. The aim of this sensitivity analysis
is to form simple yet accurate execution time functions that
are parametric in the size of the cache partition allocated to
the task. These functions provide the information required by
the optimal partitioning algorithm described in Section V.

We perform sensitivity analysis by computing WCET
bounds for varying cache partition sizes using static analysis.
Based on these values, we can deduce typical variations in
execution time depending on the code size of the task and the
size of the cache partition allocated to it. The rationale behind
this empirical evaluation is twofold: First, we are interested
in the behaviour of a set of real examples, and second, we
want to use realistic models of execution-time as a function of
cache partition size to determine an effective partitioning of the
cache between tasks. We note that with hardware support for
cache partitioning, partitions are typically restricted to being a
power of 2 in size e.g. 8,16,32 cache sets etc.; whereas software
methods [27] can support cache partitions of any arbitrary
number of sets. In the remainder of the paper, we assume that
the number of cache sets in a partition may take any arbitrary
value; however, we note that the techniques introduced are
easily adapted to the case were partition sizes come from a
restricted set of hardware-supported values.

The target architecture is an ARM7 processor2 with direct-
mapped cache of size 4kB with a line size of 16 Bytes (and
thus, 256 cache sets), a block reload time of 8µs and a clock
rate of 100 MHz. As benchmarks, we used PapaBench [25]
and the Mälardalen benchmark suite [15]. We used the aiT
Timing analyzer [14] to compute WCET bounds, and evaluate
the sensitivity of execution time with respect to cache partition
size.

Figures 1 and 2 show the normalized WCET bounds for
the benchmark tasks with varying cache partition sizes and
cache types. A perfect data (or instruction) cache means that
all data (or instruction) accesses are served instantaneously.
Even though this assumption is unrealistic, it removes possible
noise and and allows us to fully concentrate on the effects
of pre-emption and partitioning. The bounds are only shown
for a selection of the benchmark tasks to avoid cluttering the
graphs, (which are best viewed online in colour). We have also
performed experiments with instruction cache but without data
cache and also with data cache but without instruction cache.
The results are very similar to the evaluation shown for perfect
caches, but less accentuated.

In figures 1 and 2, each line denotes the execution time
for one benchmark. The y-axis depicts the normalized exe-
cution time with the value 1 representing the largest WCET
bound (which typically corresponds to the smallest cache
partition size i.e. zero). The x-axis depicts the normalized
cache partition size with the value 1 representing the code-
size/maximum memory usage of the task. Increasing the size
of the cache partition beyond the code size/memory footprint
does not improve the execution time any further. We can see
that variation in the execution times is stronger in the case of
instruction cache compared to data cache. This behaviour is as
expected since each instruction results in an instruction cache
access, but not necessarily in a data cache access. Similarly, the
variation in the execution times is amplified by the assumption
of a perfect data/instruction cache.

Note we do not assume any implementation cost for cache
partitioning. In reality, the additional hardware or software
support needed to limit accesses to the allocated cache partition
would affect task execution times. Hardware supported cache
partitioning requires additional circuits that may increase the

2http://www.arm.com/products/processors/classic/arm7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d

 W
C

E
T
 B

o
u
n
d

Normalized Cache Usage

adpcm
cruise_control

edn
flight_control

robodog
es_lift

statemate
compress

digital_stopwatch
pilot

I1
I2
T5
I4

T11
T12

Fig. 1: WCETs depending on the cache partition size (direct
mapped instruction cache, perfect data cache) for a represen-
tative selection of tasks from Table III and Table I.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d

 W
C

E
T
 B

o
u
n
d

Normalized Cache Usage

adpcm
cruise_control

edn
flight_control

robodog
es_lift

statemate
compress

digital_stopwatch
pilot

I1
I2
I4
I5

T11
T12

Fig. 2: WCETs depending on the cache partition size (direct
mapped data cache, perfect instruction cache) for a represen-
tative selection of tasks from Table IV and Table II.

critical path or reduce the available cache size [18]. Software
supported cache partitioning requires additional instructions
that may increase the code-size and the execution time [27].
Ignoring these costs slightly favours cache partitioning over
sharing the cache which incurs no such costs.

Monotonicity
We observe from Figures 1 and 2 that the execution time

bounds are not necessarily monotonic with respect to the cache
partition size.

This counter-intuitive behaviour can be explained by dif-
ferences in the mapping of memory blocks to the cache sets.
Assuming a direct-mapped cache with a line size of 16 bytes
and a task that exhibits the following access sequence

0x00030→ 0x00080→ 0x00030

If we assign this task a cache partition of size 4, memory block
0x00030 maps to set 3 of this partition and 0x00080 maps to
set 0. The last access to 0x00030 therefore results in a cache

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d

 W
C

E
T
 B

o
u
n
d

Normalized Cache Usage

Upper bound
basic function
Lower bound

Fig. 3: Over-/Underapproximations of the WCET function.

hit. In contrast, in a larger cache partition of size 5, memory
blocks 0x00030 and 0x00080 both map to cache set 3 and the
last access to 0x00030 is a cache miss. Hence, for this trivial
example, the performance with 5 cache sets is worse than that
for 4 cache sets.

We note that the assumption of monotonic execution time
bounds is both common and often not explicitly stated in work
on cache partitioning for real-time systems [9, 12, 18, 24, 27].

The impact of these effects is however limited, and so we
can replace the actual execution time function with mono-
tonic over/under-approximations without significant loss of
precision, as shown in Figure 3. Here, the basic function
(black line) is non-monotonic, while the upper bound (blue
line) and the lower bound (red line) are monotonically non-
increasing functions of cache partition size. We thus establish
monotonicity of the WCET with respect to the cache partition
size and can use this property in our approach to partitioning
the cache. In Section VI-D, we quantify the error introduced
by this approximation.

V. Optimal Cache Partitioning
In this section, we derive an optimal cache partitioning

algorithm, which makes use of the monotonic upper bound
execution time functions of cache partition size described in
the previous section. We assume a direct-mapped cache of size
S . A cache partitioning P is a tuple of non-negative integers
describing for each task τi, the size pi of its allocated cache
partition:

P = (p1, p2. . . . , pn) : N × . . . × N︸ ︷︷ ︸
n

(7)

We assume that each task has a dedicated cache partition which
is not shared with any other tasks (we return to this point in
Section VII). A cache partitioning is valid, if the total size of
the cache partitions does not exceed the overall size S of the
cache (i.e. if

∑
i pi ≤ S).

We are interested in the schedulability of a taskset, as this is
the main optimization criterion for hard real-time systems. We
therefore say that a cache partitioning algorithm is optimal, iff
it finds a cache partitioning whereby the tasks are schedulable,
whenever such a partitioning exists. Note that this is different
from minimizing the utilization of a taskset, since taskset

utilization is only a rough indicator of system schedulability.
To compute an optimal cache partitioning, we use a branch-

and-bound approach (see Algorithm 1) which is certain, under
the assumption of monotonic execution time functions, to find
a feasible cache partitioning if one exists. To this end, we
exploit the sustainability of the schedulability test with respect
to execution times and the monotonicity of the execution time
function with respect to the cache partition size to prune the
search space.

The algorithm is implemented using a recursive function
checkPartition. This function takes as its input the current task
index i, a partially defined partitioning P and the remaining
cache size s. The partitioning is defined up to index i and the
remaining cache size s is given by S minus the sum of the
sizes of the first i partitions i.e. s = S −

∑i
j=1 pi.

The initial input to the function is the first task index 1,
an arbitrary partitioning P and the overall cache size S . If
the last task index is reached, the partitioning is fully defined
and the result is determined by the function isSchedulable,
which checks the schedulability of the taskset for the defined
partitioning. Note, here we employ the basic schedulability test
without pre-emption costs (see Section II-B) given by (1), as
the cache partitioning prevents any cache-related pre-emption
delays.

Algorithm 1 Optimal Cache Partitioning (Schedulability)
1: function checkPartition(int i, partition P, int s)
2: if i = n then
3: return isSchedulable(P)
4: end if
5: let P = (p1, .., pn)
6: if not isSchedulable((p1, .., pi−1, s, .., s)) then
7: return false
8: end if
9: if isSchedulable

((
p1, .., pi−1,

⌊
s

n−i+1

⌋
, ..,

⌊
s

n−i+1

⌋))
then

10: return true
11: end if
12: pi = 0
13: while pi ≤ s do
14: if checkPartition(i + 1, (p1, .., pi, .., pn), s− pi) then
15: return true
16: else
17: pi = nextStep(i,pi)
18: end if
19: end while
20: return false
21: end function

In the next step, the algorithm checks taskset schedulability
under (a) the optimistic assumption that each not yet specified
task partition is of size s and (b) under the pessimistic
assumption that each not yet specified task partition is given
an equal share of the remaining cache size, i.e., bs/(n − i + 1)c.
This enables effective pruning of the search in the case where
(a) schedulability is disproved for any extensions to the current
partial partitioning, and early exit in the case (b) schedulability
is proven assuming that all further tasks are schedulable with
a cache partition of equal size.

The last construct of the algorithm, the while loop, imple-
ments the branching. The partition size of cache partition pi

is varied from 0 up to the remaining cache size s and each
possible partitioning is evaluated using a recursive function
call. This is done using the function nextStep which computes
the next partition size for task τi. Due to the monotonicity
of the execution time functions with respect to cache partition
size, nextStep jumps directly to the next partition size where the
execution time changes. All intermediate partition sizes with
the same execution time can be safely ignored. In the worst-
case, up to nS different cache partitionings must be evaluated,
where n is the number of tasks and S the number of cache
sets. In practice, the runtime is substantially lower due to
early exits and the reduced number of partition sizes which
give different execution times. We return to this point in the
following section. Further, in the case where hardware support
is provided for a limited number of partition sizes, the runtime
is further reduced due to the restricted number of partition sizes
supported.

VI. Case Study
In this section, we evaluate the partitioning algorithm based

on PapaBench, the Mälardalen benchmark suite and a set
of SCADE3 tasks (partially provided by SCADE, partially
from our own SCADE models). Besides the effectiveness
of the cache partitioning algorithm, we are interested in the
precision of the simplified execution time model and the
runtime performance of the algorithm.

For the case study, the target architecture is an ARM7
processor (with a 4kB direct-mapped cache, line size of 16
Bytes, 256 cache sets, block reload time 8µs, clock rate of
100 MHz). The execution times bounds were derived using
the aiT Timing analyzer [14].

Papabench provides two different tasksets (fbw and au-
topilot) with deadlines and periods (see Table I and II).
With the initial processor frequency of 100MHz, both tasksets
are schedulable both with and without cache partitioning.
The other benchmarks only provide code and do not form
a meaningful taskset. We therefore randomly selected tasks
from (i) Table I and II, and (ii) Table III and IV (together with
execution times, the execution time variations, codes size and
UCBs/ECBs).

The remaining task and taskset parameters used in our
experiments were randomly generated as follows:

• The default taskset size was 10.
• Task utilizations were generated using the UUni-

fast [8] algorithm.
• Task periods were set based on the utilization and

execution times: Ci = Ui · Ti.
• Task deadlines were implicit4, i.e., Di = Ti.
• Priorities were assigned in Deadline Monotonic order.
• The jitter of all tasks was assumed to be zero, i.e.

Ji = 0.

In each experiment the taskset utilization not including
pre-emption cost was varied from 0.025 to 0.975 in steps of
0.025. For each utilization value, 1000 tasksets were generated
and the schedulability of those tasksets was determined using
the cache partitioning algorithm or pre-emption cost aware

3Esterel SCADE http://www.esterel-technologies.com/
4Evaluation for constrained deadlines, i.e., Di ∈ [2Ci; TI] gave broadly

similar results although fewer tasksets were deemed schedulable.

TABLE I: Execution times and number of UCBs and ECBs
for the PapaBench Benchmarks. Instruction cache with perfect
data cache (WCET 1) and without data cache (WCET 2)

Description UCBs ECBs WCET1 WCET2 Period
I4 interrupt-modem 2 10 303µs 520µs -
I5 interrupt-spi-1 1 10 251µs 447µs -
I6 interrupt-spi-2 1 4 151µs 228µs -
I7 interrupt-gps 3 26 283µs 493µs -

T5 altitude-control 20 66 1478µs 1660µs 250ms
T6 climb-control 1 210 5429µs 6241µs 250ms
T7 link-fbw-send 1 10 233µs 471µs 250ms
T8 navigation 1 256 44, 42ms 54, 35ms 50ms
T9 radio-control 0 256 15, 6ms 21, 1ms 50ms

T10 receive-gps-data 22 194 5987µs 6659µs 25ms
T11 reporting 2 256 12, 22ms 5ms 100ms
T12 stabilization 11 194 5681µs 6654µs 50ms

TABLE II: Data cache with perfect instruction cache (WCET 1)
and without instruction cache (WCET 2)

Description UCBs ECBs WCET1 WCET2 Period
I4 interrupt-modem 3 10 335µs 790µs -
I5 interrupt-spi-1 2 10 287µs 644µs -
I6 interrupt-spi-2 1 4 135µs 338µs -
I7 interrupt-gps 3 26 278µs 712µs -

T5 altitude-control 2 66 654µs 3860µs 250ms
T6 climb-control 5 210 2375µs 14, 21mss 250ms
T7 link-fbw-send 2 10 298µs 634µs 250ms
T8 navigation 10 256 23, 38ms 138ms 50ms
T9 radio-control 14 256 10, 2ms 51ms 50ms

T10 receive-gps-data 4 194 3058µs 20, 5mss 25ms
T11 reporting 6 242 12, 8ms 32ms 100ms
T12 stabilization 6 194 2711µs 16, 1mss 50ms

response time analysis with either sequential or optimal task
layout [21]. We thus compared the results for cache parti-
tioning against those for (i) no partitioning with a sequential
task layout, (ii) no partitioning with an optimized task layout,
(iii) analysis ignoring pre-emption costs, but assuming that all
the tasks shared the cache; (iv) naive cache partitioning with
all tasks allocated the same size partition S/n; (v) no cache.
The sequential task layout reflects the basic un-optimized
cache mapping, i.e., where the code for each task is placed
consecutively in memory.

Despite the fact that the worst-case behaviour of the cache
partitioning algorithm is exponential, we were able to compute
the schedulability of the 42, 000 tasksets of both case studies
in less than 10 minutes on a 2.6-GHz Quadcore processor.

A. PapaBench
Most tasks from Table I and II have rather short execution

times, leading to relatively high pre-emption costs. These tasks
are simple, short control tasks with limited computations and
data accesses. Figures 4a and 4c show the success ratio; the
number of tasksets based on Papabench that were schedulable
at the various levels of utilization. In the case of instruction
caches (Figure 4b), optimal partitioning has similar perfor-
mance to sequential task layout with no partitioning, while
optimal task layout with no partitioning results in improved
performance. Optimal cache partitioning was only able to
improve performance over sequential task layout with no
partitioning in a few cases. In the case of data caches (Figure
4d), optimal partitioning outperforms optimal task layout with
no partitioning. The variation of the execution times in this

TABLE III: Mälardalen Benchmark Suite (M) and SCADE
Benchmarks (S). Instruction cache with perfect data cache
(WCET 1) and without data cache (WCET 2)

Description UCBs ECBs WCET1 WCET2

M adpcm 24 226 5, 541s 6, 521s
M compress 25 114 3, 664s 8, 426s
M edn 56 98 244, 8ms 458, 2ms
M fir 28 50 21, 52ms 497ms
M jfdctinit 40 162 13, 89ms 32, 98ms
M ns 17 26 73, 38ms 168ms
M nsichneu 53 256 77, 96ms 163ms
M statemate 3 256 9, 757s 20, 07s
S cruise control system 25 107 1, 959s 3, 548s
S flight control system 70 256 2, 138s 4, 083s
S navigation system 45 82 1, 409s 3, 712s
S stopwatch 58 130 3, 786s 5, 533s
S elevator simulation 40 114 1, 586s 2, 917s
S robotics systems 68 256 4, 311s 6, 377s

TABLE IV: Data cache with perfect instruction cache
(WCET 1) and without instruction cache (WCET 2)

Description UCBs ECBs WCET1 WCET2

M adpcm 7 242 5, 856s 43, 17s
M compress 6 242 9, 740s 25, 26s
M edn 5 98 518, 9ms 1, 422s
M fir 5 50 42, 65ms 121ms
M jfdctinit 8 242 23, 2ms 73, 63ms
M ns 3 26 133, 7ms 466, 9ms
M nsichneu 8 242 66, 74ms 178, 3ms
M statemate 30 242 8, 143s 22, 45s
S cruise control system 15 98 1, 77s 6, 207s
S flight control system 12 242 3, 24s 11, 02s
S navigation system 3 82 2, 96s 7, 566s
S stopwatch 9 130 4, 417s 25, 03s
S elevator simulation 4 114 1, 863s 5, 432s
S robotics systems 5 242 3, 427s 22, 45s

case is rather low, while the number of UCBs is comparably
high. We thus note that the two approaches are incomparable.
Almost no tasksets were schedulable with no cache, except

for the case of data cache with perfect instruction cache as the
impact of the data cache alone is limited.

B. Mälardalen and SCADE Benchmarks
In contrast to the first case study, the execution times of

the tasks from Table III and Table IV for the Mälardalen
and SCADE Benchmarks are comparably high, and thus the
pre-emption costs relatively low. These tasks exhibit a low
locality of memory accesses but high amounts of computation.
In this case, the low cache related pre-emption delays result in
significantly better performance if the cache is not partitioned.
Here, cache partitioning was unable to improve performance
over the simple sequence task layout with no partitioning, as
illustrated in Figure 5a. Note that in this case there are no
major differences for data and instruction caches, the results
of the different approaches are just more (instruction caches)
or less (data caches) accentuated.

C. Synthetic Tasksets
We also evaluated the effectiveness of cache partitioning

on a large number of synthetic tasksets with varying cache
configurations and varying task parameters. Our aim here was
to identify those parameters that have a significant influence
on the relative effectiveness of cache partitioning versus a non-

0

200

400

600

800

1000

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

S
ch

e
d

u
la

b
le

 T
a
sk

se
ts

Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

(a) Number of tasksets deemed schedulable at the different total utiliza-
tions (instruction cache with perfect data cache).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

N
r.

 o
f

T
a
sk

se
ts

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

(b) Number of tasksets deemed schedulable with one approach and not
another (instruction cache with perfect data cache).

0

200

400

600

800

1000

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

S
ch

e
d

u
la

b
le

 T
a
sk

se
ts

Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

(c) Number of tasksets deemed schedulable at the different total utiliza-
tions (data cache with perfect instruction cache).

 0

 50

 100

 150

 200

 250

 300

 350

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

N
r.

 o
f

T
a
sk

se
ts

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

(d) Number of tasksets deemed schedulable with one approach and not
another (data cache with perfect instruction cache).

Fig. 4: Evaluation of PapaBench Benchmarks.

0

200

400

600

800

1000

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

S
ch

e
d

u
la

b
le

 T
a
sk

se
ts

Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

(a) Number of tasksets deemed schedulable at the different total utiliza-
tions (instruction cache with perfect data cache).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

N
r.

 o
f

T
a
sk

se
ts

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

(b) Number of tasksets deemed schedulable with one approach and not
another (instruction cache with perfect data cache).

0

200

400

600

800

1000

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

S
ch

e
d

u
la

b
le

 T
a
sk

se
ts

Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

(c) Number of tasksets deemed schedulable at the different total utiliza-
tions (data cache with perfect instruction cache).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

N
r.

 o
f

T
a
sk

se
ts

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

(d) Number of tasksets deemed schedulable with one approach and not
another (data cache with perfect instruction cache).

Fig. 5: Evaluation of Mälardalen Benchmarks.

partitioned cache. The evaluation using randomly generated
tasksets enables us to fully control all relevant parameters,
which is not possible using the benchmark tasks directly.

The task parameters used in our experiments were ran-
domly generated as follows:

• The default taskset size was 10.
• Task utilizations were generated using the UUni-

fast [8] algorithm.
• Task periods were generated according to a log-

uniform distribution with a factor of 1000 difference
between the minimum and maximum possible task
period and a minimum period of 5ms. This represents
a spread of task periods from 5ms to 5s, thus providing
reasonable correspondence with real systems.

• Task execution times were set based on the utilization
and period selected: Ci = Ui · Ti.

• Task deadlines were implicit
• Priorities were assigned in deadline monotonic order.
• The jitter of all tasks was assumed to be zero, i.e.

Ji = 0.

To model the variation in the execution time, we randomly
selected one of the execution time functions from our bench-
marks (see Table I, Table III and Figure 1). Note that this
only affects the variation of the execution time for different
partition-sizes and Ci refers to the base execution time when
τi can use the complete cache.

The following parameters affecting pre-emption costs were
also varied, with default values given in parentheses:

• The number of cache-sets (CS = 256).
• The block-reload time (BRT = 8µs)
• The cache usage of each task, and thus, the num-

ber of ECBs, were generated using the UUni-
fast [8] algorithm (for a total cache utilization CU =∑

i |ECB|/CS = 4). UUnifast may produce values
larger than 1 which means a task fills the whole cache.

• For each task, the UCBs were generated according to
a uniform distribution ranging from 0 to the number of
ECBs times a reuse factor: [0,RF · |ECB|]. The factor
RF was used to adapt the assumed reuse of cache-sets
to account for different types of real-time applications,
for example, from data processing applications with
little reuse up to control-based applications with heavy
reuse (default RF = 0.3).

The parameters of the base configuration were chosen ac-
cording to the actual values observed in the case studies of
the PapaBench benchmarks VI-A and the Mälardalen bench-
marks VI-B. The results (Figures 6 and 7) lie between those
of the case studies (Figures 4a and 5a).

Overall, cache partitioning and pre-emption cost analy-
sis with a sequential, un-optimized task layout have similar
performance; however, we note that there are also a large
number of tasksets that can only be scheduled with one of
the two approaches, but not with the other. This shows that
cache partitioning is a viable alternative in some scenarios
and detrimental in others. However, we also observe that the
optimal task layout with no partitioning has a clear advantage
over optimal partitioning in terms of the number of schedulable
tasksets (see Figure 7).

0

200

400

600

800

1000

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
ch

e
d

u
la

b
le

 T
a
sk

se
ts

Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

Fig. 6: Evaluation for the base configuration. Number of
tasksets deemed schedulable at the different total utilizations.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

N
r.

 o
f

T
a
sk

se
ts

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

Fig. 7: Evaluation of the base configuration. Number of
tasksets deemed schedulable with one approach and not an-
other.

Exhaustive evaluation of all combinations of cache and
taskset configuration parameters is not possible. We therefore
fixed all parameters except one and varied the remaining
parameter in order to see how performance depends on this
value. The parameters we examined were: (i) the pre-emption
cost as determined by the block reload time (BRT) and a
scaling factor applied to task periods; (ii) the cache utilization,
(iii) the number of tasks, and (iv) the cache size.

The graphs below show the weighted schedulability mea-
sure Wy(q) [7] for schedulability test y as a function of
parameter q. For each value of q, this measure combines data
for all of the tasksets τ generated for all of a set of equally
spaced utilization levels. Let S y(τ, q) be the binary result (1 or
0) of schedulability test y for a taskset τ and parameter value
q then:

Wy(q) = (
∑
∀τ

u(τ) · S y(τ, q))/
∑
∀τ

u(τ) (8)

where u(τ) is the utilization of taskset τ. This weighted
schedulability measure reduces what would otherwise be a 3-
dimensional plot to 2 dimensions [7]. Weighting the individual
schedulability results by taskset utilization reflects the higher
value placed on being able to schedule higher utilization
tasksets.

1) Pre-emption Costs: Pre-emption costs are determined
by several parameters. Among those, the dominant factors are
the block reload time (BRT) and the range of task execution
times. Figure 8 shows the weighted schedulability measure
for different block reload times. In our setting, the break-

even point is at a block reload time of about 10µs. For
larger block reload times cache partitioning becomes the more
effective approach, while for smaller block reload times a non-
partitioned cache is more effective. In Figure 9, we varied the

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 4 6 8 10 12 14 16 18 20

W
e
ig

h
te

d
 M

e
a
su

re

Block Reload Time

Varying Block Reload Time

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning

Fig. 8: Weighted schedulability measure; varying block reload
time from 1µs to 20µs

scaling factor w from 0.5 to 10 and hence the range of task
periods given by w[1, 100]ms. Given that the block reload time
is constant in this experiment, the ratio of pre-emption costs
to taskset utilization decreases as the task periods, deadlines
and execution times are all scaled up. A lower scaling factor
resembles tasks with shorter execution times (as in Table I
and Table II), a higher scaling factor resembles tasks with
higher execution times and commensurately longer periods (as
in Table III and Table IV). The results indicate that cache

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

W
e
ig

h
te

d
 M

e
a
su

re

Period Generation: w[1ms;100ms]

Varying Period Range

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning

Fig. 9: Weighted schedulability measure; varying the scale of
task periods w[1, 100] from w = 0.5 to w = 10

partitioning is useful for control-oriented tasks with short
execution times and very short periods and thus relatively
high preemption costs compared to their WCET. When the
pre-emption costs are low compared to the WCET, cache
partitioning typically does not pay off.

Note that increasing the block reload time typically also
leads to increased (non-preemptive) execution times. In these
experiments, we have fixed the execution times to vary only the
relation between pre-emption costs and execution time bounds.

2) Cache Utilization: The cache utilization determines the
ratio between the total code size of all the tasks and the overall

cache size. Increasing the cache utilization leads to higher
pre-emption costs, and higher execution times in the case of
cache partitioning. Cache partitioning; however, suffers less
from increased cache utilization as can be seen in Figure 10.
The results for the non-partitioned system suffer somewhat

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10
 15

 20

W
e
ig

h
te

d
 M

e
a
su

re

Cache Utilization

Varying Cache Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning

Fig. 10: Weighted schedulability measure; varying cache uti-
lization from 0 to 20

from the over-approximation of the UCB/ECB analysis and the
pre-emption cost aware response time analysis: This assumes
additional cache misses due to pre-emption even though the
misses have already been accounted for by a prior pre-emption,
providing more pessimistic results at high cache utilization
levels.

3) Number of Tasks: We also conducted experiments vary-
ing the number of tasks. Note that it is an unrealistic assump-
tion to change the number of tasks without also changing the
cache utilization. This would mean the cache usage of each
individual task decreasing as more tasks are added to the sys-
tem. Realistically, cache utilization increases with the number
of tasks. Figure 11 shows the results of the evaluation if we
increase the number of tasks and the cache utilization, while
keeping the per task cache utilization constant. Here, we see

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10
 15

 20

W
e
ig

h
te

d
 M

e
a
su

re

Number of Tasks

Varying Number of Tasks

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning

Fig. 11: Weighted schedulability measure; varying the number
of tasks from 2 to 24 with constant ratio of number of tasks
to cache usage

that the performance of the non-partitioned approach gradually
degrades with increasing taskset size due to pessimism in the
analysis of a large number of pre-emption levels.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

32 64 128
256

512
1024

W
e
ig

h
te

d
 M

e
a
su

re

Number of CacheSets

Varying Number of CacheSets

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning

Fig. 12: Weighted schedulability measure; varying the number
of cache sets 64 to 1024 with constant ratio (CU/CS)

4) Cache Size: If we only adapt the cache size without
changing the relation between the execution time and the pre-
emption costs (or the cache utilization), we would penalise the
pre-emption cost computation: if there are more cache sets,
there are also more UCBs and thus, higher pre-emption costs.
The results of the cache partitioning, though, does not change.
To avoid this discrimination, we have increased the number of
sets, while keeping the relation of cache utilization to cache
size (CU/CS) constant. The results are shown in Figure 12.
For small cache, the partition sizes are very small which leads
to high execution times and thus low schedulability for the
paritioning approaches. For larger caches, the performance of
partitioned and non-partitioned systems converge as the cache
utilization decreases.

We note that small caches also lead to a reduced pre-
emption overhead as the number of UCBs is upper bounded
by the number of sets: The delay of additional cache reloads
that would otherwise contribute to the pre-emption overhead
is included in the non-pre-emptive execution time bound. The
performance of the non-partitioned approaches thus declines
from 32 to 128 sets (where the pre-emption overhead is
maximal) as we use the task utilization (without pre-emption
costs) as the baseline for each experiment.

D. Precision of the simplified Execution-Time Model
To evaluate the precision of the simplified execution time

model, and so obtain a measure of the pessimism introduced
in order to obtain monotonicity of execution times, we com-
puted for each taskset an optimal cache partitioning (using
Algorithm 1) (i) assuming upper bounds (Figure 3 blue upper
line) and (ii) optimistic lower bounds on the execution times
(Figure 3 red lower line). The difference in the results—
the number of tasksets that were deemed schedulable using
the lower but not the upper bounds—provides a measure of
the imprecision of the simplified execution time model. In
the first case study (PapaBench) 0.21% of all tasksets were
deemed schedulable only using lower bounds, and 1.21%
(Mälardalen and SCADE) for the second case study. Note that
these percentages refer to the uncertainty due to the assumed
monotonicity and not due to the cache partitioning algorithm.
Also note that this does not necessarily mean that 0.21%,
resp. 1.21%, of the tasksets have been falsely deemed not
schedulable, rather these are upper bounds on the imprecision.

VII. Conclusions & FutureWork
In this paper, we evaluated the relative performance, in

terms of taskset schedulability, of partitioning the cache on
a per task basis versus allowing all tasks to share the entire
cache. Our research contrasts with previous work in this area,
in that we used system schedulability as the performance
metric, effective techniques for analysis of cache related pre-
emption delays, and code from real benchmarks as the foun-
dation of our empirical evaluation.

The main contributions of this paper are as follow:

• Sensitivity analysis of WCET with respect to partition
size, showing how the precise WCET bound as a
function of the size of the partition can be effectively
upper and lower bounded by monotonic functions.

• The introduction of an optimal algorithm for cache
partitioning, which makes use of the monotonic
WCET functions.

• A thorough evaluation of the relative performance of
optimal per task cache partitioning versus no partition-
ing.

Our results showed that for simple, short control tasks such
as those from Papabench, where the pre-emption costs are
relatively high compared to the WCET, the performance of
partitioned and non-partitioned approaches were similar, with
the use of an optimal task layout providing the non-partitioned
approach with a small performance advantage. By contrast,
tasks from the Mälardalen benchmark suite exhibited lower lo-
cality of memory accesses and higher amounts of computation,
with larger WCETs compared to the associated cache related
pre-emption delays. For tasksets based on this benchmark,
the non-partitioned approach (with and without cache layout
optimization) outperformed optimal partitioning. These results
indicate that in most cases, the increased predictability of a
partitioned cache, in terms of eliminating cache related pre-
emption delays, does not compensate for the performance
degradation in the WCETs.

Our extended evaluation using synthetic benchmark
tasksets showed that the key parameters affecting the relative
effectiveness of cache partitioning versus no partitioning are:
(i) The ratio of pre-emption costs to the overall WCET (parti-
tioning does not pay off when this ratio is small). (ii) The Block
Reload Time (partitioning is most effective when the BRT
is large increasing pre-emption costs). (iii) Cache utilization
(the non-partitioned approach suffers from pessimism at high
values of cache utilization). (iv) The number of tasks (with no
partitioning the analysis suffers from increasing pessimism in
the computation of pre-emption costs as the number of tasks
increases). Further, we found that the relative performance of
the two approaches was largely unaffected by the number of
cache sets.

Our evaluation—and thus our findings—are restricted to
direct-mapped L1 caches. Static cache and CRPD analyses are
sufficiently precise to justify unconstrained cache usage; Cache
partitioning to increase the predictability is often not required
but instead detrimental to the provable system performance. It
remains an open research topic if this observation also holds
for more complex cache architectures where the analyses are
less precise in general.

A. Future Work
There are a number of ways in which we aim to extend this

line of research. Firstly, this paper considers fixed priority pre-
emptive scheduling; however, the optimal partitioning algo-
rithm derived in Section V is agnostic to the schedulability test
used. It is therefore equally applicable to schedulability tests
for EDF. As effective cache related pre-emption delay analysis
has recently been integrated into schedulability analysis for
EDF [22], we aim to make comparisons between systems using
partitioned and non-partitioned cache assuming pre-emptive
EDF scheduling, and to compare those results with the results
given in this paper for fixed priority pre-emptive scheduling.
Secondly, this paper compares two extremes, either all of the
tasks share the entire cache, or every task has an individual
cache partition. It is clear that between these two extremes,
there is an approach which subsumes and dominates both. This
intermediate approach involves allocating groups of tasks to
appropriately sized cache partitions, and then controlling the
layout of those tasks in memory [21] to enhance schedulability
through a reduction in cache related pre-emption delays within
each partition.

Last but not least, we aim to evaluate cache partitioning
for more complex cache architectures.

Acknowledgements
This work was partially funded by the UK EPSRC through

the MCC project (EP/K011626/1), the Engineering Doctorate
Centre in Large-Scale Complex IT Systems (EP/F501374/1)
and the COST Action IC1202: Timing Analysis On Code-
Level (TACLe).

References
[1] S. Altmeyer and C. Burguière. A new notion of useful cache

block to improve the bounds of cache-related preemption delay.
In ECRTS, pages 109–118, July 2009.

[2] S. Altmeyer, R. I. Davis, and C. Maiza. Cache related pre-
emption aware response time analysis for fixed priority pre-
emptive systems. In RTSS, pages 261–271, December 2011.

[3] S. Altmeyer, R. I. Davis, and C. Maiza. Improved cache
related pre-emption delay aware response time analysis for fixed
priority pre-emptive systems. Real-Time Systems, 48(5):499–
526, 2012.

[4] S. Altmeyer, C. Maiza, and J. Reineke. Resilience analysis:
Tightening the crpd bound for set-associative caches. In LCTES,
pages 153–162, April 2010.

[5] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings. Applying new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal, 8:284–292,
1993.

[6] S. Baruah and A. Burns. Sustainable scheduling analysis. In
RTSS, pages 159–168, December 2006.

[7] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related
preemption and migration delays: Empirical approximation and
impact on schedulability. In OSPERT, pages 33–44, July 2010.

[8] E. Bini and G. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30:129–154, 2005.

[9] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez. Impact of
cache partitioning on multi-tasking real time embedded systems.
In RTCSA, pages 101–110, August 2008.

[10] C. Burguière, J. Reineke, and S. Altmeyer. Cache-related pre-
emption delay computation for set-associative caches—pitfalls
and solutions. In WCET, July 2009.

[11] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and
A. Wellings. Adding instruction cache effect to schedulability

analysis of preemptive real-time systems. In RTAS, pages 204–
212, June 1996.

[12] J. V. Busquets-Mataix and A. Wellings. Hybrid instruction cache
partitioning for preemptive real-time systems. In RTS, June
1997.

[13] R.I. Davis, A. Zabos, and A. Burns. Efficient exact schedu-
lability tests for fixed priority real-time systems. IEEE Trans.
Comput., 57:1261–1276, September 2008.

[14] C. Ferdinand and R. Heckmann. aiT: worst case execution time
prediction by static program analysis. In IFIP, pages 377–384,
August 2004.

[15] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The
Mälardalen WCET benchmarks – past, present and future. In
WCET, pages 137–147, July 2010.

[16] L. Higbee. Quick and easy cache performance analysis.
SIGARCH Comput. Archit. News, 18(2):33–44, May 1990.

[17] M. Joseph and P. Pandya. Finding Response Times in a Real-
Time System. The Computer Journal, 29(5):390–395, May
1986.

[18] D. B. Kirk and J. K. Strosnider. Smart (strategic memory
allocation for real-time) cache design. In RTSS, pages 322–330,
December 1990.

[19] C.-G. Lee, J. Hahn, Y.-M. Seo, S.L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, and C. S. Kim. Analysis of cache-related
preemption delay in fixed-priority preemptive scheduling. IEEE
Transactions on Computers, 47(6):700–713, 1998.

[20] T. Lundqvist and P. Stenström. Timing anomalies in dynamically
scheduled microprocessors. In RTSS, pages 12–21, 1999.

[21] W. Lunniss, S. Altmeyer, and R. I. Davis. Optimising task layout
to increase schedulability via reduced cache related pre-emption
delays. In RTNS, pages 161–170, November 2012.

[22] W. Lunniss, S. Altmeyer, C. Maiza, and R. I. Davis. Integrating
cache related pre-emption delay analysis into edf scheduling. In
RTAS, pages 75–84, April 2013.

[23] P. Meumeu Yomsi and Y. Sorel. Extending rate monotonic
analysis with exact cost of preemptions for hard real-time
systems. In ECRTS, pages 280–290, July 2007.

[24] Frank Mueller. Compiler support for software-based cache
partitioning. SIGPLAN Not., 30(11):125–133, 1995.

[25] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. De
Michiel. Papabench: a free real-time benchmark. In WCET,
July 2006.

[26] S. M. Petters and G. Farber. Scheduling analysis with respect to
hardware related preemption delay. In Workshop on Real-Time
Embedded Systems, 2001.

[27] S. Plazar, P. Lokuciejewski, and P. Marwedel. Wcet-aware soft-
ware based cache partitioning for multi-task real-time systems.
In WCET, July 2009.

[28] Isabelle Puaut and David Decotigny. Low-complexity algo-
rithms for static cache locking in multitasking hard real-time
systems. In RTSS, pages 114–124, December 2002.

[29] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analysis
of real-time systems with precise modeling of cache related
preemption delay. In ECRTS, pages 41–48, July 2005.

[30] Y. Tan and V. Mooney. Timing analysis for preemptive multi-
tasking real-time systems with caches. Trans. on Embedded
Computing Sys., 6(1), 2007.

[31] X. Vera, B. Lisper, and J. Xue. Data cache locking for
tight timing calculations. ACM Transactions on Embedded
Computing Systems, 7(1):4:1–4:38, December 2007.

[32] J. L. Wolf, H. S. Stone, and D. Thiébaut. Synthetic traces
for trace-driven simulation of cache memories. IEEE Trans.
Comput., 41(4):388–410, April 1992.

