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Abstract

Complex real-time systems such as those envisaged for future autonomous

vehicle control, robotics and advanced avionics applications, need to exhibit dynamic

and adaptive behaviour in order to function in unpredictable environments. These

systems need to be resilient to software / hardware failures and imbibed with the

property of graceful degradation under overload. Cost, space and weight constraints

also dictate that they must make the most effective use of limited processing /

communications resources.

To realise such complex systems, two potentially conflicting objectives need to

be met: first, safety critical and mission critical services must be guaranteed to

provide results of a minimum acceptable quality and reliability by their deadlines.

Second, the utility of the system, as determined by the frequency, timeliness,

precision and confidence level of the results produced, must be maximised. The

research comprising this thesis, focuses on the development of analysis and

mechanisms which enable this second objective to be met.

System utility can be enhanced by the timely execution of optional components

which refine or improve upon the results of their mandatory counterparts. To achieve

this, a three tier strategy is proposed. Initially, algorithms are developed which

identify spare capacity at run-time, enabling optional components with soft deadlines

to be scheduled responsively. Second, a family of acceptance tests are introduced,

which facilitate the on-line guarantee of optional components with firm deadlines. An

optimal priority assignment policy is derived for such components. Third, an efficient,

adaptive admission policy is developed which arbitrates between competing optional

components on the basis of their value-densities, enabling system utility to be

maximised.

The effectiveness of these techniques is examined in terms of their coverage,

simplicity, performance and overheads, via simulation studies and via a proof of

concept implementation within a hard real-time kernel.
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Chapter 1

Introduction

Real-time systems are found in many diverse application areas including, engine

management, process control, medical electronics, telecommunications, robotics,

multi-media and avionics. These systems range in complexity from simple controllers

implementing a single function, such as the ignition timing of an automobile engine,

to complex sets of communicating sub-systems, each of which is responsible for

performing a number of critical functions, such as navigation, engine management

and flight control for a civil aircraft.

The defining characteristic of these real-time systems, is that they are required

to respond to an external stimulus within a finite and specified time [76]. More

generally, each real-time service has an associated time constraint by which a

response is required. These time constraints vary considerably in their degree of

severity. A service is classified as hard real-time, if failure to respond within its time

constraints constitutes a failure of the system. In contrast, the late response of a soft

real-time service may be tolerated, albeit at the expense of degraded system utility.

Finally, a service is classified as firm real-time if its late delivery does not constitute

a serious failure, but is of no utility. In this context, the utility of a service is defined

as its "usefulness as perceived from the system’s operational environment" [19].

Thus, the utility of a real-time service depends upon, the precision of the results it

produces and the time at which they are delivered, (as well as other factors defining

the state of the system and its external environment).

Today, hard real-time systems are often specified and designed to provide

deterministic results at times which may also be pre-determined. Whilst effective in

the development of small systems, this quest for predictability via determinism can

lead to inefficient use of processing resources [21]; systems which lack the flexibility

to provide improved performance when they are operating under favourable

conditions, and which fail completely when asked to operate marginally outside their

original requirements. Further, these requirements often make assumptions about the
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predictability of the system’s operational environment which if invalidated lead to

catastrophic failure.

As an example of such drawbacks, consider a hypothetical air traffic control

(ATC) system. The requirements for this system are as follows: process messages

from up to 25 aircraft per second, display position, velocity and id, and give 10

seconds warning of any potential incursions into restricted airspace.

Taking a classical approach to real-time systems design and implementation,

these requirements would typically result in a system comprising three tasks. The first

task processes up to 25 messages. The second task predicts the precise flight path of

each aircraft, determining if there are any conflicts with restricted airspace. Finally

the third task displays the relevant data and warning information. The tasks are

executed cyclically every second.

Whilst adequate, this approach is inefficient: when an aircraft is a long way

from restricted airspace, predicting its flight path is not necessary, a simple check

based on speed and distance will suffice. Further, a similar calculation based on

proximity and maximum speed can be used to determine the earliest time at which a

precise check is needed. This approach greatly reduces the system’s processing

requirements when not all aircraft are close to airspace boundaries.

The traditional approach also suffers from catastrophic degradation: increasing

the number of aircraft above that specified always results in a lack of display or

warning information for the additional aircraft. Further, with a reduced load, system

utility is no better than in the worst case. The same quality of information is

provided even though there may be sufficient processing capacity to extend the flight

path check to 20 or 30 seconds, giving an advanced advisory warning to pilots.

Adopting an alternative strategy for requirement specification as advocated by

Burns and McDermid in [21], the adaptability of this simple system can be markedly

improved.

The fundamental requirements for this alternative ATC system are as before:

the system must be guaranteed to provide precise warnings for up to 25 aircraft.

However, these basic requirements are now supplemented by a set of requirements



- 11 -

for adaptability. The system must do the best it can to (in order of importance): (1)

process and display data for all aircraft. (2) provide imprecise warnings based on

aircraft speed and proximity to restricted zones. (3) give precise warnings of any

potential incursions within 10 seconds. (4) provide advisory warnings of potential

incursions 10-30 seconds ahead. Finally, the system must indicate if precise warning

information is available for every aircraft.

The intended behaviour of this alternative ATC system resembles that of an

intelligent human operator. Under conditions of light load, an advisory warning is

generated 20 seconds in advance of an aircraft venturing into restricted airspace,

allowing pilots more time to react and enhancing the utility of the service. Under

normal conditions, more than 25 aircraft can be handled as not all of them require a

complex flight path check due to their distance from airspace boundaries. Further,

when resources are reduced, akin to a human operator taking over 2 control stations,

an imprecise warning is given based on proximity, providing a degraded but still

useful service.

We note that compared to the original, this alternative ATC system provides a

higher level of utility under normal conditions and gracefully degraded performance

as it is overloaded. However, to facilitate this behaviour, requires a more complex

design, where functionality is decomposed into mandatory and optional components.

Mandatory components provide a minimally acceptable level of performance and need

to be guaranteed to meet their deadlines. Optional components represent methods of

enhancing system utility by improving upon the precision or coverage of their

mandatory counterparts or by providing complementary functionality. The scheduling

mechanisms and policies needed to support this model must be predictable, enabling

mandatory components to be guaranteed, and yet flexible enough to maximise the

utility of the system, via the timely execution of optional components.

The research described in this thesis focuses on the mechanisms, policies and

analysis required to provide this degree of flexibility and predictability in the next

generation of real-time systems.
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1 . 1 Background

The fundamental requirement for hard real-time systems is predictability. It must be

possible to guarantee, within some failure model, that hard real-time services will

meet their requirements in terms of both functionality and timeliness. Further, this

need for predictability extends to each component of a hard real-time system:

software, hardware, and the operating system kernel. The need for predictability

does not however imply that such systems must be deterministic. It is sufficient to

be able to predict that time constraints will be met, without necessarily being able to

determine the exact time at which services will be delivered.

The software implementation of a hard real-time system typically comprises a

set of processes or tasks. Tasks are classified in terms of their arrival pattern as

periodic, aperiodic or sporadic. Periodic tasks are invoked cyclically, with a fixed

time interval or period between invocations. In contrast, aperiodic tasks may be

invoked at any time. Finally, sporadic tasks may also arrive at any time subject to

there being a minimum inter-arrival time between successive invocations. Tasks may

be independent or they may exhibit inter-dependencies such as precedence

relationships, or requirements to access shared data or semaphores. As part of the

design process, tasks are assigned deadlines derived from the end-to-end time

constraints on the services which they implement [47].

Tasks with hard deadlines must have bounded worst case execution times (wcet)

in order to exhibit predictable behaviour. This implies that software execution paths

must not result in indefinite loops or unbounded recursion. Indeed, to enable the

worst case execution time of hard tasks to be determined, it is necessary to limit the

set of language constructs which may be used to those which can be analysed.

Typically, the use of pointers to functions and unstructured programming (e.g. gotos)

is disallowed and maximum iteration counts or times are required for all loop

constructs [81, 112]. Hardware must support bounded execution times for all machine

code instructions and memory accesses. For a single instruction, these bounds are

often significantly higher than the average case, due to the effects of instruction

pipelining and memory cacheing. However, tight bounds can be obtained for the

worst case execution time of sequences of instructions on processors with pipelines

[113] and caches [3]. Kernel mechanisms and policies must not lead to unbounded
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delays in the execution of hard tasks. For example, the FIFO rendezvous queueing

implemented in Ada83 lead to problems with unbounded delays due to priority

inversion [20]. Further, if the application comprises a mixture of safety critical and

non-safety critical tasks, then the kernel must also ensure that one application service

cannot affect the timely and correct operation of others [24]. In particular, fault

containment is required to prevent an errant task from: corrupting memory used by

other (independent) tasks, overrunning its execution time budget or permanently

holding software resources such as semaphores. Budget timing, memory protection

and system calls are typically required to support this functionality.

The inherent concurrency of real-time services leads to contention between tasks

for both physical resources (e.g. processors, communications etc.) and logical

resources (e.g. semaphores). Kernel mechanisms such as task dispatch and budget

timing provide a means of implementing higher level policies and protocols which

arbitrate between competing demands for resources. In particular, scheduling policies

determine, at any given time, which task is dispatched to the processor for execution.

Scheduling policies are termed pre-emptive if the execution of a task may be

interrupted at any time. In reality, however, there are often non-pre-emptable sections

within tasks, referred to as critical sections, where pre-emption could lead to

problems, for example, with semaphores being left in an incorrect state. Further,

some kernel operations (or system calls) are typically also non-pre-emptable.

Scheduling policies are classified as off-line or on-line depending on when

scheduling decisions are made. With off-line policies (e.g. static cyclic scheduling), a

schedule is pre-computed, then at run-time the decision, as to which task to execute

is made by referring to this static schedule. In contrast, on-line policies use task

priority to arbitrate between tasks which are ready to execute. On-line policies may

be further sub-divided into dynamic and fixed priority methods. With fixed priority

scheduling, priorities are statically determined by some priority assignment policy,

such as Rate Monotonic [65]. In contrast, dynamic priorities correspond to task

attributes which vary at run-time, e.g. absolute deadline in the case of Earliest

Deadline First [65].
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The need for predictability implies that the scheduling policies used in hard

real-time systems must be analysable. It must be possible to determine a priori, by

means of a feasibility test, if a set of tasks complying with a given computational

model (e.g. bounded wcets, independent periodic tasks etc.) can be guaranteed to

always meet their deadlines when scheduled according to the prescribed policy.

Analysis may also be applied at run-time in the form of an on-line acceptance test;

used to determine if a particular invocation of an aperiodic task is schedulable.

Finally, scheduling policies are required to be efficient: making efficient use of

limited processing resources invariably reduces the cost, complexity, size and power

consumption of a system. In almost all applications, the successful and / or profitable

deployment of a system depends on one or more of these factors.

1 . 2 Motivation

It is debatable whether many of the simple real-time systems in operation today

would benefit from improvements in adaptability and flexibility. Often enough control

can be exerted over the operational environment to ensure that the real-time system is

not asked to operate outside its deterministic requirements. In the case of air traffic

control, this is achieved by diverting or stacking aircraft wishing to enter a sector,

causing delays, but avoiding overloading the system. In emergency situations, it is the

human operators and pilots who provide the necessary adaptability. Whilst this

approach is adequate for today’s systems, it is essential that the next generation of

real-time systems exhibit dynamic, adaptive and intelligent behaviour if they are to

function in environments which are inherently non-deterministic. For these systems

[94],

"the typical semantics (all tasks make their deadlines 100% of the time)
associated with small static real-time systems are not sufficient."

However, critical real-time services must still be guaranteed [23].
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1 . 2 . 1 Next Generation Real-Time Systems

The Pilot’s Associate programme [67], is one early (c. 1986) example of an initiative

to build such a "next generation" system. The aim of this programme is to enhance

pilot effectiveness through increasing situational awareness and decreasing workload.

To achieve this requires an intelligent advisory system which adapts to the current

external environment, providing timely advice to the pilot. The functionality of this

system is highly complex, with a mixture of safety and non-safety critical services,

time constraints which vary from a few milli-seconds to tens of seconds, a highly

dynamic task set, numerous modes of operation and extensive AI and unbounded

components. A whole spectrum of real-time services are envisaged, including:

managing agile sensors, fusing data from a variety of active and passive sources,

combining this fused picture of the environment with database information;

determining and prioritising threats due to enemy aircraft and surface to air missile

systems, mission planning and re-routeing, reacting to immediate threats such as

missile attack, determining countermeasures and evasion tactics and planning attack

profiles and engagments, as well as more mundane functions such as navigation, fuel

management and systems monitoring. The operational environment of this system is

hostile, unpredictable and completely uncontrollable. The location, performance,

tactics and numbers of enemy systems are unknown quantities.

Many similar systems have been proposed in areas such as autonomous vehicle

control [78], robotics [77] and advanced avionics [71], although few have progressed

past the prototype stage. This is due, at least in part, to the difficulties arising in

providing intelligent and adaptive behaviour whilst also guaranteeing a minimum

acceptable level of performance in the worst case. Indeed, in [94] Stankovic notes

that,

"one of the most difficult aspects will be in demonstrating that these
systems meet both their overall performance requirements (which are
generally average case statistics but with respect to meeting deadlines and
maximising the value of executed tasks), as well as specific deadline and
timing requirements."
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Historically, intelligent real-time systems have been the province of Best-Effort

scheduling [51, 73]. Although providing the necessary flexibility, this approach can at

best only provide probabilistic guarantees that deadlines will be met. Alternatively,

fixed priority pre-emptive scheduling facilitates a priori guarantees that crucial

application services will meet their deadlines. However, it is debatable whether it

has the necessary flexibility to support dynamic and adaptive behaviour.

In this thesis, we contend that by augmenting fixed priority pre-emptive

scheduling with simple on-line algorithms, acceptance tests and policies, integration

with more flexible scheduling approaches can be achieved. Thus combining the

benefits of guaranteeing hard time constraints with the adaptability which can be

achieved via the Best-Effort paradigm.

Complex real-time applications place heavy demands on the operating system

kernel and underlying scheduling theory. These demands can be expressed in terms

of objectives which need to be addressed by the architects of the next generation of

real-time systems. Two fundamental objectives are as follows:

1. Safety critical and mission critical services must be guaranteed (100%) to

provide results of the minimum acceptable quality and reliability by their

deadlines [13, 94].

2. The utility of the system, as determined by the frequency, timeliness, precision

and confidence level of the results produced, should be maximised [23, 94].

Recent advances in scheduling theory have removed many of the artificial constraints

which were previously needed in order to guarantee hard timing requirements. In

fact, fixed priority pre-emptive scheduling is now becoming accepted as an

appropriate engineering discipline for constructing hard real-time systems. However,

the sole reliance placed upon off-line feasibility analysis makes pure fixed priority

pre-emptive scheduling inflexible.

The second objective has been identified as one of the key challenges presented

by the next generation of hard real-time systems [23]. The avenue of research

explored in this thesis seeks to meet this objective by providing techniques which

facilitate the timely and effective scheduling of optional components aimed at
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enhancing system utility. The motivation for this line of research stems from the

need to:

g improve upon the level of utility provided by analysable mandatory components.

g incorporate intelligent, dynamic and adaptive behaviour into hard real-time

systems.

g provide resilience to software failures, increase application robustness and

imbibe systems with the property of graceful degradation.

1 . 2 . 2 Techniques for Improving Utility

Several techniques have been proposed which exploit spare processing capacity,

enabling the utility of hard real-time services to be improved. In some cases, this can

be achieved by executing mandatory components at a raised priority, enabling their

results to be delivered earlier. Alternatively, utility may be enhanced via the

execution of optional components which improve upon the precision, reliability or

confidence level of their mandatory counterparts. Paradigms which support this

optional component model include; Iterative Refinement [64], Multiple Versions [94]

and Approximate Processing [45].

Components which exhibit intelligent behaviour often have effectively

unbounded worst case execution times. Clearly, such components cannot be

guaranteed to complete by any given deadline, however, they can be integrated into

hard real-time systems via the Iterative Refinement or Multiple Versions paradigms.

Iterative Refinement can be subdivided into Milestone Methods and Sieve

Functions. The Milestone Method facilitates the refinement of an initial minimally

acceptable result, whilst Sieve Functions refine intermediate values, improving the

utility of the final output. In both cases, it is not essential that the refinement steps

are completed thus unbounded techniques are permitted. Both these methods are

applicable to many hard real-time services which involve numerical computation,

statistical estimation and prediction, heuristic search, sorting and database query

processing [66].
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The Multiple Versions paradigm is a more general technique than Iterative

Refinement. This approach assumes that there are a number of different algorithms

available to provide essentially the same service. Typically, these algorithms make

different trade-offs between result utility and execution time. Often they also

emphasise different aspects of the problem. Versions with unbounded execution

times can be incorporated, provided that they are supported by a bounded primary

version, which is guaranteed off-line. Similarly, alternative versions may have worst

case execution times which are too large to be guaranteed a priori, but may be given

an on-line guarantee if sufficient spare capacity is available.

Examples of multiple versions can be found in the Situation Assessment (SA)

subsystem of the Pilot’s Associate [57]. (see section 1.2.1). In this application, the

method used to answer queries regarding the status of enemy fighters is dependent

upon the execution time budget available. This in turn is dependent upon the

deadline imposed by the external environment: the time to intercept. "Given a very

short deadline, SA just looks up the value most recently stored in its database...With

more time, SA executes algorithms which quickly extrapolate previous state data to

estimate the current state. With still more time, SA uses a rule based system..."

Similarly, the Approximate Processing paradigm exploits spare capacity to

improve service utility. With this method, it is assumed that the worst case execution

time of a task can be expressed as a function of a set of parameters. The idea is to

set these parameters, such that a result of the maximum utility is guaranteed to be

produced before the task’s deadline. Thus the worst case execution time of the task is

tailored to the time budget available. To achieve this, the Approximate Processing

approach requires a model of how the worst case execution time of the task varies

with certain controlling parameters.

A simple example of Approximate Processing can be found in the domain of

route planning algorithms [50]. Here, the step size used in the search is varied to

control execution time. In the case of more complex tasks, execution time may

depend upon a number of parameters. For example, in the Distributed Vehicle

Monitoring Test-bed [40], execution time depends upon; the level of approximation in

input data clustering, the search depth and the number of knowledge sources used.
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Techniques such as Iterative Refinement, Multiple Versions and Approximate

Processing can be used in the implementation of adaptive components. Such

components may change their timing requirements at run time within some pre-

determined bounds, and have deadlines which may vary from one invocation to the

next, depending upon the state of the external environment. Moreover, adaptive

components may determine their next release time based on the current value and

maximum rate of change, of some measured quantity, thus exhibiting a variable

frequency of execution. Off-line analysis of such components must assume that they

are invoked at the maximum frequency with the minimum deadline. At run-time,

such conditions may seldom occur. In order to fully exploit the ability of adaptive

components to modify their execution requirements and hence the quality of the result

they produce, spare processing capacity must be made available prior to their

deadlines. Further, an on-line acceptance test is required to guarantee the additional

execution time.

Finally, resilience to software failures can be provided through time redundancy.

If a software component fails the "sanity" checks on its output, then there may be

sufficient spare capacity to retry the component before its deadline. Alternatively, if

little spare capacity is available, there may still be time to execute a "quick and

dirty" alternative which, although degrading system performance, prevents or reduces

the damage caused by the failure. Again, on-line mechanisms for identifying and

assigning spare capacity are required to support such behaviour.

1 . 3 Objectives and Approach

The research comprising this thesis is aimed at meeting the following objective for

hard real-time systems: to maximise system utility, as defined by the frequency,

timeliness, precision and confidence level of the results produced, whilst also

ensuring that the a priori guarantees, made regarding the time constraints of crucial

services, are honoured at run-time.

The central proposition of the thesis is that:
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On-line techniques, which exploit knowledge of the run-time state of
the system, can be used to integrate adaptive scheduling policies into
the framework provided by fixed priority pre-emptive scheduling.
Thus combining the benefits of guaranteed predictability with the
flexibility necessary to attain improved system utility.

The rationale behind this idea is that in order to provide a priori guarantees to

services with hard deadlines, off-line feasibility analysis must take account of the

worst-case phasings, execution times and arrival rates of the mandatory tasks which

comprise these services. In general, at run-time, such worst-case conditions seldom

occur, thus spare capacity becomes available. By exploiting run-time information,

about task releases, execution times and deadlines, this spare capacity can be

identified and assigned to optional utility-enhancing tasks.

In this thesis, we propose a three tier approach to maximising system utility.

The elements of this strategy are as follows:

1. Algorithms which identify spare capacity.

2. Acceptance tests which provide on-line guarantees to utility-enhancing tasks.

3. Admission policies which arbitrate between competing optional components.

Each layer exploits additional run-time information, allowing a greater range of

utility-improving techniques to be employed and thus increasing the level of system

utility which can be obtained.

1 . 3 . 1 Methodology

The methodology used in undertaking the research comprising this thesis is as

follows:

1. The theoretical derivation of mechanisms, algorithms and policies corresponding

to the three tiers of the strategy.

2. Evaluation of the theoretical performance of the above techniques through

comparison with contemporary approaches via simulation studies.
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3. Measurement of the actual performance and overheads of the various techniques

as implemented in the DRTEE hard real-time system kernel.

Although in general, work progressed in the above sequence, at various points,

anomalies or deficiencies highlighted by simulation or measurement provided a focus

for further theoretical work. In particular, the difficultly in efficiently detecting spare

capacity present due to late sporadic arrivals, highlighted in chapter 4, led to the

development of the Dual Priority approach (chapter 5). Similarly, anomalies in the

performance of the acceptance tests detailed in chapter 6, led to the derivation of an

optimal priority assignment policy for aperiodic tasks (also presented in chapter 6).

Finally, before the various techniques could be implemented in the DRTEE kernel,

the underlying scheduling theory had to be tailored to reflect the particular

performance characteristics of the kernel.

The final stage of our research method involved reflecting upon the degree of

success in meeting the objectives set. In particular, the techniques proposed are

reviewed against the following criteria:

Coverage: techniques which are only applicable to tasks sets which conform to a

restrictive computational model are unlikely to be of practical use in the next

generation of hard real-time systems.

Performance: the techniques proposed will only be taken up if they out-perform

existing methods.

Overheads: the overheads involved in implementing a particular technique can have

a significant impact on the actual performance achieved. Typically for techniques to

be practical in real systems, the overheads need to be of O(n) or ideally O(1)

complexity in the number of tasks.

Simplicity: simple intuitive methods are more likely to be taken up by industry than

those with complex implementation requirements.
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1 . 4 Research Scope

This thesis focuses on fixed priority pre-emptive scheduling as an underlying strategy.

The rationale for restricting our attention to this form of scheduling is as follows: we

are concerned with improving the utility of real-time systems; however, services with

hard time constraints must still be guaranteed. This requirement for predictability

implies that only analysable and efficient scheduling strategies need be considered.

Essentially, the choice is between static cyclic, dynamic and fixed priority scheduling.

Static cyclic scheduling does not offer the flexibility required in the next

generation of real-time systems. It has a number of major drawbacks when applied to

complex systems [69]. The schedules produced are brittle: changing the timing

characteristics of a task or adding a new task often requires that the entire schedule is

re-worked. Handling tasks with a wide range of frequencies and worst case execution

times is problematic: low frequency tasks have to be split up or carefully analysed to

determine the time segments when they require certain resources. If this is not done,

then shared resources such as data buffers or communications channels need to be

reserved for the entire span of execution of the task, making them unavailable for

higher frequency tasks. Finally, static cyclic scheduling is unable to deal efficiently

with sporadic tasks. These tasks cannot be handled explicitly and must be

accommodated by the provision of a periodic task which polls for the sporadic

stimulus. If timely behaviour is to be guaranteed, then the period of the polling task

must be at most the relative deadline of the sporadic service. This is particularly

inefficient if the sporadic service has a deadline which is short with respect to its

minimum inter-arrival time.

Dynamic priority scheduling offers the flexibility required by the next

generation of real-time systems, but not the predictability. Dynamic priority

scheduling is not analysable if priorities can essentially vary at random, as is the case

when priority corresponds to dynamic utility values. However, for simpler attributes

such as absolute deadline or laxity, analysis is possible, albeit for a constrained

computational model, such as that given by Liu and Layland [65]. Unfortunately,

exact analysis of dynamic priority strategies such as Earliest Deadline First appears to

be intractable for more complex task models. For example, once the deadlines of

sporadic tasks are permitted to be less than their periods, feasibility tests based on
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utilisation become either insufficient, or if utilisation is considered as worst case

execution time divided by deadline, then they are highly pessimistic. Finally, with

dynamic priority scheduling, it is not in general possible to determine which tasks

will miss their deadlines under conditions of transient overload.

In contrast, advances in fixed priority pre-emptive scheduling theory permit a

more complex model for hard tasks and more flexible scheduling of soft tasks. In

particular, hard tasks are permitted to be periodic or sporadic, to have arbitrary

deadlines, which may be prior to completion, and to exhibit blocking and release

jitter. Further, the response time of soft tasks may be improved by utilising spare

capacity which becomes available when hard tasks require less than their worst case

execution time. These advances are reviewed in the next chapter. Finally, fixed

priority pre-emptive scheduling is now becoming accepted as an appropriate

engineering discipline for the construction of hard real-time systems. It forms part of

the Ada 95 [2] and POSIX [111] standards and has also been specified by the

European Research Agency for its research contracts [17].

Note that while the focus of this research is upon fixed priority pre-emptive

scheduling, where there is related work in other areas, this is also reviewed.

1 . 5 Thesis Organisation

The remainder of this thesis is organised as follows:

Chapter 2 surveys the field of fixed priority pre-emptive scheduling; covering

areas such as feasibility tests, priority assignment policies, task synchronisation and

blocking, system wide application requirements and efforts to tailor analysis to the

characteristics of operating system kernels. We then provide an in depth review of

algorithms for identifying spare capacity. Finally, problems with two on-line

acceptance tests for the static Slack Stealing algorithm [83, 84] are highlighted. Both

of these acceptance tests are shown to be insufficient, that is they may give an on-

line guarantee to an aperiodic task which will subsequently miss its deadline.

In chapter 3, we introduce an exact approach to identifying spare capacity.

Analysis is presented which determines, at any given time, the maximum amount of

interference (refered to as slack) which each hard task may be subject to without
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causing its deadline to be missed. This analysis is used to formulate a dynamic Slack

Stealing algorithm which we prove to be optimal. Analysis of the dynamic Slack

Stealing algorithm is extended to tasks which exhibit blocking and release jitter and

to tasks with arbitrary deadlines and offsets. Further, the algorithm is augmented to

reclaim gain time (produced when a guaranteed task requires less than its worst case

execution time at run-time), unused blocking time and unused context switch time.

Unfortunately, the run-time overheads of the exact algorithm are pseudo-

polynomial in complexity, making it impractical for many real-time systems. In

chapter 4, we address this problem by introducing approximate analysis which

determines a lower bound on the slack available at any given time. This analysis is

used to formulate various approximate slack stealing algorithms. The effectiveness of

each of these algorithms is evaluated with respect to the exact approach and

contemporary methods of identifying spare capacity such as the Extended Priority

Exchange algorithm [92]. The mean response time of a stream of soft tasks is used

as the performance metric.

Chapter 5 introduces an elegant alternative approach for identifying spare

capacity: Dual Priority Scheduling. We show that this approach retains the

predictability afforded to hard tasks by fixed priority scheduling. Further, we extend

its applicability to tasks which exhibit blocking and release jitter and tasks which

have arbitrary deadlines and offsets. This approach is also augmented to reclaim gain

time. The effectiveness of the Dual Priority approach is evaluated in terms of its

ability to provide responsive soft task scheduling.

Chapter 6 summarises previous work on acceptance tests, and reviews an exact

test for the static Slack Stealing algorithm [96]. This test has pseudo-polynomial

time and space complexity and is only applicable to hard task sets which are strictly

periodic. Subsequently, we introduce more generally applicable exact and sufficient

acceptance tests for use under both Slack Stealing and Dual Priority approaches.

Further, we derive an optimal policy for assigning fixed priorities to aperiodic tasks

which are guaranteed under the Slack Stealing algorithm.
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The effectiveness of the sufficient and the exact acceptance tests are compared

for Slack Stealing, Dual Priority and Background scheduling. The performance

criteria used is the percentage of the total aperiodic task execution time which can be

guaranteed.

Chapter 7 examines admission policies. Such policies arbitrate between

competing utility-enhancing optional components, thus determining which optional

components are executed and which are rejected. First, related work is reviewed.

This work addresses the problem of obtaining the maximum total value or utility

under conditions of overload. However, it is assumed that there are no hard tasks

which must be guaranteed a priori.

Subsequently, we show that when optional task execution is interspersed with

the execution of guaranteed hard tasks, then the value which any on-line admission

policy can guarantee to obtain, is vanishingly small compared to that which can be

obtained by a clairvoyant algorithm. We also investigate the average case

effectiveness of various policies. First Come First Served (FCFS) and Best-Effort

[68] policies are studied, together with a new Adaptive Threshold policy which we

derive. These policies are combined with Slack Stealing, Dual Priority and

Background scheduling methods. Further, each approach relies on using the sufficient

acceptance tests (given in chapter 6) to reject or accept optional tasks. The

performance of the various approaches is evaluated in terms of the fraction of an

upper bound on the achievable system utility which is obtained.

Chapter 8 details the implementation of the techniques, described in chapters 4

and 5, within the framework of the DRTEE hard real-time kernel. The actual

performance and overheads of Slack Stealing, Dual Priority and Background

scheduling strategies are measured, for a variety of synthetic task sets.

In chapter 9, we re-examine the basic objective of the avenue of research

pursued in the thesis. We comment on how well the techniques developed in

previous chapters meet this objective. Finally, we conclude by outlining areas for

future research.
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Chapter 2

Fixed Priority Pre-emptive Scheduling: A Review

The previous chapter cited two fundamental objectives which must be met by the

infrastructure and analysis supporting the next generation of real-time systems.

1. Hard real-time services must be guaranteed to meet their deadlines.

2. System utility, as defined by the frequency, precision, timeliness and reliability

of the services provided, should be maximised.

In this chapter, we survey advances in fixed priority pre-emptive scheduling theory.

In particular, we look at how the artificial constraints on task timing characteristics

and interactions required by early work have been relaxed, allowing tasks to have

more complex timing behaviour. Further, we outline how analysis has been tailored

to account for the particular characteristics of actual real-time kernels and

communications media. Hence we show that fixed priority pre-emptive scheduling

provides an appropriate framework for the design and implementation of systems

which meet the first objective.

The second objective has been identified as one of the key challenges presented

by the next generation of real-time systems [23]. In the introduction, we discussed

several techniques which enable the utility of a guaranteed hard real-time service to

be improved by exploiting spare capacity. The facilities required to support these

techniques include algorithms which identify spare capacity, making it available at a

high priority level, and on-line acceptance tests which provide run-time guarantees for

optional components with firm or hard deadlines. Sections 2.2 and 2.3 provide an in

depth review of previous research into such algorithms and acceptance tests.
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2 . 1 Advances in Fixed Priority Pre-emptive Scheduling Theory

To aid discussion, we first introduce a suitably general computational model and

notation for tasks with hard deadlines.

2 . 1 . 1 Computational Model, Definitions and Notation

In fixed priority pre-emptive scheduling, each task is assigned a unique priority, then

at run-time, the processor is allocated to the highest priority runnable task. Each task

is assumed to have a base priority i, in the range 1 to n where n is the number of

tasks. We use hp( i) to denote the set of tasks with a higher base priority than i.

Tasks may be sporadic or periodic. Each sporadic task gives rise to an infinite

sequence of invocation requests, separated by a minimum inter-arrival time T i .

Similarly, each periodic task gives rise to an infinite sequence of invocation requests,

separated by a period T i . Thus periodic tasks may be viewed as a special case of

sporadics. Each invocation of task τ i performs an amount of computation between 0

and C i (its bounded worst case execution time) and has a hard deadline D i measured

relative to the time of the request. Further, each task may lock and unlock

semaphores according to the Priority Ceiling Protocol [88]. The worst case blocking

time which an invocation of task τ i can experience due to the operation of this

protocol is denoted by B i . Although the tasks are assigned unique static priorities,

they may have their priorities temporarily increased due to priority inheritance, as

part of the operation of the Priority Ceiling Protocol. Finally, tasks can arrive at any

time after their minimum inter-arrival interval, but be delayed for a variable but

bounded amount of time (termed release jitter [105], J i) before being placed on a

notional run-queue. They are then said to be released. It is assumed that for each task

τ i , C i , T i , D i , B i and J i are known deterministic quantities.

Research into fixed priority scheduling often focuses on optimal priority

assignment policies and schedulability tests. A fixed priority assignment policy P is

optimal if no task set exists which is schedulable when priorities are assigned

according to a different priority assignment policy, but not schedulable when

priorities are assigned according to policy P. Schedulability tests determine if a task

set is schedulable under a given fixed priority assignment. A schedulability test is

sufficient if all task sets which pass the test are indeed schedulable. A test is
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necessary if all task sets which fail the test are in fact unschedulable. Tests which are

both sufficient and necessary are referred to as exact.

2 . 1 . 2 Early Work

Early work on fixed priority pre-emptive scheduling focused on priority assignment

policies. In 1967, Fineberg and Serlin considered priority assignment for two tasks

[44]. They noted that if priorities are assigned such that the task with the shorter

period has the higher priority, then the least upper bound on schedulable utilisation is

2(√dd2 − 1) or 82.8%. Where, the utilisation U is defined as:

U =
∀ i
Σ T i

C ihhh (2.1)

This result was later generalised by Serlin [86], and Liu and Layland [65]. Both of

whom showed that Rate Monotonic priority assignment is an optimal fixed priority

assignment policy for tasks which comply to the restrictive computational model

detailed below. According to the Rate Monotonic policy, tasks are assigned priorities

based on their period, the shorter the period, the higher the priority.

Both Serlin, and Liu and Layland also gave a simple sufficient schedulability

test, which is only applicable when priorities are assigned according to the Rate

Monotonic policy. This test is based on processor utilisation and is reproduced

below. Provided that processor utilisation is less than the bound, then the task set is

schedulable.

∀ i
Σ T i

C ihhh ≤ n I
L 21/n − 1

M
O (2.2)

This bound corresponds to a utilisation of 82.8% for 2 tasks, 71.8% for 10 tasks and

tends to ln(2) = 69.3% for a large number of tasks. Unfortunately, the

computational model used limits the applicability of these results to simple task sets

which conform to the following artificial constraints:
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1. All tasks on a single processor.

2. A fixed set of tasks.

3. All tasks are periodic.

4. All task execution times are fixed.

5. All task deadlines are equal to their periods.

6. At some point in time, all the tasks are released simultaneously.

7. All tasks are independent.

8. Tasks may not voluntarily suspend themselves.

9. There are no scheduling overheads.

Subsequent research into fixed priority pre-emptive scheduling has focused on lifting

these restrictions, and thus providing optimal priority assignment policies and exact

schedulability tests for more realistic computational models.

2 . 1 . 3 Optimal Priority Assignment Policies

In 1982, Leung and Whitehead showed that Rate Monotonic priority assignment is

not optimal when task deadlines are less than their periods [63]. Inverse deadline or,

as it is more commonly known, Deadline Monotonic priority assignment is optimal in

this case. Applying this policy, priorities are assigned to tasks according to their

deadlines, the shorter the deadline the higher the priority. Hence Deadline Monotonic

priority assignment is equivalent to Rate Monotonic priority assignment in the limited

case when for all tasks, D i = T i . However, neither Rate Monotonic nor Deadline

Monotonic priority assignment policies are optimal for tasks with arbitrary deadlines,

i.e. tasks with deadlines which may be greater than their periods [58]. Neither are

they optimal for tasks which never share a common release time (termed a critical

instant) [63]. In [5, 105], Audsley provides analysis which determines if a set of

tasks do not share a common release time and presents an optimal priority ordering

algorithm which finds a feasible priority assignment if one exists. This algorithm is
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applicable to tasks with arbitrary deadlines, which may or may not share a critical

instant. The algorithm requires a maximum of 1⁄2(n 2 + n) schedulability tests in order

to find a feasible priority assignment, if one exists. This is an improvement over

examining all n! possible priority orderings. Further, the algorithm is optimal for any

schedulability test where the worst case response time increases monotonically with

decreasing task priority [101].

2 . 1 . 4 Schedulability Tests

Following on from early work on sufficient utilisation based tests, a number of exact

tests were developed. Leung and Merrill [62] suggested that exact feasibility could be

determined by simulating the schedule over the least common multiple (LCM) of task

periods. This method is inefficient as the LCM may be very large.

Rate Monotonic Analysis

Sha et al [61] examined the characteristics of the Rate Monotonic priority assignment

policy, they showed via simulation, that in the average case, the utilisation bound for

a large set of tasks is 88% (compared to 69% in the worst case). Further, they

derived an exact schedulability test, which is applicable to sets of independent tasks

which share a critical instant and have deadlines which are less than or equal to their

periods. This test is based on the assertion that: task τ i is schedulable if and only if

there is some time t, t ∈ [0,D i], when the invocations of all tasks of priority i and

higher, released in the interval [0, t) are complete. The test proceeds by finding the

cumulative load, W i ,t , on the processor due to level i and higher priority tasks,

W i ,t =
j ∈ hp( i) ∪ i

Σ
R
J
J T j

thhh
H
J
J
C j (2.3)

If W i ,t ≤ t ≤ D i , then task τ i is schedulable. As W i ,t only increases at the release

of tasks with a higher priority than i, then only values of t corresponding to these

releases need to be checked. This test is valid for any fixed priority assignment

policy.
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Sha et al [88] extended Rate Monotonic analysis to account for blocking due to

the operation of the Priority Ceiling Protocol (see section 2.1.5). Furthermore, Sprunt

showed how sporadic tasks with hard deadlines can be guaranteed via the operation

of Sporadic Servers [90]. Finally, Lehoczky [58] extended Rate Monotonic analysis

to tasks with arbitrary deadlines. The two sufficient and not necessary tests presented

by Lehoczky place restrictions on task deadlines such that D i = kT i , where k is a

constant across all tasks. One test restricts k to be an integer, the other does not.

Response Time Analysis

An alternative approach to feasibility analysis was developed independently by Harter

[49], Joseph and Pandya [52] and Audsley et al [11, 10]. Here the emphasis is

placed on finding the worst case response time of a task, defined as the longest time

between its arrival and completion. Schedulability can then be determined via a

simple comparison between response times and deadlines. Below, we reproduce the

recurrence relation given in [10].

ri
n +1 = C i +

j ∈ hp( i)
Σ

R
J
J T j

ri
n

hhh
H
J
J
C j (2.4)

This relation iteratively computes the worst case response time, r i , of task τ i .

Iteration starts with ri
0 = 0 and ends when ri

n +1 = ri
n or ri

n +1 > D i , in which case

the task is unschedulable. (Note, Proof of convergence for task sets with a processor

utilisation ≤ 100% is given in [52] ). This approach is also valid for any fixed

priority assignment policy.

Subsequently, response time analysis has been extended to cater for tasks with

release jitter and arbitrary deadlines [105]. This analysis uses the concept of busy

periods [58], defined as follows: a priority level i busy period is a continuous time

interval during which the notional run-queue contains one or more tasks with priority

i or higher. The analysis given by Tindell (for D > T) [105] examines q

(q = 0,1,2,3...) level i busy periods to determine the worst case response time of

task τ i . The length of each busy period w i (q) is found according to the following

recurrence relation:
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wi
m +1 (q) = (q + 1) C i + B i +

j ∈ hp( i)
Σ

R
J
J T j

wi
m (q) + J jhhhhhhhhhh

H
J
J
C j (2.5)

the response time of each invocation is then given by:

R i (q) = w i (q) − qT i + J i

Examination of increasing values of q may stop if:

w i (q) ≤(q + 1) T i

In which case, the worst case response time of task τ i is given by;

R i = maxq =0,1,2,3...
I
L w i (q) − qT i

M
O+ J i

Unlike the tests for tasks with arbitrary deadlines mentioned earlier, the above

feasibility analysis is exact and places no restrictions upon task deadlines. Finally, in

[7] Audsley introduced an exact feasibility test for tasks which do not share a critical

instant.

2 . 1 . 5 Task Interdependency

Allowing tasks to access shared resources which must be used in a mutually

exclusive manner introduces the potential for blocking. One task may wish to access

a resource, but is prevented from doing so by another task which has already

obtained that resource. The first task is said to be blocked awaiting the release of the

resource. In real-time systems, the blocking experienced by any hard task must be

bounded. Arbitrary locking of resources can however lead to unbounded delays due

to priority inversion or deadlock.

Priority inversion can occur when a low priority task τ L locks a semaphore R,

which is then required by a high priority task τ H. This problem may be avoided by

making critical sections non-preemptable [72] or by mechanisms based on priority

inheritance [108]. Using priority inheritance, when task τ H blocks because τ L is
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holding R, task τ L is given the priority of τ H (until it releases R), thus avoiding pre-

emption by tasks of medium priority. Priority inheritance protocols prevent

unbounded priority inversion, however, the system is still susceptible to deadlocks

and chained blocking.

These problems may be avoided by using an idea first suggested by Lampson

and Redhill in 1980 [56]. A ceiling priority is associated with each resource, equal

to the highest priority of all the tasks which use that resource. Then when a task

accesses a resource, its priority is temporarily increased to the ceiling priority of the

resource. This approach was later formalised as the Ceiling Semaphore Protocol

[82]. The Ceiling Semaphore Protocol enforces a strict ordering of critical sections.

This ensures that each invocation of a high priority task can be blocked by at most,

one lower priority task. This has two effects on the schedulability analysis; first, the

worst case delay imposed on a high priority task is reduced to the longest critical

section of any lower priority task which accesses a resource with a ceiling priority of

i or higher. Second, no additional context switches are introduced by resource access.

Tasks are only blocked prior to commencing execution, however, this blocking may

sometimes be unnecessary, a high priority task which is blocked may in fact require

no resources on that invocation.

This latter drawback is avoided by the Priority Ceiling Protocol [88]. Under

the Priority Ceiling Protocol, a task is only allowed to claim a free resource if its

priority is strictly greater than the ceiling priority of any resource currently held by

another task. Further, the task holding a resource inherits the priority of the highest

priority process which it is blocking. The Priority Ceiling Protocol generally results

in lower mean response times when compared to the Ceiling Semaphore Protocol,

however, this is at the expense of introducing two extra context switches each time a

task is blocked and a more complex run-time implementation.

2 . 1 . 6 Practical Considerations

Before fixed priority scheduling theory could be considered a practical technique for

use in constructing real-time systems, it was necessary for the theory to be extended

to account for system-wide requirements and the characteristics of the implementation

environment. In this section, we survey developments aimed at bridging the gap
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between fixed priority scheduling theory and the reality of practical implementations.

System Wide Requirements

Real-time systems are often required to be stable under conditions of transient

overload; that is, a set of critical tasks must be guaranteed to meet their deadlines

even when the processor is overloaded. When priorities are assigned in Rate

Monotonic order, tasks with longer periods miss their deadlines under overload

conditions. These tasks may however, correspond to those which are most critical to

the operation of the system. This stability problem was addressed by the Period

Transformation Method introduced by Sha et al [87]. This method retains the Rate

Monotonic priority ordering, however, task periods and computation times are

transformed until all the critical tasks occupy priority levels at which they can be

guaranteed to meet their deadlines under worst case conditions.

The problem of integrated I/O and task scheduling was also investigated by Sha

et al [87]. They analysed the reduction in schedulability caused by insufficient

priority levels and showed via simulation studies that FIFO queueing of messages

also results in poor schedulability bounds. Building upon this early work, Strosnider

extended Rate Monotonic analysis to the IEEE 802.5 token ring [95], enabling bus

access times to be bounded. This analysis required that message deadlines be equal

to their periods; a restriction which is too limiting for many applications. Corrections

to this analysis were subsequently given by Pleinevaux [79], who showed that clock

synchronisation messages cannot be handled within the framework given by

Strosnider et al.

More comprehensive analysis of fixed priority communications scheduling was

later given by Tindell [100]. This analysis permits messages to have arbitrary

deadlines. It also enables the cost of reconstituting and delivering messages to be

found, thus bounding the overheads and interference on destination processors and

facilitating the guarantee of end-to-end deadlines. In [107], Tindell et al provided

analysis, bounding the response times of messages under the Controller Area Network

(CAN) protocol. This analysis was extended to account for the characteristics of

actual CAN controllers, highlighting problems of priority inversion, inherent in

implementations with a single transmission buffer.
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In 1978, Dhall and Liu showed that optimal scheduling policies for uniprocessor

systems are not optimal for multiprocessor systems: allocating tasks to processors

according to the Rate-Monotonic First-fit policy results, in the worst-case, in at least

twice as many processors being required as compared with an optimal allocation [42].

Recently, this result has been extended, showing that in the worst case, Rate

Monotonic Next-fit, Rate Monotonic First-fit and Rate Monotonic Best-fit require

respectively 2.67, 2.33 and 2.33 times as many processors as an optimal allocation

[74]. Further, for tasks with up to k replicas which must be scheduled on separate

processors for reasons of fault tolerance, Oh and Son [75] devised a heuristic based

on Rate Monotonic First-fit which requires a maximum of 2.33N o + k processors,

where N o is the number required by an optimal allocation.

In distributed systems, task allocation, task scheduling and communication

scheduling are mutually dependent, NP-hard problems [99]. The problem of finding

optimal static solutions is thus intractable for all but the simplest systems. However,

global optimisation techniques, such as simulated annealing can be used to find good

sub-optimal static allocations [99]. Simulated Annealing can also be used to

minimise bus loading or balance processor loads whilst ensuring that hard time

constraints are met. It can also handle other constraints such as the need to place task

replicas on separate processors for fault tolerance.

Many real-time systems have a number of distinct modes of operation, for

example avionics systems may have take-off, level flight and landing modes. Each

mode represents a potentially different set of tasks. Thus tasks may be deleted, added,

or may change their timing characteristics and priority on a mode change. In [89],

Sha et al provided a simple mode change protocol and associated feasibility analysis.

This initial analysis was subsequently shown to be insufficient: tasks which were

guaranteed could miss their deadlines following a mode change. A revised protocol

and analysis was given by Tindell et al in [103]. This revised analysis finds the

worst-case response times of processes, taking account of increases in interference

caused by the mode change.
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Kernel Performance Characteristics

Before fixed priority feasibility theory can be applied in the engineering of an actual

system, it is first necessary to tailor the theory so that the performance characteristics

of the operating system kernel are adequately addressed. These characteristics include

context switch times, scheduling overheads, non-pre-emptable sections, release jitter

introduced by the scheduler and interference due to interrupt handling. We now

discuss the advances made in this area.

In 1991, Locke et al described a Generic Avionics Platform (GAP) case study

based on an embedded system comprising a set of Ada tasks [70]. To analyse this

case study, Locke et al modelled timer interrupt and context switch overheads as an

extra task with the highest priority and larger task execution times respectively.

Initial sufficient analysis showed that less than half of the application tasks were

guaranteed to meet their deadlines. The observed behaviour of the system however,

suggested that only two tasks actually missed their deadlines. Subsequently, exact

response time analysis was applied to the GAP task set [10]. Accounting for release

jitter due to the periodic timer interrupt (tick) driven scheduler, this analysis more

accurately reflected the observed behaviour of the system.

The problem of incorporating an accurate model of kernel behaviour and

overheads into fixed priority scheduling theory was investigated by Katcher et al

[53]. In the implementation of a priority pre-emptive dispatcher, there are often

non-pre-emptable sections, which give rise to blocking on all application tasks.

Further, the overheads of manipulating the queues used by the scheduler must be

allowed for. Katcher et al identified two ways of implementing fixed priority pre-

emptive scheduling: event driven and tick driven. In an event driven system, the

scheduler is invoked each time a task arrives. Whereas in a tick driven system, there

is a periodic timer interrupt which polls for task arrivals. With the latter approach,

tasks can in general suffer release jitter of up to the polling period. Using Rate

Monotonic analysis, Katcher et al accounted for this release jitter by adding a

blocking factor to each task. This is a sufficient but pessimistic approach.
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In [26] Burns et al developed a model of the scheduling overheads present in

an Ada implementation of the Attitude and Orbital Control System of the Olympus

satellite [17]. They recognised that there was a large variation in the execution time

of the tick driven scheduler, depending upon the number of tasks moved from the

delay queue to the run queue. Using this result, the analysis given by Burns et al

determines the maximum number of tasks released in a given interval and thus

enables a realistic bound on the scheduling overheads to be found.

In accounting for context switch overheads, twice the context switch time is

typically added to the worst-case execution time of each task, prior to calculating

response times and hence the feasibility of the task set. However, as noted by Gerber

et al, it is only meaningful to attach a deadline to the last observable event of a task

[46]. As a result, the context-switch away from a task and any internal computation

occurring after the last observable event need not be completed prior to the deadline

of the task. In [14] sufficient and not necessary response time analysis for processes

with such internal deadlines is described, with exact analysis given in [22].

2 . 2 Algorithms for Providing Spare Capacity at High Priority Levels

Spare capacity: is defined as "that processor time which is not required at run-time

to meet the deadlines of hard tasks" [12]. In spite of the advances made in both

fixed priority pre-emptive scheduling theory and worst case execution time analysis, it

is inevitable that spare capacity will be available at run-time. This spare capacity may

be classified as follows:

1. Extra capacity - the processor capacity which is required to guarantee the

time constraints of hard deadline tasks can be calculated using exact

schedulability analysis. Any additional capacity above this level may be

identified as extra capacity. Hence extra capacity is present if any hard deadline

task could have its worst case execution time increased, and the task set still

remain schedulable.

2. Gain time - which is produced when hard tasks execute in less than their

worst case execution times. This may be due to software not taking worst case

paths or hardware gains such as cacheing and pipelining [13]. Gain time may
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be identified as the remaining execution time budget when a task completes.

Alternatively, Gain Points [7] or Milestones [43] may be inserted into the code

to report when a non-worst case path has been taken, and hence gain time

produced.

3. Spare time - which is present; due to a favourable (i.e. non worst case)

phasing of periodic tasks, sporadic tasks not arriving at their maximum rate,

deadlines which are dependent on the external environment not being as short

as those guaranteed, and tasks not being blocked when this was allowed for in

the schedulability analysis.

In general, extra capacity can be identified off-line, whilst gain time and spare time

can only be identified by on-line mechanisms.

Within the framework of fixed priority pre-emptive scheduling, a number of

approaches have been developed which make spare capacity available for optional or

soft aperiodic task execution. These include:

1. Background processing.

2. Polling server [87].

3. Priority Exchange algorithm [60].

4. Deferrable Server algorithm [60].

5. Sporadic Server algorithm [90].

6. Extended Priority Exchange algorithm [92].

7. Slack Stealing algorithm [59]. (We note that many of these techiniques were

originally developed as a means of scheduling sporadic tasks prior to the

development of suitable off-line feasibility analysis for such tasks).

In this section, we review the above approaches and give examples of their

operation using the task set detailed below.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hard tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Name Period Deadline wcet priorityiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

A 8 6 2 1 (high)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

B 12 12 5 2 (low)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c

c
c
c
c
c
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Soft tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Name Arrival time Execution timeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

w 1 0.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

x 2 1.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

y 13 1.0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

z 14 1.0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c

c
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c
c
c
c
c
c
c
c
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c
c
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c
c
c
c
c
c

c
c
c
c
c
c
c
c
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c
c
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In our examples, tasks A and B are initially released at time t = 0. The first

invocation of task A is assumed to require 1 unit of execution time, whilst all other

invocations take their worst case execution time. We also assume that the soft tasks

await service in order of arrival. The example task set has an extra capacity of 1

unit every 4 ticks (at the highest priority level) and gain time of 1 unit which is

produced when the first invocation of task A completes early. Further, there are 2

units of spare time present in the latter half of the LCM, (which is 24 in this case).

A criteria which is often used to assess the performance of the above

algorithms is the mean response time of soft tasks [90, 92, 59]. We adopt this criteria

in our review, as an algorithm which results in shorter soft task response times is

better able to provide spare capacity for optional computation, between the release

time and deadline of a hard task.

Figures 2.1 to 2.9 illustrate the schedule produced by the various scheduling

policies. In these figures, the following notation is used. Priority level is indicated

on the left hand side of each time line. Execution at each unique priority level is

shown on a separate time line. A circle on the time line represents the release of a

hard task at that priority level. Similarly, a circle above the time line represents task
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completion. The deadline of each hard task is indicated by a solid vertical line and

the symbol "ˆ". Missed deadlines are highlighted by a filled circle.

2 . 2 . 1 Background Processing
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Background processing: Priority = 3.
t=0, tasks A and B are released. Task A executes.
t=1, soft task w arrives, task A completes and B commences execution.
t=2, soft task x arrives.
t=6, task B completes. As no hard tasks are pending, soft tasks may

execute at priority level 3.
t=6.5, soft task w completes with a response time of 5.5.
t=8, soft task x completes with a response time of 6. Task A is

released and executes.
t=10, task A completes.
t=12, task B is released and executes.
t=13, soft task y arrives.
t=14, soft task z arrives.
t=16, task A is released and pre-empts B.
t=18, task A completes, task B resumes.
t=19, task B completes. As no hard tasks are pending, soft tasks

may again execute at priority level 3.
t=20, soft task y completes with a response time of 7.
t=21, soft task z completes with a response time of 7.
Mean soft task response time = 6.375.

Figure 2.1: Background Processing.

Background processing is the simplest and perhaps least effective approach. Soft

tasks are assigned priority levels below all the hard tasks. Thus soft tasks may only

execute when there are no hard tasks pending, i.e. when the processor would

otherwise have been idle. If the processor utilisation of the hard task set is high,

then processor busy periods may comprise many invocations of hard tasks. Under
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these conditions, background service opportunities will be infrequent and soft task

response times correspondingly long. Background processing is therefore only

appropriate when the response times of soft tasks are not critical. Figure 2.1

illustrates the long response times of soft tasks w, x, y and z when they are scheduled

at a Background priority level.

The response times of soft tasks may be improved by executing them at a

higher priority under the control of a pseudo hard real-time server task, such as a

simple Polling Server.

2 . 2 . 2 Polling Server

A Polling Server [87] is a periodic task with a fixed priority level (usually the

highest) and an execution capacity. The capacity of the server is calculated off-line

and is normally set to the maximum possible such that the hard task set, including

server, remains schedulable. At run-time, the polling server is released periodically

and its capacity is used to service any pending soft tasks. Once this capacity has been

exhausted, execution is suspended until it can be replenished at the server’s next

release. If no soft tasks are pending when the polling server is allocated the

processor, it must suspend execution until its next period. This wastes the high

priority capacity of the server as subsequent arrivals of soft tasks must wait for

background service opportunities or the next release of the server.

Nevertheless, the Polling Server offers improved soft task response times over

background processing. This is illustrated in figure 2.2. Soft tasks w, x, y and z arrive

mid way through the server’s period and have to wait until its next release before

being serviced. Note, the server is initially released at time t = 0 but immediately

suspends as there are no soft tasks pending. This is the major drawback with the

polling approach: service opportunities are not necessarily co-ordinated with the

arrival of soft tasks.

The Priority Exchange, Deferrable Server and Sporadic Server algorithms avoid the

above drawback. These methods are based on similar principles to the Polling Server,

however, they are all able to preserve capacity if no soft tasks are pending when the

server is released. Due to this property, they are termed "Bandwidth Preserving

Algorithms". The three algorithms differ in the ways in which the capacity of the
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Polling Server: Capacity = 1, Period = 4, Priority = 0
t=0, the Polling Server is released and immediately suspends execution

as there are no soft tasks pending.
t=1, soft task w arrives.
t=2, soft task x arrives.
t=4, the Polling Server is released and services the soft tasks at

priority level 0
t=4.5, soft task w completes with a response time of 3.5.
t=5, the server’s capacity is exhausted. Task B resumes.
t=7.5, task B completes, allowing soft task x to execute at priority 3

(background).
t=8, task x completes with a response time of 6. The server is released

and suspends as there are no soft tasks pending.
t=12, the server is released and again suspends itself.
t=13, soft task y arrives and awaits service.
t=14, soft task z arrives.
t=16, the server is released and services task y at priority level 0,

exhausting its capacity.
t=17, soft task y completes with a response time of 4.
t=20, the server is released and services soft task z.
t=21, task z completes with a response time of 7.
Mean soft task response time = 5.25.

Figure 2.2: Polling Server.

server is preserved and replenished, and in the schedulability analysis required to

determine their maximum capacity.
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2 . 2 . 3 Deferrable Server

The Deferrable Server algorithm is similar to the polling approach, in that it makes

use of a high priority periodic server task. However, unlike the Polling Server, the

Deferrable Server is able to preserve its high priority capacity if there are no soft

tasks pending. The Deferrable Server is therefore able to service soft tasks at a high

priority level at any time during its period, provided of course, that its execution

capacity has not been exhausted. Any remaining capacity is discarded at the end of

the server’s period, before being replenished in full at the start of its next period.

The schedulability analysis required to determine the maximum capacity of the

Deferrable Server differs from that used for the Polling Server. By preserving its

capacity at a high priority level throughout its period, the Deferrable Server can cause

back-to-back interference on lower priority hard tasks. This is illustrated in figure 2.3.

0 4 8 12

0

1
F

DS DS DS DS

DS - Deferrable Server, period = 4, capacity = 1
F - a hard task, period = 6, deadline = 6, wcet = 3
t=0, The Deferrable Server has preserved its capacity until
close to the end of its period at t=1.
t=1, Subsequent release of the Deferrable Server causes a
back-to-back hit on task F.

Figure 2.3: Deferrable Server Interference.

Taking this extra interference into account, the maximum capacity of the Deferrable

Server is smaller than that of a comparable Polling Server.

Figure 2.4 shows the example task set scheduled using the Deferrable Server

algorithm. The maximum capacity of a Deferrable Server at the highest priority level

(with period = 4) is 0.75, compared to 1.0 for the polling approach.
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Deferrable Server: Capacity = 0.75, Period = 4, Priority = 0
t=0, the server is released and suspends execution as there are no

soft tasks pending.
t=1, soft task w arrives and is serviced immediately in contrast

with the Polling Server which is unable to preserve its capacity
t=1.5, soft task w completes, with a response time of 0.5,

leaving 0.25 units of server capacity remaining.
t=2, soft task x arrives and is serviced at priority level 0,

exhausting the remaining capacity of the server.
t=4, capacity is replenished, allowing task x to be resumed
t=4.75, the Deferrable Server’s capacity is again exhausted.
t=7.5 soft task x resumes execution at priority 3 (background).
t=8, task x completes with a response time of 6. The server’s capacity

is replenished.
t=12, the server’s capacity is discarded at the end of its period

before being replenished again.
t=13, soft task y arrives and is serviced for 0.75 ticks, exhausting

the capacity of the server.
t=14, soft task z arrives.
t=16, the server’s capacity is replenished allowing tasks y and z

to be serviced, again exhausting server capacity.
t=16.25, soft task y completes with a response time of 3.25
t=20, the server’s capacity is replenished, allowing task z to

resume at priority 0.
t=20.5 task z completes with a response time of 6.5.
Mean soft task response time = 4.0625.

Figure 2.4: Deferrable Server Algorithm.
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In this example, soft task response times are improved over the polling

approach in spite of the smaller size of the Deferrable Server. This is because by

preserving its capacity, the Deferrable Server is better able to co-ordinate service

opportunities with the arrival of soft tasks.

2 . 2 . 4 Priority Exchange Algorithm

The method of bandwidth preservation used by the Priority Exchange algorithm

differs from that of the Deferrable Server: a high priority periodic server is again

used to service soft tasks. However, if no soft tasks are pending when the server

begins execution, then priority exchange occurs. The highest priority runnable hard

task is executed at the priority level of the server and the server’s capacity converted

into guaranteed execution time at the lower priority level of the hard task. Soft tasks

may be serviced immediately, whenever the remaining capacity of the server is at a

higher priority level than any of the runnable hard tasks. Furthermore, as the

objective is to reduce soft task response times, ties between server capacity and hard

tasks at the same priority level are broken in favour of the server. The server’s

capacity may however, be degraded to priority levels which are lower than that of the

highest priority runnable hard task, in which case, the server is pre-empted, no

priority exchange takes place, and soft tasks cannot be serviced immediately. Note,

this is in marked contrast with the Deferrable Server which preserves capacity at its

original priority level and may therefore result in better soft task response times

under certain circumstances.

In effect the priority exchange mechanism advances the execution of hard tasks

and thus ensures that they remain schedulable. Further, the capacity of the server is

preserved throughout its period albeit at decreasing priority levels. This is an

improvement over the polling approach, where server capacity is immediately

degraded to the background priority level if there are no soft tasks pending.

At the end of the Priority Exchange Server’s period, capacity may still be

present at low priority levels. This remaining capacity is not discarded and may be

used in subsequent periods. The server’s high priority capacity is replenished at the

start of its period.
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Lehoczky et al [60] showed that for schedulability purposes, the Priority

Exchange Server may be regarded as a simple periodic task. Hence the maximum

capacity of the Priority Exchange Server is the same as that of a comparable Polling

Server.

Figure 2.5 describes the operation of the Priority Exchange algorithm. This

example illustrates the advantages of the Priority Exchange algorithm over the polling

approach, c.f. bandwidth preservation (shorter response time for task w), and over the

Deferrable Server, c.f. server capacity (shorter response time for task y). However,

the Priority Exchange algorithm does not always exhibit a performance advantage

over the Deferrable Server approach. This is because in general, capacity is preserved

at a lower priority level. For example, suppose that the first release of task A

occurred at t = 1 instead of t = 0. Initial priority exchange with task B would then

preserve the server’s capacity at priority 2. However when task A (priority 1) arrived

at t = 1 it would pre-empt the server, increasing the response time of task w to 1.5. In

contrast, the Deferrable Server which preserves its smaller capacity at priority 0

would still be able to complete task w for a response time of 0.5.

2 . 2 . 5 Sporadic Server

The Sporadic Server algorithm attempts to combine the advantages of both the

Priority Exchange and Deferrable Server algorithms. It is similar to the Deferrable

Server algorithm in that it maintains capacity at its original priority level. Whilst, the

capacity of the Sporadic Server is the same as that of a comparable Priority

Exchange or Polling Server. Like the other bandwidth preserving algorithms, the

Sporadic Server algorithm uses a high priority periodic server task. It differs

however, in the way in which the capacity of the server is replenished. Rather than

being replenished periodically, the capacity of the Sporadic Server is only replenished

once some or all of it has been used.

In describing the operation of the Sporadic Server, it is instructive to use of the

concept of priority i busy and idle periods [58]. These are defined as follows: a

priority i busy period is a continuous time interval during which the processor is busy

with tasks of priority i or higher. Similarly, a priority i idle period is a time interval

during which no tasks execute at priority level i or higher. (Note, a priority i idle
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Priority Exchange Server: Capacity = 1, Period = 4, Priority = 0
t=0, the server is released. As there are no soft tasks pending, priority

exchange takes place. Task A executes at priority 0, converting the
server’s capacity of 1 unit to priority level 1.

t=1, Soft task w arrives and is serviced immendiately at priority 1
t=1.5, task w completes with a response time of 0.5. A further priority

exchange then occurs. Task B executes for 0.5 ticks, converting
the remaining server capacity (0.5) to priority 2.

t=2, Soft task x arrives and is serviced at priority 2. Note, there is
a tie between the priority of the server and task B which is broken
in favour of the server.

t=2.5, the server’s capacity is exhausted. Task B resumes.
t=4, The server’s priority 0 capacity is replenished, allowing the

remainder of task x to be serviced at priority 0.
t=5 task x completes with a response time of 3.
t=8, the server’s capacity is again replenished.
t=9, priority exchange with task A has converted the server’s capacity

to priority 1.
t=11, the server’s capacity has been fully converted to priority 3

(background) and is discarded.
t=12, the server’s priority 0 capacity is replenished and then exchanged

with task B.
t=13, soft task y arrives and is serviced at priority 2 in preference to task B.
t=14, task y completes with a response time of 1. The server’s capacity

is exhausted
t=14, Soft task z arrives and awaits service.
t=16, the server’s priority 0 capacity is replenished, allowing it to

service task z.
t=17, task z completes with a response time of 3.
Mean soft task response time = 1.75.

Figure 2.5: Priority Exchange Algorithm.
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Sporadic Server: Capacity = 1.5, Period = 6, Priority = 1
t=0, task A begins executing, hence t=0 is the start of a priority 1 busy

period.
t=1, soft task w arrives and is immediately serviced at priority 1.

Replenishment of the capacity consumed (0.5) is set for t=6, (equal
to the length of the server’s period after the start of the busy period).

t=1.5, task B begins executing at priority 2
t=2, soft task x arrives and is serviced immediately
t=3, the server’s capacity is exhausted. A replenishment of 1 unit is set

for t=8, as the start of this priority 1 busy period coincided with the
arrival of task x at t=2.

t=6, 0.5 units of server capacity are replenished and subsequently
consumed in completing task x.

t=6.5, task x completes with a response time of 4.5. A replenishment of
0.5 units is set for t=12.

t=8, 1 unit of server capacity is replenished.
t=12, the server is brought up to full capacity by the replenishment of 0.5

units.
t=13, soft task y arrives and is serviced immediately.
t=14, task y completes with a response time of 1. Task z arrives and is

serviced for 0.5 ticks, exhausting the server’s capacity
t=14.5, a replenishment of 1.5 units is set for t=19.
t=19, the server’s capacity is replenished in full, allowing the remainder

of task z to be serviced.
t=19.5, z completes with a response time of 5.5.
Mean soft task response time = 2.875.

Note, using a Sporadic Server with priority 0, a period of 4 and a
capacity of 1 results in the same response times for tasks w and y
and shorter response times of 3.0 and 4.0 for tasks x
and z respectively.
Mean soft task response time = 2.125.

Figure 2.6: Sporadic Server algorithm.
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period may contain intervals during which tasks with a priority lower than i execute).

Suppose the Sporadic Server task has a priority i and period T i . Soft tasks may

execute under the server at priority i, consuming its capacity. Replenishment of this

capacity is set to occur T i after the start of the priority i busy period which includes

the soft task execution. It is worth noting that capacity replenishment may therefore

be scheduled to occur less than T i after the start of soft task execution. This is

permissible provided that the processor was previously busy with tasks of priority i

or higher. Sprunt et al [90] prove that using the above method of replenishment, the

interference on lower priority tasks due to the Sporadic Server is the same as a

number of periodic tasks with the same period and a total execution time equal to the

server’s capacity. Hence, the maximum capacity of a Sporadic Server is the same as

that of a comparable Polling Server.

Figure 2.6 shows the example task set scheduled under the Sporadic Server. To

fully illustrate the replenishment method of the Sporadic Server algorithm, we have

selected a server period of 6 and hence a capacity and priority of 1.5 and 1

respectively. Improved performance is however, obtained with a server period of 4.

Each of the server based methods described so far exploits extra capacity which

is available at a high priority level to improve soft task response times. However, in

systems where the load due to hard deadline tasks is high, there may not be enough

extra capacity at high priority levels to include a periodic server of any useful size.

Furthermore, none of the server based approaches exploits gain time produced when

a hard task requires less than its worst case execution time.

2 . 2 . 6 Extended Priority Exchange Algorithm

The Extended Priority Exchange algorithm addresses the above limitations by

reclaiming gain time at its original priority level. In describing the operation of this

algorithm, it is instructive to view the priority levels assigned to hard tasks as having

a maximum capacity. The maximum capacity available at each priority level may be

found by examining the hard task set in priority order. First the execution budget of

the task at priority level 1 is increased to the maximum possible such that the hard

task set remains schedulable. The difference between this maximum priority 1
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Extended Priority Exchange: Priority 1 extra capacity = 1.5.
t=1, task A completes early, producing 1 unit of gain time at priority

level 1. This increases the server’s capacity to 2.5 at priority 1.
Task w arrives and is serviced immediately.

t=1.5, task w completes, with a response time of 0.5, leaving a capacity
of 2 remaining at priority 1. Priority exchange then occurs with task B
executing at priority 1. This leaves the server with a capacity of 1.5 at
priority 1 and 0.5 at priority 2.

t=2, task x arrives and is serviced at priority level 1.
t=3.5, task x completes with a response time of 1.5. This represents an

improvement over all the algorithms which do not exploit gain time.
t=8, task A is released and the server’s priority 1 capacity is

incremented by 1.5. Note, this is in addition to the remaining
priority 2 capacity of 0.5.

t=12, the server’s capacity has been completely converted to the
background priority level and is therefore discarded.

t=13, task y arrives.
t=14, task z arrives.
t=16, task A is released and the server’s priority 1 capacity

incremented by 1.5, allowing tasks y and z to be serviced.
t=17, task y completes with a response time of 4.
t=17.5, priority 1 (and 2) capacity is exhausted
t=21, task z completes with a response time of 7, by utilising a background

service opportunity
Mean soft task response time = 3.25.

Note, representing extra capacity as a server with priority 0, capacity 1 and
period 4, results in soft task execution in the same intervals as the Priority
Exchange algorithm; except for task x which completes at t=3.5.
Mean soft task response time = 1.375.

Figure 2.7: Extended Priority Exchange algorithm.
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capacity and the task’s worst case execution time is stored as priority 1 extra

capacity. Similarly, the extra capacity present at subsequent priority levels is found by

assuming that all higher priority tasks use the maximum capacity available at their

priority levels.

At run-time, the Extended Priority Exchange algorithm operates according to

the priority exchange mechanism described previously. However, unlike the Priority

Exchange algorithm, the extended approach replenishes capacity at each release of a

hard task. Server capacity at priority i is thus incremented by the priority i extra

capacity at each release of hard task τ i . Furthermore, on completion of each

invocation of task τ i , the actual execution time is compared to the worst case time.

Any gain time so identified is then reclaimed by adding it to the priority i server

capacity.

Figure 2.7 illustrates the operation of the Extended Priority Exchange algorithm.

The extra capacity at priority 1 is 1.5. There is no extra capacity at priority level 2.

All the bandwidth preserving algorithms can under certain circumstances offer

significant improvements over the polling approach. There are however, still

disadvantages with these more complex algorithms. They tend to degrade to providing

essential the same performance as the polling server at high loads. Moreover, none of

the approaches described so far, are able to exploit spare time (present due to a

favourable phasing of hard tasks) as anything other than a background service

opportunity.

2 . 2 . 7 Slack Stealing Algorithm

The Slack Stealing algorithm of Lehoczky and Thuel [59] suffers from none of the

above disadvantages. It services soft task requests by making any spare processing

time available as soon as possible. In doing so, it effectively steals slack from the

hard periodic tasks. A means of determining the maximum amount of slack which

may be stolen, without jeopardising the hard timing constraints, is thus key to the

operation of the algorithm.
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In [59], Lehoczky and Thuel describe how the slack available can be found.

This is done by mapping out the processor schedule for the hard periodic tasks over

the LCM of their periods. The mapping is then inspected to determine the total

amount of priority i idle time present between the deadline on one invocation of task

τ i and the deadline on the next. The values found for each task are stored in a table.

At run-time, a set of counters are used to keep track of the slack at each priority

level. These counters are decremented depending on which tasks, if any, are

executing. For example, if hard task τ i executes during the time interval [ t a , t b ), then

the slack at all priority levels higher than i is reduced by t b − t a . Similarly, if the

processor is idle, or executing soft tasks during the interval [ t a , t b ), then the slack at

all priority levels is reduced by t b − t a . At the completion of each task τ i , the

counter for priority i slack is incremented by the value stored in the table

corresponding to the next invocation of task τ i . Furthermore, if gain time g i is

identified at priority level i, it may be exploited by incrementing the slack at level i

and all lower priority levels by g i . Whenever there is slack available at all priority

levels, then soft tasks may be executed at the highest priority.

Unfortunately, the need to map out the LCM restricts the applicability of the

Slack Stealer: slack can only be stolen from hard tasks which are strictly periodic

and have no release jitter [10] or synchronisation. Realistically, it is also limited to

task sets with a manageably small LCM.
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S ik = slack on the kth invocation of task τ i .

Figure 2.8: Slack at each Priority Level.

Figure 2.8 shows the priority 1 slack which corresponds to the first (S 11 ),

second (S 12 ) and third (S 13 ) invocations of task A and similarly, the priority 2 slack

corresponding to the first (S 21 ) and second (S 22 ) invocations of task B. The slack
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on each invocation of a task over the LCM is given in the table below.

iiiiiiiiiiiiiiiiiiiiiiii

Hard task slackiiiiiiiiiiiiiiiiiiiiiiii

InvocationiiiiiiiiiiiiiiiiiTask
1st 2nd 3rdiiiiiiiiiiiiiiiiiiiiiiii

A 4 6 6

B 3 5 -iiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c
c
c
c
c

Figure 2.9 illustrates the operation of the Slack Stealing algorithm.

Note, by making use of spare time present in the latter half of the LCM, the Slack

Stealer is able to improve the response time of soft task z over all the other

algorithms discussed.

2 . 2 . 8 Critique

In this section, we review the seven algorithms described previously against the

following criteria: performance, overheads, simplicity and coverage.

Performance

If spare capacity is to be used to improve the utility of hard tasks, then it generally

needs to be made available at a high priority level. This can be seen by considering

the scheduling of an optional soft task x in support of a high priority hard task A.

For x to improve the utility of A, it must execute before A’s deadline. To facilitate

this, spare capacity has to be provided at a high priority level. If it is not, then x

will be pre-empted by another hard task B and therefore be unable to complete until

after A’s deadline. (Note, this point is graphically illustrated by comparing the

execution of task x in figures 2.1 and 2.9). Further, enough spare capacity must be

made available at a high priority to ensure that soft or optional tasks can be

completed without relying upon a background service opportunity. (For example,

compare the execution of task x in figures 2.4 and 2.5). Performance depends upon

both the amount of spare capacity provided and the priority level at which it is made

available.
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Slack Stealer.
t=0, task A is released with an initial priority 1 slack (S 1) of 4 (i.e., task A

could be delayed by upto 4 ticks and still meet its deadline). Task B
is also released and has an initial priority 2 slack (S 2) of 3.

t=1, task A completes producing gain time of 1 tick which is added
to the slack available at priorities 1 and 2. In addition, as task A
has completed, the priority 1 slack is incremented by the value stored in
the table corresponding to the second invocation of task A. Thus at
t=1, S 1 = 11 and S 2 = 4.

t=1, task w arrives and is serviced immediately as there is slack
available at all priority levels.

t=1.5, task w completes with a response time of 0.5. (S 1 = 10.5, S 2 = 3.5)
Task B executes for 0.5 ticks, leaving the priority 2 slack unchanged,
but reducing S 1 to 10.

t=2, task x arrives and is serviced immediately.
t=3.5, task x completes with a response time of 1.5, (S 1 = 8.5, S 2 = 2).

Task B executes for 4.5 ticks, reducing the priority 1 slack to 4.
t=8, task B completes. S 2 is therefore incremented by the value

corresponding to the second invocation of task B. Hence S 2 = 7.
Task A is released.

t=10, task A completes and the priority 1 slack is incremented (S 1 = 10).
The processor is then idle for 2 ticks, reducing the slack at all priority
levels by 2.

t=12, task B is released and executes for 1 tick, further reducing the
priority 1 slack to 7.

t=13, task y arrives and is serviced immediately.
t=14, task y completes with a response time of 1, (S 1 = 6, S 2 = 4).

Task z arrives and is serviced immediately.
t=15, task z completes with a response time of 1, (S 1 = 5, S 2 = 3).
Mean soft task response time = 1.

Figure 2.9: Slack Stealing algorithm.
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With background processing, spare capacity is only ever made available at a

background priority level. This is insufficient to ensure that it can be used to improve

the utility of hard tasks. The Polling Server initially makes capacity available at a

high priority level, however, if no tasks are pending which wish to use this capacity,

then it is immediately degraded to a later background service opportunity. The

Priority Exchange and Extended Priority Exchange algorithms also make capacity

available at an initially high priority level, however, if it is not needed immediately,

then capacity is fragmented by the priority exchange mechanism to ever decreasing

priority levels. This is an improvement over the polling approach, although, it is not

as effective as the Deferrable Server and Sporadic Server algorithms which preserve

capacity at its original high priority level. The Slack Stealing algorithm provides the

optimal approach by making spare capacity available at the highest possible priority

level.

Background processing makes no spare capacity available at a high priority

level. The Polling Server, Deferrable Server, Priority Exchange and Sporadic Server

algorithms can all utilise any extra capacity present in the system, although in general

this may require the use of more than one server task. The high priority capacity

provided under the Deferrable Server is less than with the other algorithms due to the

possibility of back to back interference on lower priority tasks. The Extended

Priority Exchange algorithm has a capacity advantage over the server based

approaches. This is because it is able to reclaim gain time at a high priority level. In

[92], Sprunt et al show that mean hard task execution times need only differ from

the worst case by a few percent for the Extended Priority Exchange algorithm to

significantly out perform the Priority Exchange and Deferrable Server approaches.

The Slack Stealing algorithm again provides the most efficient approach by

reclaiming both gain time and spare time. The table below summarises the

performance of each method, given our example task set.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Performanceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Method Mean soft task response timeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Background 6.4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Polling 5.3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Deferrable Server 4.1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Sporadic Server 2.1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Priority Exchange 1.8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Extended Priority Exchange 1.4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Slack Stealing 1.0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Overheads / Simplicity

Overheads include processor time and memory requirements, which could potentially

outweigh the capacity and priority advantages of more complex algorithms. In

particular, any execution time overhead reduces the spare capacity available for

improving hard task utility.

Background processing has the simplest implementation and no overheads above

that of basic fixed priority pre-emptive scheduling. Of the other approaches, the

Polling Server and Deferrable Server algorithms have the lowest run-time overheads -

O(1), and simple implementations, as capacity is used, and replenished periodically

at only one priority level. The overheads of the Sporadic Server algorithm are

dependent on the soft task arrival pattern, as it needs to keep track of busy period

start times and a number of replenishment times and amounts. The run-time

overheads and complexity of the Priority Exchange, Extended Priority Exchange and

Slack Stealing algorithms are O(n) as capacity or slack needs to be managed at

every priority level.

The memory requirements of all the algorithms are insignificant, with the

exception of the Slack Stealer. The Slack Stealing algorithm uses a table which

contains a value for every invocation of a task over the LCM of task periods. The

memory requirements of this table effectively limit the applicability of the Slack
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Stealer to task sets with a manageably small LCM.

Coverage

The next generation of real-time systems are expected to include hard sporadic and

periodic tasks which may exhibit release jitter, blocking and stochastic execution

times, as well as variable but lower bounded deadlines. Algorithms which make spare

capacity available need to be able to accommodate and ideally exploit such complex

characteristics.

As outlined in section 2.1, scheduling theory now extends to guaranteeing hard

tasks with the complex timing characteristics listed above. These advances can be

incorporated into the analysis which determines the maximum capacity of a server

task used by the Polling, Deferrable Server, Sporadic Server and Priority Exchange

algorithms. Similarly, the extra capacity available at each priority level can be found

for the Extended Priority Exchange algorithm. The Slack Stealing algorithm however,

relies on prior knowledge of the exact release times and phasings of hard tasks. This

is only generally possible in the case of strictly periodic task sets.

2 . 3 Acceptance Tests: Guaranteeing Spare Capacity

In the context of fixed priority pre-emptive scheduling, acceptance tests have been

developed by Thuel and Lehoczky [83]. They focus on using the Slack Stealing

algorithm [59] to provide aperiodic service opportunities whilst ensuring that hard

periodic tasks do not miss their deadlines. The Slack Stealing algorithm is combined

with an acceptance test which enables on-line guarantees to be given to aperiodic

tasks with hard deadlines. The acceptance test operates as follows: first, the

aperiodic processing time available between the release and the deadline of a hard

aperiodic task is calculated. This is then compared to the execution requirements of

the task to determine if it can be guaranteed.

Unfortunately, the analysis given by Thuel and Lehoczky [83] leads to an

acceptance test which is insufficient: hard aperiodic tasks may be guaranteed and yet

still miss their deadlines. This problem was pointed out in a private communication

[36], enabling Thuel and Lehoczky to formulate a correction which was presented at

the 1993 Real-Time Systems Symposium [84]. However, subsequent investigation of
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the revised acceptance test revealed that it too is insufficient. Detailed analysis of

these two acceptance tests is given in appendix A.

In December 1994, Thuel and Lehoczky presented an exact on-line acceptance

test [96]. Note, this acceptance test builds upon analysis given in the next chapter

and previously published in [39]. We therefore defer review of this test until chapter

6.

2 . 4 Summary

Analysis of fixed priority scheduling has now progressed to the point where it

provides an appropriate framework for the construction of many of today’s hard

real-time systems. The assumptions and restrictions imposed on hard tasks by early

work have been lifted permitting tasks to have realistic timing characteristics such as

sporadic arrival patterns, arbitrary deadlines and offsets and allowing interaction via

shared resources. Analysis can be tailored to account for the overheads of operating

system kernel implementations. Further, scheduling theory has been extended to

communications protocols, enabling end-to-end deadlines to be guaranteed in

distributed systems with a static allocation of tasks. We therefore conclude that fixed

priority pre-emptive scheduling forms a suitable basis for research into the flexible

scheduling techniques needed to facilitate the dynamic, adaptive and intelligent

behaviour required in the next generation of real-time systems.

Much of this adaptive behaviour can be integrated into real-time systems

through the use of techniques aimed at improving the utility of hard real-time

services. These techniques require that optional components are executed between the

release and the deadline of the hard real-time service which they support. The timely

execution of these components relies on the early identification of spare capacity and

its provision at a high priority level.

A number of techniques exist which address this problem, including the Polling

Server, Deferrable Server, Priority Exchange, Sporadic Server, Extended Priority

Exchange and Slack Stealing algorithms. The static analysis underlying the Polling

Server and the bandwidth preserving algorithms enables extra capacity to be made

available at a high priority level. The Extended Priority Exchange algorithm builds
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upon this static analysis by dynamically reclaiming gain time, enabling it to

outperform earlier methods. However, all these algorithms are significantly

outperformed, under conditions of high load at least, by the Slack Stealing algorithm.

This is because it is also able to make spare time (present due to favourable task

phasings) available at the highest priority level. This spare time may represent up to

31% [65] of the processors capacity, although nearer 12% could be expected in the

average case [61]. Spare time is however, a dynamic quantity which can only be

predicted for hard task sets comprising independent periodic tasks. By using a static

approach to identifying spare time, the applicability of the Slack Stealing algorithm

is limited to such simple task sets. A dynamic approach to Slack Stealing is

presented in the next chapter.

To make effective use of spare capacity, the Multiple Versions and

Approximate Processing paradigms require that optional computation is guaranteed to

complete before a given deadline. An efficient on-line acceptance test is required to

furnish such guarantees. Two approximate acceptance tests [84, 83] have been

presented for aperiodic tasks with hard deadlines scheduled under the Slack Stealing

algorithm. We showed that these tests are insufficient: they may guarantee aperiodic

tasks which subsequently miss their deadlines. Exact and sufficient tests are presented

in chapter 6.
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Chapter 3

Identifying Spare Capacity: An Exact Approach

In this chapter, we focus on the problem of jointly scheduling tasks with hard and

soft time constraints. This is an important issue in real-time scheduling, due to the

tension between the scheduling requirements of the two types of task: soft tasks

typically benefit from being completed as soon as possible, whilst hard tasks must be

guaranteed to meet their deadlines. To address this problem, spare capacity needs to

be identified and made available as early as possible.

In the previous chapter, we classified spare capacity as extra capacity, gain

time and spare time. Recall that extra capacity is defined as that processor time

which is not required by the set of hard tasks, even assuming worst case arrival

patterns and worst case execution times. In contrast, gain time represents processor

time initially assigned to hard tasks but not utilised at run-time, due to invocations of

these tasks taking less than their worst case execution times. Finally, spare time

corresponds to processor time which is available due to favourable arrival patterns,

for example, when not all the hard tasks arrive simultaneously, or when sporadic

tasks do not arrive at their maximum rate.

In general, only extra capacity can be identified a priori. Both gain time and

spare time must be identified on-line. Gain time can be identified at the completion

of each hard task, or earlier via Gain Point kernel calls [7]. Efficiently identifying

spare time is however, significantly more difficult. Nevertheless, spare time can

account for a significant proportion of spare capacity, particularly in systems with

sporadic components. Thus algorithms which enable spare time to be utilised as soon

as possible hold the promise of significantly improved response times for soft tasks.

In the previous chapter, we reviewed the static Slack Stealing algorithm [59].

This algorithm enables all three forms of spare capacity to be identified for task sets

complying with a simple computational model. The performance of the Slack

Stealing algorithm in providing responsive soft task scheduling, illustrates the
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improvements which can be obtained when full advantage is taken of spare time as

well as other forms of spare capacity. Unfortunately, by virtue of using a static

method to determine slack, the coverage of this algorithm is limited to hard tasks sets

which are strictly periodic, do not exhibit blocking or release jitter and have a

manageably small least common multiple of task periods. These restrictions are too

severe for next generation real-time systems.

In this chapter, we extend the response time analysis, given by Audsley et al in

[11], to determine the maximum processing time which may be stolen from periodic

or sporadic tasks with hard deadlines, without jeopardising their timing constraints.

This new analysis forms the basis for a dynamic Slack Stealing algorithm, which is

proved to be optimal, in the sense that, at any given time, it determines the

maximum contiguous amount of processing time which can be used immediately by

soft tasks. However, allowing a soft task to use this spare capacity in a greedy

manner (i.e. as soon as it is available) does not necessarily result in the minimum

response time for the soft task [97]. Indeed, we show that when soft or hard task

execution times are stochastic, only a clairvoyant algorithm can guarantee to minimise

soft task response times.

The dynamic Slack Stealing algorithm derived in this chapter is equivalent to

the static Slack Stealing approach of Lehoczky and Thuel, in the limited case of

independent periodic tasks. However, by virtue of computing the slack at run-time,

the dynamic algorithm is applicable to a more general class of scheduling problems,

including hard task sets which contain sporadics and tasks which exhibit release jitter

and synchronisation. Further, the dynamic algorithm is able to improve the response

times of soft tasks by exploiting run-time information about hard task execution

requirements and deadlines, as well as blocking and context switch times.

3 . 1 Computational Model and Assumptions

The computational model used in the rest of this chapter is the same as that

introduced in Section 2.1.1. In addition, the analysis presented in the next section

uses the concept of busy and idle periods [58], (defined in section 2.2.5).
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In subsequent sections, the following assumptions apply:

g The hard task set is assumed to be schedulable using fixed priority pre-emptive

dispatch with a priority ordering determined by some means, such as Deadline

Monotonic priority assignment [63].

g Tasks cannot voluntarily suspend themselves.

3 . 2 Schedulability Analysis

In this section, we determine the maximum amount of processing time which may be

stolen from an invocation of a hard task without causing its deadline to be missed.

For clarity, we initially assume that the task set exhibits no synchronisation or

release jitter and that each invocation of a task takes its worst case execution time.

Further, we assume that the deadline of each task is less than or equal to its

minimum inter-arrival time and the overheads due to context switching and

scheduling are zero. In later sections, we relax these assumptions.

Our formulation stems from considering the schedulability of each hard task at

some arbitrary time t. We assume that at time t, the following data is available, for

each task, via the operating system, (typically derived from data stored in a task

control block):

l i ( t) - The time at which task τ i was last released.

x i ( t) - The earliest possible next release of task τ i . Typically x i ( t) = l i ( t) + T i .

d i ( t) - The next deadline of an invocation of task τ i . (Note, if the current

invocation of task τ i is complete, then d i ( t) = x i ( t) + D i , i.e. d i ( t) is the

deadline following the next release).

c i ( t) - The remaining execution time budget for the current invocation of task

τ i . Note, c i ( t) is typically found by subtracting the execution time used from

the worst case execution time, C i . (If at time t task τ i is complete and thus

awaiting release, then c i ( t) = 0).
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Note, l i ( t), x i ( t) and d i ( t) are all measured relative to time t.

Initially, we focus on finding the maximum amount of slack time, S i ( t), which

may be stolen at priority level i, during the interval [ t ,t + d i ( t)), whilst guaranteeing

that task τ i meets its deadline. (Note, S i ( t) may not actually be available for soft

task processing due to the constraints on hard deadline tasks with priorities lower

than i. We return to this point in section 3.2.1.) To guarantee that task τ i will meet

its deadline, we need to analyse the worst case scenario from time t onwards. We

therefore assume that all tasks τ j are re-invoked at their earliest possible next release

x j ( t) and subsequently with a period of T j .

In attempting to determine the maximum guaranteed slack, S i ( t), it is

instructive to view the interval [ t ,t + d i ( t)) as comprising a number of level i busy

and idle periods. Any level i idle time between the completion of task τ i and its

deadline could be swapped for task τ i computation without causing the deadline to be

missed. Hence the maximum slack which may be stolen is equal to the total level i

idle time in the interval. We use this result to calculate S i ( t).

Our method for finding the priority i idle time relies on two equations: equation

(3.1), determines w i ( t), the length of a priority level i busy period which starts at

time t. Equation (3.2) determines the length of a priority level i idle period given its

start time. By combining these two equations, we are able to iterate over the interval

[ t ,t + d i ( t)), totalling up all the idle time, and hence find S i ( t).

We first derive equation (3.1), two components determine the extent of the busy

period:

1. The level i or higher priority processing outstanding at time t given by:

∀ j ∈ hp( i) + i
Σ c j ( t)

2. The level i or higher priority processing released during the busy period, given

by:

∀ j ∈ hp( i) + i
Σ

R
J
J T j

w i ( t) − x j ( t)hhhhhhhhhhhh
H
J
J
0

C j

(Note, (x) 0 is notational shorthand for max(x ,0), i.e. the minimum value of
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(x) 0 is zero).

The second component implies a recursive definition. As the processing released

increases monotonically with the length of the busy period, a recurrence relation can

be used to find w i ( t):

wi
m +1 ( t) = S i ( t) +

∀ j ∈ hp( i) + i
Σ

I
J
J
L

c j ( t) +
R
J
J T j

wi
m ( t) − x j ( t)hhhhhhhhhhhh

H
J
J
0

C j

M
J
J
O

(3.1)

The term S i ( t) represents priority i soft task processing released at time t and

executing in slack time. We return to this shortly.

The recurrence relation begins with wi
0 ( t) = 0 and ends when wi

m +1 ( t) = wi
m or

wi
m +1 ( t) > d i ( t). Proof of convergence follows from analysis of similar recurrence

relations by Joseph and Pandya [52] and Audsley et al [10]. The final value of

w i ( t) defines the length of the busy period. Alternatively, we may view t + w i ( t) as

defining the start of a priority level i idle period.

Given the start of a level i idle period, within the interval [ t ,t + d i ( t)), the end

of the idle time, which may be converted to slack, occurs either at the next release of

a task of priority i or higher (given by the second component of equation 3.2 below)

or at the end of the interval (the first component of equation 3.2). Equation (3.2)

gives the length, v i ( t ,w i ( t)), of the priority i idle period.

v i ( t ,w i ( t)) = min

I
J
J
J
J
J
J
L
∀ j ∈ hp( i) + i

min

I
J
J
L

R
J
J T j

w i ( t) − x j ( t)hhhhhhhhhhhh
H
J
J
0

T j + x j ( t) − w i ( t)

M
J
J
O

I
L d i ( t) − w i ( t) M

O
0

,

M
J
J
J
J
J
J
O

(3.2)

Combining equations (3.1) and (3.2), our method for determining the maximum

slack, S i ( t), proceeds as follows:
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1. The slack which may be stolen, S i ( t), is initially set to zero.

2. Equation (3.1) is used to compute the end of a busy period in the interval

[ t ,t + d i ( t)).

3. The end of the busy period is used as the start of an idle period by equation

(3.2) which returns the length of contiguous idle time.

4. The slack processing, S i ( t) is incremented by the amount of idle time found in

step 3.

5. If the deadline of task τ i has been reached, then the maximum slack which can

be stolen is given by S i ( t). Otherwise, we repeat steps 2 to 5.

This method can be implemented as detailed in the algorithm below (3.3).

Algorithm for determining the slack at priority i

S i ( t) = 0

wi
m +1 ( t) = 0

do while w i ( t) m +1 ≤d i ( t)

wi
m ( t) = wi

m +1 ( t)

wi
m +1 ( t) = S i ( t) +

∀ j ∈ hp( i) ∪ i
Σ

I
J
J
L

c j ( t) +
R
J
J T j

wi
m ( t) − x j ( t)hhhhhhhhhhhh

H
J
J
C j

M
J
J
O

if wi
m ( t) = wi

m +1 ( t)

gap = v i ( t ,wi
m ( t))

S i ( t) = S i ( t) + gap

wi
m +1 ( t) = wi

m +1 ( t) + gap + ε

end if

enddo

return S i ( t) (3.3)

Note: ε, set to the granularity of time, is a mathematical device used to force the

recurrence relation to continue.
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It is important to note that this formulation is applicable regardless of whether

each hard task is periodic or sporadic. Further, it can be readily extended to handle

more complex task characteristics.

The complexity of this approach is O(Kn) where K is the number of iterations

and n is the number of hard deadline tasks. Hence, computing the exact slack

available at all n priority levels can be done in O(Kn2) time. We note that the

number of iterations, K, depends on the periods and deadlines of the hard tasks, thus

the complexity of algorithm (3.3) is pseudo-polynomial.

The operation of algorithm (3.3) is illustrated by the example given in Figure

3.1, using the task set detailed in the table below:

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hard tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Priority Period Deadline Offset WCETiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 6 4 0 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

2 10 6 0 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 12 11 5 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Time t is taken to be 2 ticks after the initial release of tasks τ 1 and τ 2 . Figure 3.1

shows that the exact priority level 3 slack available at time t is 6.

3 . 2 . 1 Dynamic Slack Stealing Algorithm

In this section, we use the above analysis as the basis for a dynamic Slack Stealing

algorithm. We require that soft tasks are executed as soon as possible, such that the

deadlines on all hard real-time tasks are still guaranteed to be met. In the case of

strictly periodic tasks as discussed by Lehoczky and Thuel [59], this can be achieved

by servicing soft tasks at the highest priority, when there is slack available at all

priority levels. However, when hard sporadic tasks are considered, there are problems

with this approach.

Suppose, at time t there are soft tasks pending and the highest priority hard task

in the run-queue is task τ k . Further, suppose a hard sporadic task with priority higher

than k has zero slack (say D = C for this task) and could arrive at any time. This
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t t+2 t+3 t+4 t+5 t+8 t+12 t+14

1

2

3

τ 1

τ 2

τ 3

τ 1

τ 2 τ 2

τ 1

Calculation of priority level 3 slack at time t
At time t, we have outstanding computation: c 1 ( t) = 0, c 2 ( t) = 2, c 3 ( t) = 0.
The next releases of tasks τ 1 , τ 2 and τ 3 (relative to t) are at: x 1 ( t) = 4,
x 2 ( t) = 8, x 3 ( t) = 3
The next deadline of task τ 3 (relative to t) is at d 3 ( t) = 14
Applying algorithm (3.3) to determine the priority 3 slack:
Iteration 1: w3

1 ( t) = c 2 ( t) = 2
Iteration 2: w3

2 ( t) = 2. Identifying the end of a priority 3 busy period at t + 2.
v 3 ( t ,2) = x 3 ( t) − w3

2 ( t) = 1, corresponding to the idle period [ t + 2,t + 3).
Converting this idle period to slack, we have S 3 ( t) = 1 and w3

2 ( t) = 3 + ε.
Iteration 3: w3

3 ( t) = S 3 ( t) + c 2 ( t) + C 3 = 4
Iteration 4: w3

4 ( t) = 4, identifying the end of a busy period at t + 4.
v 3 ( t ,4) = x 1 ( t) − w3

4 ( t) = 0, corresponding to an idle period of length zero
prior to the release of task τ 1 at t + 4. S 3 ( t) = 1 and w3

4 ( t) = 4 + ε
Iteration 5: w3

5 ( t) = S 3 ( t) + c 2 ( t) + C 3 + C 1 = 5.
Iteration 6: w3

6 ( t) = 5, indicating the end of a busy period at t + 5.
v 3 ( t ,5) = x 2 ( t) − w3

6 ( t) = 3 corresponding to the 3 idle ticks prior
to the release of task τ 2 at t + 8. S 3 ( t) = 4 and w3

6 ( t) = 8 + ε.
Iteration 7: w3

7 ( t) = S 3 ( t) + c 2 ( t) + C 3 + C 1 + C 2 = 11.
Iteration 8: w3

8 ( t) = S 3 ( t) + c 2 ( t) + C 3 + 2.C 1 + C 2 = 12.
Iteration 9: w3

9 ( t) = 12, hence t + 12 is the end of a busy period.
v 3 ( t ,12) = d 3 ( t) − w3

9 ( t) = 2, corresponding to 2 ticks of idle time
prior to the end of the interval at t + 14. S 3 ( t) = 6 and w3

9 ( t) = 14 + ε> d 3 ( t),
hence iteration is complete. The exact priority level 3 slack at time t is 6.

Figure 3.1: Example calculation of slack

sporadic task may never arrive, preventing slack from ever being available at all

priority levels.

To avoid the above problem, we use a different criteria for determining when

soft tasks may execute. Our analysis guarantees that, provided priority k soft task

processing is limited to S k ( t) in the interval [ t ,t + d k ( t)) then hard tasks at priority
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levels k and higher will meet their deadlines. As we require that the deadlines of all

hard real-time tasks are met, soft task processing is only permissible at priority k

whilst there is slack present at level k and all lower priority levels:

∀ j ∈ lp(k)
min S j ( t) > 0 (3.4)

Note, for completeness, when there are no hard tasks runnable, we regard there

as being infinite slack available at priority level n+1. Provided inequality (3.4) is

true, soft tasks can execute at priority k, (in preference to hard task τ k) even though

higher priority sporadic tasks apparently have zero slack. If such a sporadic became

runnable, it would immediately pre-empt the soft task.

Using the above result, the dynamic Slack Stealing algorithm is formulated as

follows: at each time increment when there are soft tasks pending, algorithm (3.3) is

used to find the slack available at each priority level lower than or equal to k.

Where k is the priority level of the highest priority runnable hard task. Inequality

(3.4) is then used to determine if soft task processing can proceed immediately in

preference to task τ k .

We note that the dynamic algorithm, described above, potentially requires the

slack at each priority level to be re-computed at each time increment. We explore

this problem further in section 3.2.4.

3 . 2 . 2 Optimality of the Dynamic Algorithm

In this section, we prove that the dynamic Slack Stealing algorithm described above

is optimal.

Theorem: For any hard deadline task set scheduled according to a fixed priority

scheme and any valid schedule of hard and soft task execution up to an arbitrary

time t, from time t onwards, the dynamic Slack Stealing algorithm provides the

maximum contiguous amount of processing time which can be made available for soft

task processing, amongst all algorithms which are guaranteed to meet all hard task

deadlines. (Note, we exclude clairvoyant algorithms which may use prior knowledge

of sporadic arrivals and task execution times).
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Proof: We prove the theorem by showing that any alternative algorithm, A, which

provides a larger amount of soft task processing time cannot guarantee that the

deadlines of all the hard tasks will be met.

Let time t 1: t 1 ≥ t, be the earliest time at or after t, when the dynamic Slack

Stealing algorithm cannot permit soft task processing to continue. Suppose at time t 1 ,

algorithm A permits one further time unit of soft task processing. Let τ k be the

highest priority runnable task at time t 1 . The dynamic Slack Stealing algorithm uses

the exact upper bound on the slack which may be stolen, this is zero at time t 1 .

Hence at least one of the hard tasks with priority equal to or lower than k has zero

slack at time t 1 , let this be task τ i . In continuing to permit soft task processing at

time t 1 algorithm A has therefore lengthened the worst case priority i busy period

culminating in the completion of task τ i beyond its deadline. Algorithm A cannot

therefore guarantee that the deadline of task τ i will be met.

`

We note that the dynamic algorithm is optimal for stealing slack from both

periodic and sporadic tasks with hard deadlines. In the case of task sets comprising

only periodic tasks, its behaviour is equivalent to the static, table driven algorithm of

Lehoczky and Thuel [59].

3 . 2 . 3 Non-Optimality w.r.t. Minimising Soft Task Response Times

As noted by Tia [97], the optimality of the Slack Stealing algorithm in making spare

capacity available does not imply that using slack time immediately will result in

minimising soft task response times. In figure 3.2, we give an example of this

effect, showing that if soft or hard task execution times are stochastic, then only a

clairvoyant algorithm can minimise the response time of even a single soft task.

The example is similar to the one given in Appendix A, figure A.2. The hard

task set is defined in the table below. In addition, a soft task, A is assumed to arrive

at time t = 0.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hard periodic tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Priority Period Deadline Offset WCETiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 10 5 2 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

2 10 6 0 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c
c
c

From figure 3.2, it is clear that in order to minimise the response time of soft task A,

it is necessary to know the exact future execution times of each hard and soft task.

Hence only a clairvoyant algorithm can guarantee to minimise soft task response

times.

3 . 2 . 4 Feasibility of the Dynamic Algorithm

We now seek to reduce the run-time overheads of the dynamic algorithm. To do

this, we examine the feasibility of deriving the slack available at some later time t ′

from the values computed at time t. First, we assume that no hard tasks complete

during the interval [ t ,t ′ ) and that each task τ i is released at t + x i ( t) and

subsequently with a period of T i . By considering the priority level i idle time in the

intervals [ t ,t + d i ( t)) and [ t ′ ,t + d i ( t)), it can be seen that, if the processor serviced

soft tasks or was idle between t and t ′ then slack is consumed at all priority levels:

∀ j ∈ lp(1) : S j ( t ′ ) = S j ( t) − ( t ′ − t) (3.5)

Whereas, if the processor was busy with hard deadline task τ i , then slack is

consumed at all priority levels higher than i:

∀ j ∈ hp( i) : S j ( t ′ ) = S j ( t) − ( t ′ − t) (3.6)

Next, we consider the effect of task τ i completing on the level i slack. The next

deadline which task τ i could miss increases by at least T i when it completes. As any

level i idle time in the interval [ t ,t + d i ( t)) must also be present in [ t ,t + d i ( t) + T i ),

the level i slack cannot be reduced when task τ i completes. On the contrary, it may

well be increased. Hence, for stealing slack from strictly periodic tasks we need only
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Case 1

Case 2

Case 3

Case 4

t=0 2 4 6 8

A τ 1 τ 2 A

A τ 1τ 2

A τ 1 τ 2

A τ 1 τ 2A

The slack available at time t = 0 at priority levels 1 and 2 is S 1 (0) = 5
and S 2 (0) = 2 respectively. At time 0, soft task A arrives with a
worst case execution time of 3.

Case 1:
Allowing task A to execute immediately, reduces the slack at priority level 2
to zero at time t = 2. Task τ 1 must then execute followed by task τ 2 ,
which just meets its deadline at time t = 6. The soft task can then be
permitted to continue executing and completes with a response time of 7.

Case 2:
If task τ 2 is allowed to execute first, completing at time t = 2, soft task A
can then be accomodated in the next 3 time units, completing at time t = 5.
Thus the greedy policy of using slack time as soon as possible results in a
longer response time for the soft task (7 v. 5).

Case 3:
However, if the soft task actually only required 2 units of computation
time, the greedy policy would result in a shorter response time (2 v. 4).

Case 4:
Similarly, if task τ 1 actually requires only 1 unit of computation
(and the soft task requires 3), then the greedy policy would again result in
a shorter response time (4 v. 5).

Figure 3.2: Non-optimality of greedy slack assignment.
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re-compute the level i slack each time task τ i completes. (Note, the level i slack

present immediately prior to completion provides a lower bound which can be used

as an initial value for S i ( t) in algorithm (3.3), reducing the computation required.)

Finally, we consider the effect of sporadic tasks not arriving at their maximum

rate. Suppose a sporadic task τ i is not released at its earliest possible next release

time, t 1 , but at some later time t 2 . Equations (3.5) and (3.6) provide a lower bound

on the level i slack at time t 2 . However, the deadline of the request at t 2 is later

than it would have been had the request occurred at time t 1 , potentially increasing

the slack. Therefore to ensure that we have the exact upper bound on the slack

available, we are compelled to re-evaluate S i at each time increment in the interval

[t 1 ,t 2]. Again, this may be done using the lower bound given by equations (3.5)

and (3.6) as an initial value. In addition to the possible increase in priority level i

slack, the interference on lower priority tasks may be reduced. (This can be seen by

examining the effect of increasing the values of x j ( t) in algorithm (3.3)). To retain

optimality, we are therefore compelled to also re-evaluate the slack available at all

priority levels lower than i.

With a large number of sporadic tasks, the exact slack available at each priority

level can potentially change on each processor clock tick. Thus the slack at each

priority level may still need to be re-evaluated at each clock tick. Clearly, this is

infeasible in practice. It does, however, provide us with an optimal algorithm for

stealing slack from both hard deadline periodic and sporadic tasks. Moreover, it

forms the basis for research into approximate slack stealing algorithms with practical

utility (see chapter 4).

3 . 3 Stochastic Timing Attributes

The analysis given in section 3.2 extends the scope of slack stealing algorithms to

hard task sets comprising sporadic as well as periodic tasks. In this section, we

augment this analysis further, to handle tasks which exhibit stochastic execution times

and release jitter.
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3 . 3 . 1 Reclaiming Gain-Time

Gain time is generated when a guaranteed hard task requires less than its worst case

execution time. Gain time may be identified at various points during the execution of

a task: for example, at the start by inspecting the input parameters of the task. These

can have a critical influence on the execution path, by determining the number of

times around a loop etc. Using this run-time information, a less pessimistic, ‘specific’

worst case execution time can be calculated [93]. Alternatively, gain time may be

identified part way through task execution via Gain Points [7] or Milestones [43].

The Milestones separate the task into sections each of which has a worst case

execution time. This enables gain time to be identified when a section completes in

less than its worst case time. Finally, gain time can be identified when the entire

task completes in less than its worst case time.

The analysis given in section 3.2 requires no modification to reclaim gain time.

The worst case execution time remaining, c i ( t), is normally found by subtracting the

execution time used from the worst case execution time, C i . However, the methods

of identifying gain time described above may be used to provide less pessimistic

values for c i ( t), enabling algorithm (3.3) to reclaim gain time as slack. In fact, gain

time may be added directly to the slack available without recourse to algorithm (3.3):

Suppose gain time g i is identified at priority level i, then the slack available at level

i and all lower priority levels is increased by g i [59].

Additional slack may also be generated when it is known that the next release

of a sporadic task will occur after a time greater than its minimum inter-arrival time.

An example of this is a task which carries out some operation when a measured

value reaches a certain level. It is assumed that the maximum rate of change of the

value is known. Once a measurement has been taken, it is often possible to determine

when the task should be next released, so that it is guaranteed not to miss the value

reaching its specified level. Thus the task operates with a guaranteed minimum period

when the value is close to its critical level and less frequently otherwise.

In the above scenario, an extended earliest possible release, x i ( t), of an

invocation may result in increased slack time. Similarly if the deadline on a hard

real-time service is dependent on the external environment, it will be guaranteed at a
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minimum acceptable level, however, at run-time, the deadline on specific invocations

may be increased. Again this is potentially a source of slack time.

It is interesting to note the effect of executing an independent hard deadline

task τ i in slack time, at a raised priority j. This results in gain time being generated

at level i, whilst slack time is reduced at all priority levels ∈ lp( j). Further, the gain

time produced is transformed into slack at priority level i and below, illustrating the

equivalence between slack and gain time.

∀ k:k ∈ hp( i) ∩ lp( j) S k ( t) = S k ( t) − g i (3.7)

Where g i is the time for which τ i executes at priority j.

3 . 3 . 2 Release Jitter

When a task is subject to a bounded delay between its arrival and release, it is said

to exhibit release jitter [10]. To incorporate release jitter into our analysis, we need

only consider the effect on the earliest possible next release of each task. We also

assume that there may only be one invocation of each task present at any given time,

hence D i + J i ≤T i . For each task τ i with release jitter, we modify the calculation of

x i ( t) as follows:

x i ( t) = I
L l i ( t) + T i − J i

M
O
0

(3.8)

3 . 4 Synchronisation

In this section, we examine how synchronisation between hard tasks and between

hard and soft tasks can be incorporated into our analysis.

3 . 4 . 1 Resource Sharing between Hard Tasks

First we relax the assumption that the hard tasks are independent. We assume that

each invocation of a task τ i may lock and unlock semaphores according to the

Priority Ceiling Protocol [88]. Each invocation of task τ i may therefore be blocked

for at most B i , the worst case blocking time. Where B i is equal to the longest
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critical section of any lower priority task which accesses a semaphore with a ceiling

priority of i or higher [88]. For the moment, we assume that for Sha et al’s analysis

of the Priority Ceiling Protocol to hold, we require that no semaphores, used by hard

tasks, may be accessed by any task executing in slack time. We return to this point

in section 3.4.3.

We now consider incorporating blocking into the dynamic slack stealing

algorithm. One simple approach is to assume that each invocation of task τ i will be

blocked for a time B i . To account for this, we modify the criteria given in (3.4) for

stealing slack as follows, (note: k is the highest base priority of any task with

outstanding computation time):

∀ i ∈ lp(k)
min I

L S i ( t) − B i
M
O> 0 (3.9)

This is sufficient to ensure that tasks which are subject to blocking will still meet

their deadlines under the dynamic Slack Stealing algorithm. However, this approach

is pessimistic in that it assumes task τ i will always be blocked for the worst case

time B i .

3 . 4 . 2 Reclaiming Unused Blocking Time

Below, we describe how less pessimistic blocking factors can be maintained at run-

time. We then show how the dynamic Slack Stealing algorithm can be modified to

use these blocking factors and thus reclaim unused blocking time.

In the following analysis, we use b i ( t) to denote the worst case time for which

task τ i could be blocked in the interval over which slack is calculated i.e.

[t ,t + d i ( t)). At run-time, prior to the release of an invocation of task τ i , we assume

that b i ( t) = B i . However, when task τ i is released, it is possible to determine a less

pessimistic value for b i ( t). This can be done as follows:

1. First, the system ceiling is inspected. If it is lower than i, then the invocation of

task τ i will not be subject to blocking (by lemma 7 in [88] ). Hence b i ( t) = 0.
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2. If the system ceiling is greater than or equal to i, then we must determine if

there exists a task τ j with base priority lower than i which holds a semaphore

with ceiling i or higher (by theorem 12 in [88], there is at most one such task).

If no such task is present, as is the case when the only task holding a

semaphore has a base priority higher than i, then the invocation of task τ i will

not be subject to blocking, hence b i ( t) = 0.

3. However, if there is such a task τ j , then the invocation of task τ i could be

blocked for at most the worst case remaining execution time of the critical

section which task τ j is in. We denote the remaining execution time of this

critical section by z j ( t). Hence b i ( t) = z j ( t).

Execution of task τ j , at raised priority, from time t 1 to t 2 , whilst task τ i is blocked

or pre-empted reduces the worst case remaining blocking time:

b i ( t 2 ) = b i ( t 1 ) − ( t 2 − t 1 ) (3.10)

Using the above conditions, dynamic blocking factors can be maintained at run-time

as follows: initially, b i (0) is set to B i . At each release of task τ i , b i ( t) is modified

according to the three conditions set out above. During the interval between each

release and completion of task τ i , b i ( t) is decremented by an amount of time

corresponding to the execution of the blocking task τ j . Finally, at the completion of

each invocation of task τ i , the interval, over which the priority level i slack is

calculated, is extended to include the next invocation. Clearly the invocation of task

τ i which has just completed cannot be subject to further blocking, however, the next,

as yet unreleased, invocation could be blocked for at most B i . Hence b i ( t) is reset to

B i each time task τ i completes.

We now modify the criteria which determines when slack may be stolen to

enable unused blocking time to be reclaimed. Slack may be stolen whilst:

∀ i ∈ lp(k)
min I

L S i ( t) − b i ( t) M
O> 0 (3.11)

Where, k is again the highest base priority of a task with outstanding computation.
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Stealing slack according to the criteria given in (3.11) ensures that tasks which

are subject to blocking are guaranteed to meet their deadlines under the dynamic

Slack Stealing algorithm. This can be demonstrated as follows. For a feasible task

τ i , S i ( t c ) ≥b i (0) = B i , (where time t c is a critical instant). Hence initially, the slack

which may be stolen according to (3.11) is greater than or equal to zero. An upper

bound on the time for which task τ i may be blocked is provided by b i ( t). This

upper bound decreases monotonically, except at each completion of task τ i . However,

at each completion, there can be no outstanding computation of higher priority than i.

Thus the worst case interference which the next release of task τ i can be subject to,

corresponds to a critical instant (all higher priority tasks released simultaneously).

For a feasible task, the additional slack present in the interval from completion to the

task’s next deadline must be ≥S i ( t c ) ≥B i , hence the slack available can not decrease

at the completion of task τ i . Stealing slack according to the criteria given in (3.11)

therefore ensures that there is always sufficient slack on task τ i to accommodate any

actual blocking which takes place.

We note that the dynamic Slack Stealing algorithm is not optimal for task sets

which exhibit blocking. This is due to the pessimism inherent in the dynamic

blocking factors between the completion and release of each task. The dynamic Slack

Stealing algorithm is, however, able to effectively reclaim blocking time. This is

illustrated by figure 3.3 which provides an example of how reclaiming unused

blocking time improves the response times of soft tasks. The example is based on

the task sets detailed below. All three hard tasks are assumed to share a resource R1

which has a ceiling priority of 1. The maximum time for which R1 may be held by

each task is given in the column marked Z. Further the values in column R are the

worst case response times for each task, whilst the values in column O are the

offsets.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hard tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Priority O T D Z C B Riiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 2 10 6 1 3 3 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

2 7 15 12 3 5 2 10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 0 22 22 2 4 0 15iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
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c
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c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Soft tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Name Arrival time Execution timeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

A 2 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

B 7 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

C 12 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

D 17 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

This example illustrates two important points. First, if a low priority task has already

executed part of its critical section when it is pre-empted then the blocking factor is

reduced, leading to increased slack on higher priority tasks. Second, the completion

of a critical section in less than its worst case time increases the slack on all tasks

with priorities less than the active priority of the task executing its critical section.

The analysis detailed in this section can also be applied to the Ceiling

Semaphore Protocol [82]. In contrast with the Priority Ceiling Protocol, under the

Ceiling Semaphore Protocol, the active priority of a task is raised immediately, on

locking a semaphore, to the priority ceiling of that semaphore. This results in larger

response times for soft tasks than the Priority Ceiling protocol, however the Ceiling

Semaphore Protocol has the advantage that fewer context switches are required.

3 . 4 . 3 Resource Sharing between Hard and Soft Tasks

We now consider the situation where a soft task shares one or more semaphores with

the hard tasks. Suppose that the soft task wishes to lock a semaphore with ceiling

priority j. The deadlines of tasks at priority levels j or lower could be jeopardised by
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0 4 8 12 16 20 24

1

2

3

A τ 1 τ 1 C τ 1 C τ 1

B τ 2 τ 2

τ 3 D τ 3

t=0: S 1 (0) = 5, b 1 (0) = 3, S 2 (0) = 8, b 2 (0) = 2, S 3 (0) = 7, b 3 (0) = 0.
No soft tasks are pending. Task τ 3 executes, requesting resource R1 at t=1.

t=2: Task τ 1 is released. The system ceiling is 1. Task τ 1 can be blocked
for at most the remainder of task τ 3’s critical section.
S 1 (2) = 3, b 1 (2) = 1, S 2 (2) = 6, b 2 (2) = 2, S 3 (2) = 7, b 3 (2) = 0.
Soft task A arrives and is executed in preference to task τ 1 .

t=4: S 1 (4) = 1, b 1 (4) = 1, S 2 (4) = 4, b 2 (4) = 2, S 3 (4) = 5, b 3 (4) = 0.
Task τ 1 executes and requests R1 at t=5. The request is denied. Task τ 1 is
blocked by task τ 3 . τ 3 then executes, completing its critical section at t=6.

t=6: S 1 (6) = 0, b 1 (6) = 0, S 2 (6) = 3, b 2 (6) = 2, S 3 (6) = 5, b 3 (6) = 0.
Task τ 1 is granted R1 and executes inside its critical section.

t=7: Task τ 2 is released, as no resources are locked, b 2 (7) = 0. Soft task B
arrives. S 1 (7) = 0, b 1 (7) = 0, S 2 (7) = 3, b 2 (7) = 0, S 3 (7) = 5, b 3 (7) = 0.

t=8: Task τ 1 completes. S 1 (8) = 7, b 1 (8) = 3. Soft task B executes.
t=10: S 1 (10) = 5, b 1 (10) = 3, S 2 (10) = 1, b 2 (10) = 0, S 3 (10) = 3, b 3 (10) = 0.

Task τ 2 executes, requesting and being granted R1 at t=11.
t=12: Task τ 1 is released. The system ceiling is 1. Task τ 1 may be blocked for

the remainder of task τ 2’s critical section.
S 1 (12) = 3, b 1 (12) = 2, S 2 (12) = 1, b 2 (12) = 0, S 3 (12) = 3, b 3 (12) = 0.
Soft task C arrives and executes for 1 tick in preference to task τ 1 .

t=13: S 1 (13) = 2, b 1 (13) = 2, S 2 (13) = 0, b 2 (13) = 0, S 3 (13) = 2, b 3 (13) = 0.
τ 1 commences execution and requests R1 at t=14. The request is denied.

t=14: Task τ 2 executes, completing its critical section 1 tick early at t=15.
t=15: The gain time produced by task τ 2 increases the slack on tasks τ 2 and τ 3

and reduces the blocking of task τ 1 . Soft task execution is again permissible
S 1 (15) = 1, b 1 (15) = 0, S 2 (15) = 1, b 2 (15) = 0, S 3 (15) = 3, b 3 (15) = 0.

t=16: S 1 (16) = 0, b 1 (16) = 0, S 2 (16) = 0, b 2 (16) = 0, S 3 (16) = 2, b 3 (16) = 0.
Task τ 1 resumes and is granted R1.

t=17: Soft task D arrives. Task τ 1 executes to completion followed by task τ 2 .
t=18: S 1 (18) = 7, b 1 (18) = 3, S 2 (18) = 0, b 2 (18) = 0, S 3 (18) = 2, b 3 (18) = 0.
t=19: S 1 (19) = 6, b 1 (19) = 3, S 2 (19) = 5, b 2 (19) = 2, S 3 (19) = 2, b 3 (19) = 0.

Soft task D executes for 2 ticks in preference to task τ 3 .
t=22: Task τ 3 completes.

Figure 3.3: Reclaiming blocking time
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being blocked by the soft task. To ensure that this cannot happen, the soft task must

be guaranteed sufficient processing time to complete its critical section, prior to the

continued execution of any tasks of priority j or lower. Only then can it be allowed

to lock the semaphore. If the length of the critical section of the soft task is bounded

by c, the ceiling priority of the semaphore is j and the time of the request is t, then

the soft task is only allowed to succeed in locking the semaphore if:

∀ i ∈ lp( j)
min I

L S i ( t) − b i ( t) M
O≥c (3.12)

Provided the above condition holds, only hard tasks with priority higher than j can

pre-empt execution of the soft task’s critical section. From the definition of the

priority ceiling, none of these higher priority tasks use the semaphore and hence none

of them can be blocked by the soft task. Further, the soft task is guaranteed

execution time of at least c in preference to hard tasks of priority j and lower. It is

therefore able to complete its critical section before being pre-empted by any task of

priority j or lower. Thus using the criteria given in (3.12) resources may be shared

between hard and soft tasks without increasing the worst case blocking of any hard

task.

Alternatively, the worst case blocking time which hard tasks may be subject to

due to soft tasks locking semaphores could be included in the appropriate blocking

factors B i used in the determination of hard task feasibility. This may however

adversely affect the feasibility of the hard task set.

3 . 5 Context Switches

In this section, we examine how context switch overheads can be incorporated into

our analysis of slack time. We also detail how context switches accounted for in off-

line feasibility analysis but not executed at run-time can be reclaimed. Further, we

discuss using the dynamic Slack Stealing algorithm to reduce the number of context

switches which take place.



- 82 -

3 . 5 . 1 Incorporating Context Switch Overheads

Overheads due to context switching between hard tasks may be accounted for by

sub-summing the cost of two context switches into the worst case execution time of

each hard task [26]. Assuming that Ω is the worst case context switch time and Ψ i

is the computed worst case execution time of task τ i , then:

C i = 2Ω + Ψi (3.13)

To incorporate context switch overheads into the dynamic Slack Stealing

algorithm, we must also account for context switches between hard and soft tasks.

Two situations need to be considered.

1. Hard task τ j is pre-empted by soft task processing and then resumes.

2. Hard task τ j is pre-empted by soft task processing. A higher priority hard task

τ k is then released. Soft task processing is eventually curtailed and task τ k

begins executing.

In the first case, there must be at least sufficient slack available at priority levels j

and below to allow for two context switches: from hard task τ j to the soft task and

back again, (see figure 3.4, case 1).

∀ i ∈ lp( j)
min I

L S i ( t) − b i ( t) M
O > 2Ω (3.14)

Note, in practice, the switch to soft task processing would not be made unless there

was also sufficient slack to perform a useful amount of work.

Once soft task processing has commenced, then it may continue until,

∀ i ∈ lp( j)
min I

L S i ( t) − b i ( t) M
O = Ω (3.15)

leaving sufficient slack for the context switch back to task τ j .
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In the second case, the context switch between the soft task and task τ k is

already included in the worst case computation time of task τ k . Thus even if the

slack available at priority level k is zero when task τ k is released, the context switch

away from soft task processing is accounted for. Hence, whenever a hard task τ k is

released and is the highest priority runnable task, but the processor is busy with soft

tasks, then one context switch can be reclaimed at priority k (see figure 3.4, case 2).

Case 1

Case 2

slack time

τ j CS soft CS τ j

τ j CS soft CS τ k CS τ j

CS = Context switch
Case 1:
Execution of hard task τ j is interrupted by soft task processing.
Two context switches take place in slack time.
Case 2:
The release of a higher priority task τ k whilst soft task processing is
proceeding allows one context switch to be reclaimed. Only one context
switch takes place in slack time.

Figure 3.4: Context switches in slack time.

3 . 5 . 2 Reclaiming Unused Context Switch Time

At run-time, the worst case number of context switches (two per hard task) does not

always occur. In fact we may identify an unused context switch each time a hard

task τ j is released and is not the highest priority runnable task. Consider the time

budget C j , for task τ j , as comprising three components; a context switch to task τ j

from a lower priority task, the worst case execution time of task τ j and a context

switch back to a lower priority task. When task τ j is released and is not the highest

priority runnable task, the first of these two context switches is no longer required.

The context switch to task τ j is accounted for in the time budget of a higher priority

task τ k which proceeds the execution of task τ j . See figure 3.5.

Effectively, gain time, equivalent to the context switch time Ω, is produced at priority

level j.
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Case 1

Case 2

Task τ j released

τ i CS τ k CS CS τ j CS τ i

τ i CS τ k CS τ j CS τ i

CS = Context switch
Case 1:
Two context switches per task are assumed by off-line analysis.
Case 2:
At run-time, the context switch from task τ k to task τ j is accounted
for in C k . The unused context switch may be reclaimed.

Figure 3.5: Reclaiming unused context switches.

When task τ j is released at time t and is not the highest priority runnable task

at that time, then the slack at priority levels j and lower is increased:

∀ i ∈ lp( j) S i ( t) = S i ( t) + Ω (3.16)

and the worst case outstanding computation time for task τ j is decreased:

c j ( t) = C j − Ω (3.17)

Thus reclaiming the unused context switch time.

3 . 5 . 3 Reducing the Number of Context Switches

In some hard real-time systems, the cost of context switching is high. For example,

in the domain of hard real-time disk scheduling [98], the context switch time

represents the time taken to move the disk head to the required track plus the

rotational delay before the desired data block can be read. Typically, the context

switch time may be 25ms [28]. By comparison, reading a data block takes 1ms. In

such systems, it is desirable to minimise the number of context switches and hence
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increase the spare capacity available for soft disk accesses. Using the dynamic Slack

Stealing algorithm, this may be achieved as follows. Suppose a hard stream τ j is

accessing disk blocks when a read request from a higher priority stream τ k arrives.

Normally, stream τ j would be pre-empted. However, if there is enough slack

available, the request of stream τ j can be completed prior to servicing stream τ k ,

saving one context switch. The time required to complete the request of stream τ j is

given by c j ( t). Noting that servicing stream τ j reduces the slack at all priority levels

higher than j, the disk drive may continue to service stream τ j in preference to

stream τ k provided:

∀ i ∈ lp(k) ∩hp( j)
min S i ( t) ≥ c j ( t) − Ω (3.18)

We note that even if a request from stream τ m (of higher priority than k) arrives

whilst stream τ j is being serviced at priority k in slack time, causing stream τ j to be

pre-empted, one context switch has still been saved.

In general, the context switch or seek time for a disk drive depends on the

relative track positions of the data blocks requested. Using this information, context

switch overheads may be further reduced by servicing requests, in slack time, by

track number rather than priority.

3 . 6 Arbitrary Deadlines

In this section, we extend our analysis to tasks with arbitrary deadlines (i.e.

D i > T i), by combining the analysis given by Tindell et al [102, 105] with that

presented in section 3.2. To find the worst-case response time of a task τ i the

arbitrary deadline analysis examines a number of priority i busy periods and takes the

largest response time corresponding to each of these. To apply the arbitrary deadline

analysis to the algorithm for determining slack (3.3), we must check when evaluating

a priority i busy period to see if the end of the busy period exceeds the subsequent

release of task τ i , denoted by xi
* ( t) = d i ( t) − D i + T i . (Note, if task τ i is complete at

time t, then xi
* ( t) = x i ( t) + T i , otherwise, xi

* ( t) = x i ( t)). If W i ( t) > xi
* ( t) then we

must determine if the level i slack is limited by the invocation of task τ i released at

xi
* ( t). This is done by examining another priority i busy period starting at time t but
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including additional computation time C i . If this new busy period exceeds the

subsequent invocation of task τ i (i.e. w i ( t) > xi
* ( t) + T i), then we must check if the

slack is limited by the invocation of task τ i released at xi
* ( t) + T i . To do this, we

examine a further busy period, again starting at time t, but including additional

computation time 2C i . In general, if the (q − 1)th busy period exceeds xi
* ( t) + qT i

we need to check if the level i slack is limited by the invocation of task τ i released

at xi
* ( t) + qT i . The slack available at priority level i is then the minimum of the

slack on each of the q invocations examined. This value is used as before, in

inequality (3.4) to determine whether soft task processing may take place.

In determining the slack available, the level i busy period is extended to

d i ( t) + qT i which given D i > T i , always exceeds the next release of task τ i . The

sequence of busy periods which require examination is therefore potentially infinite.

We address this problem in appendix B.

3 . 7 Summary

This chapter extended previous research into Slack Stealing algorithms. Exact

analysis was presented which allows the slack available on both hard periodic and

sporadic tasks to be calculated. This analysis forms the basis of a dynamic slack

stealing algorithm which was proved to be optimal. Further, we extended our

analysis to cater for tasks which have stochastic execution times and release jitter,

tasks which exhibit blocking and finally tasks with arbitrary deadlines. We also

incorporated context switch overheads into our model. Moreover, we augmented the

dynamic slack stealing algorithm to reclaim unused execution time, blocking time and

context switch time.

The exact approach to identifying spare capacity described in this chapter has

pseudo polynomial complexity. It is therefore impractical for use at run-time in real

systems. We address this problem in the next chapter.
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Chapter 4

Identifying Spare Capacity: Approximate Slack Stealing

Theoretically, optimal Slack Stealing algorithms offer significant performance

improvements over previously state of the art techniques such as the Extended

Priority Exchange algorithm [92]. However, in practice this performance advantage

may not be realised. The optimal static Slack Stealing algorithm [59] relies on a pre-

computed table to define the slack present on each invocation of a hard task. Hence

the application of this approach is limited to systems comprising strictly periodic

tasks. In contrast, the optimal dynamic Slack Stealing algorithm developed in the

previous chapter, calculates the available slack at run-time. Hence it is valid for a

wider range of scheduling problems, including systems containing hard sporadic tasks.

However, the run-time overheads of this approach are pseudo-polynomial in

complexity, making it infeasible in practice.

In this chapter, we present two approximate methods of determining slack, one

static, the other dynamic. These methods address the space and time complexity

problems inherent in the optimal algorithms. Moreover, they form the basis for

approximate Slack Stealing algorithms which offer close to optimal performance with

practical utility.

The performance of the approximate Slack Stealing approaches is compared to

that of background, Extended Priority Exchange and optimal Slack Stealing methods

via simulation. Comparisons are made using hard task sets with a range of utilisation

levels, different proportions of periodic, sporadic and adaptive tasks, and varying

levels of gain time. Finally, we discuss overheads and implementation issues.
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4 . 1 Approximate Slack Stealing Algorithms

The computational model and notation used in this chapter is the same as that

introduced in section 2.2.1. In addition, we use the notation for run-time variables

introduced in chapter 3. In particular, recall that:

l i ( t) - is the time, relative to t, at which task τ i was last released.

x i ( t) - is the earliest possible next release of task τ i .

d i ( t) - is the next deadline on an invocation of task τ i .

c i ( t) - is the remaining execution time budget for the current invocation of task τ i .

S i ( t) - is the slack at priority level i, corresponding to the maximum additional

interference which task τ i may be subject to without jeopardising its next deadline.

The following assumptions also apply:

g The hard deadline task set is assumed to be schedulable using fixed priority

pre-emptive dispatching with a priority ordering determined by some means

such as Deadline Monotonic priority assignment [63].

g Tasks cannot voluntarily suspend themselves.

g Task deadlines are assumed to be less than or equal to their periods.

Further, for the sake of clarity, we assume that tasks do not exhibit blocking or

release jitter and that context switch times are zero. These characteristics may

however be taken into account by all the approximate Slack Stealing algorithms

discussed, using the techniques given in the previous chapter. The results presented in

this chapter, are therefore applicable to systems with these characteristics.

4 . 1 . 1 Generic Slack Stealing Algorithm Formulation

Below, we formulate the generic part of a run-time Slack Stealing algorithm which

may be combined with either static or dynamic, exact or approximate methods of

calculating slack to form various optimal or approximate Slack Stealing algorithms.
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1. If the processor executes task τ i during the interval [ t a , t b ) then the slack at all

priority levels higher than i is reduced:

∀ j ∈ hp( i) : S j ( t b ) = S j ( t a ) − ( t b − t a ) (4.1)

2. If the processor is idle or executes soft tasks during the interval [ t a , t b ) then the

slack at all priority levels is reduced:

∀ j ∈ lp(1) : S j ( t b ) = S j ( t a ) − ( t b − t a ) (4.2)

3. If gain time g i is identified at priority level i at time t b then the slack at priority i

and all lower levels is increased:

∀ j ∈ lp( i) : S j ( t b ) = S j ( t b ) + g i (4.3)

4. If task τ k is the highest priority runnable task, then soft task processing may take

place in preference to τ k provided that:

∀ j ∈ lp(k)
min S j ( t) > 0 (4.4)

Equations 4.1 to 4.3 represent a generic set of methods for maintaining the slack at

each priority level. These methods accurately maintain the priority level i slack

provided that task τ i does not complete during the interval [ t a , t b ) and that all tasks

of priority i or higher are released at their earliest next release time and periodically

thereafter. If these conditions do not hold, then the above equations still maintain

valid lower bounds on the slack available at each priority level, although the degree

of pessimism in these bounds is increased. Hence, for strictly periodic hard task sets,

optimal Slack Stealing can be achieved by re-calculating the exact priority level i

slack each time task τ i completes, whilst using equations 4.1, 4.2 and 4.3 to maintain

the slack counters at other times. In contrast, for task sets containing hard deadline

sporadics, optimal Slack Stealing is only possible if the exact slack at all priority

levels is recalculated every clock tick.
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We now derive approximate methods of calculating the available slack. Our

aim is to use these approximations to produce Slack Stealing algorithms which are

applicable to a wide range of task sets, offer significantly better performance than

previously published methods such as the Extended Priority Exchange algorithm

(summarised in chapter 2), and have low memory and execution time overheads.

First, we derive a static approximation which uses the time between the

completion of a task and its next deadline to find a lower bound on the available

slack. We then describe a dynamic approximation which requires O(n) time to

calculate a lower bound on the slack at each priority level. Further, we show how the

accuracy of this approximation can often be improved through the computation of

effective deadlines. Finally, we outline how our approximations can be used to

construct three approximate slack stealing algorithms.

4 . 1 . 2 Static Approximation

Recall that for hard task sets comprising only periodic tasks, the slack available at

priority level i only needs to be recalculated each time task τ i completes. We

therefore seek to find a lower bound on the level i slack (denoted by Si
C) available

immediately after completion of task τ i . This is equivalent to the priority level i idle

time present in the interval between the completion of task τ i and the deadline on its

next invocation. The lower bound on level i idle time in this interval is dependent

on the length of the interval, δ. We use Si
C (δ) as notation for a function of δ which

returns this lower bound. Note that D i + T i ≥δ≥T i , corresponding to task τ i finishing

as early or as late as possible. At each completion of task τ i , no tasks of higher

priority than i can be runnable, hence the least level i idle time in the interval occurs

when all tasks of higher priority than i are released immediately task τ i completes.

We use this result to construct a table off-line, containing the values of Si
C (δ) for

each possible value of δ.

Si
C (δ) is equivalent to the level i idle time in the interval [0,δ), assuming a

critical instant for all tasks of higher priority than i at time t = 0 and including

precisely one invocation of task τ i . A variation of algorithm 3.3 (chapter 3) can be

used to calculate Si
C (δ) and hence construct the table.
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Figure 4.1 illustrates the construction of a table of slack values for priority level

3, given the task set detailed in the table below.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hard tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Priority Period Deadline wcetiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 5 5 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

2 8 7 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 15 12 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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c
c
c
c
c
c
c

c
c
c
c
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c
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c
c
c

c
c
c
c
c
c
c
c
c
c
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1

2

3

Slack
1 2 3 4 5 6 7 8 9 10

To construct a table of priority level 3 slack, we examine the above
schedule, starting at a critical instant, extending to T 3 + D 3 (= 27)
and including a single invocation of task τ 3 .
The slack available at the completion of task τ 3 , δ ticks prior to the
deadline of the next invocation can be read off for the range of values
which δ can take i.e. T 3 to T 3 + D 3 (15 to 27).
The table of values represented as a set of pairs (δ , S3

C (δ))
is as follows. {(15,5),(16,5),(17,5),(18,5),(19,6),(20,7),(21,7),(22,8),
(23,9),(24,10),(25,10),(26,10),(27,10)}.
At run-time, if task τ 3 completes say 20 ticks before the deadline on its
next invocation, then the appropriate table entry is accessed and
the priority level 3 slack set to 7.

Figure 4.1: Constructing a table of slack values

We note that the table of values required for this approximation differs from

that used by the static Slack Stealing algorithm [59]: only a limited number of table

entries are required per hard task (see section 4.3.2). By comparison, the table used
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by the static Slack Stealing algorithm requires entries for each invocation of each

hard task over the LCM of task periods.

4 . 1 . 3 Dynamic Approximation

To calculate a lower bound on the level i slack available at some arbitrary time t, we

modify the sufficient but not necessary off-line feasibility test given by Audsley [7]

for use at run-time. Recall that the exact level i slack available at time t is

equivalent to the priority i idle time present in the interval [ t ,t + d i ( t)). We now

calculate a lower bound on this priority i idle time. Consider a task τ j of higher

priority than i. The maximum interference, I j ( t ,d i ( t)), due to task τ j which could

fall into the interval [ t ,t + d i ( t)) is given by:

I j ( t ,e) = c j + f j ( t ,e) C j + min I
L C j ,(e − x j ( t) − f j ( t ,e) T j ) 0

M
O (4.5)

Where e is the extent of the interval ( e = d i ( t) ) and f j ( t ,e) is the number of

complete invocations of task τ j which fall into the interval.

f j ( t ,e) =
J
J
Q T j

e − x j ( t)hhhhhhhh
J
J
P
0

(4.6)

Thus the interference I j ( t ,e) generally comprises three components; task τ j

computation outstanding at time t, f j ( t ,e) complete invocations of task τ j and a

partially complete final invocation.

A lower bound on the level i slack is given by the length of the interval less

the maximum interference from all tasks of priority i and higher falling into that

interval.

S i ( t) = I
L e −

∀ j ∈ hp( i) + i
Σ I j ( t ,e) M

O
0

(4.7)

This approximation is pessimistic in that it assumes that all the execution time of

each task τ j which would fall into the interval, if only task τ j were present, will
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actually fall within the interval, when all the hard tasks are considered. The degree

of pessimism inherent in this approximation can often be reduced through the

calculation of an effective deadline [7]. An effective deadline (e) is a point in time

within the interval [ t ,t + d i ( t)) after which, the processor is continuously busy with

level i or higher priority computation until the end of the interval. Hence there can be

no level i idle time present during [t + e ,t + d i ( t)). Note, we deliberately overload

the symbol e as the effective deadline is synonymous with the end of the interval

over which slack need be determined.

An effective deadline may be calculated by iterating over all tasks of priority i

and higher as follows: initially, e is set to d i ( t). Each task of priority i or higher is

then inspected in turn. If the last release of task τ j is within C j of the end of the

interval, then the last release time of task τ j forms an effective deadline on the

execution of task τ i .

e = d i ( t)

loop ∀ j ∈ hp( i)

if x j ( t) + f j ( t ,e) T j + C j ≥e then e = x j ( t) + f j ( t ,e) T j endif

endloop (4.8)

The effective deadline calculated above is then used as the extent of the interval in

equation (4.5) to give an improved estimate of the slack available.

Figure 4.2 illustrates the approximate calculation of slack at priority level 4 at

some arbitrary time t for the task set given in the table below. First slack is

calculated using the next deadline of task τ 4 as the end of the interval. This gives a

lower bound of 5. An effective deadline is then calculated and substituted in the

approximate slack calculation yielding an improved lower bound of 6. The exact

priority level 4 slack at time t is in fact 7. We note, that task execution intervals are

shown as they are considered by the approximation, not as the tasks would be

scheduled.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hard tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Priority Period Deadline wcetiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 8 8 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

2 19 19 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 23 23 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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We now present three approximate stealing algorithms which make use of the

methods of calculating slack detailed above.

4 . 1 . 4 SASS Algorithm

The SASS (Static Approximate Slack Stealing) algorithm uses the static

approximation given in section 4.1.2. The run-time operation of the SASS algorithm

is based on the generic methods described in section 4.1.1. At each completion of a

hard task τ i , the time to the deadline d i ( t), of the next invocation of task τ i is used

to look up the value of Si
C (d i ( t)) stored in the appropriate table. The level i slack

counter is then set to this value.

4 . 1 . 5 DASS Algorithm

The DASS (Dynamic Approximate Slack Stealing) algorithm is similar to the SASS

algorithm. Again, the level i slack is re-calculated each time task τ i completes,

however, this time it is done using the dynamic approximation described in section

4.1.3.

4 . 1 . 6 PASS Algorithm

The PASS (Periodic Approximate Slack Stealing) algorithm combines both the static

and dynamic methods of calculating slack. The static method is used to calculate

slack at each task completion, whilst the dynamic approximation is used to

periodically re-evaluate the slack at every priority level. Recall that to maintain the
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t t+4 t+8 t+12 t+16 t+20 t+24

1

2

3

4

Approximate calculation of priority level 4 slack at time t
At time t, we have outstanding computation: c 1 ( t) = 0, c 2 ( t) = 0, c 3 ( t) = 1.
and c 4 ( t) = 2.
The next releases of tasks τ 1 , τ 2 , τ 3 and τ 4 (relative to t) are at: x 1 ( t) = 4,
x 2 ( t) = 3, x 3 ( t) = 19, x 4 ( t) = 24
The next deadline of task τ 4 (relative to t) is at d 4 ( t) = 24, hence the
extent of the interval over which slack is calculated: e = 24.
f 1 ( t ,24) = 2, hence I 1 ( t ,24) = c 1 + 2C 1 + min(C 1 ,4) = 9.
f 2 ( t ,24) = 1, hence I 2 ( t ,24) = c 2 + C 2 + min(C 2 ,2) = 5.
f 3 ( t ,24) = 0, hence I 3 ( t ,24) = c 3 + min(C 3 ,5) = 3.
f 4 ( t ,24) = 0, hence I 4 ( t ,24) = c 4 + min(C 4 ,0) = 2.
Lower bound on the priority level 4 slack at time t is (24 - 9 - 5 - 3 - 2) = 5.
Improved approximation using effective deadlines.
e 1 = 24, e 2 = 22, e 3 = 22, e 4 = 22.
f 1 ( t ,22) = 2, hence I 1 ( t ,22) = c 1 + 2C 1 + min(C 1 ,2) = 8.
f 2 ( t ,22) = 0, hence I 2 ( t ,22) = c 2 + min(C 2 ,19) = 3.
f 3 ( t ,22) = 0, hence I 3 ( t ,22) = c 3 + min(C 3 ,3) = 3.
f 4 ( t ,22) = 0, hence I 4 ( t ,22) = c 4 + min(C 4 ,0) = 2.
Lower bound on the priority level 4 slack at time t is (22 - 8 - 3 - 3 - 2) = 6.
Note, the exact priority level 4 slack at time t is 7.

Figure 4.2: Approximate calculation of slack

exact slack at all priority levels in a system containing hard sporadic tasks potentially

requires that the slack at every priority level be re-evaluated every clock tick. Clearly

this is infeasible in practice. However, the PASS algorithm approximates to this

optimal approach. Varying the period of the PASS algorithm enables the overhead of

slack calculation to be traded off against a decrease in the responsiveness of soft

tasks. A very short period minimises the theoretical response times of soft tasks at

the expense of a large overhead. Whilst a very long period minimises the overhead
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and increases response times. This trade off is examined further in the next two

sections.

4 . 2 Performance Evaluation

In this section, we compare the performance of the above approximate algorithms to

that of the optimal dynamic Slack Stealing algorithm, Background scheduling and

Extended Priority Exchange algorithms. The Background and optimal Slack Stealing

algorithms were chosen as they effectively bound the range of expected performance.

The Extended Priority Exchange algorithm represents the most effective algorithm

previously developed, which is applicable to task sets which are not strictly periodic.

First we outline the assumptions made in our scheduling simulation and discuss

the generation of the hard and soft task sets used as test data. We then present

results for hard task sets comprising only periodic tasks. These are followed by

results for tasks sets containing sporadic and adaptive tasks, and tasks which exhibit

stochastic execution times.

4 . 2 . 1 Simulation

The criteria used to evaluate the performance of the various scheduling algorithms is

the mean response time of soft tasks. This criteria is used as it gives a measure of

how early spare capacity can be made available: a key performance criteria, which

reflects an algorithm‘s effectiveness.

In our simulations, the soft task load was represented by a FIFO queue of

tasks. The execution requirements of soft tasks were exponentially distributed from 1

to 16 units of processing time. The arrival times of soft tasks followed a uniform

distribution over the duration of each experiment - 100000 ticks (i.e. a Poisson arrival

process). The number of soft tasks was varied to produce a range of mean processor

loadings (plotted on the x-axis of the graphs).

The hard task load was simulated using groups of task sets with utilisation

levels of 30, 50, 70 and 90%. The results presented in subsequent sections are the

averages over a group of ten task sets. Each hard task set had an exponential

composition of task periods in the range 40 to 2560 ticks. Each hard task set was



- 97 -

generated as follows. First, the periods of the tasks were chosen at random from the

desired range. Deadlines were again randomly chosen, but constrained to be less than

or equal to the task’s period. The tasks were then sorted into deadline monotonic

priority order. Next, random computation times were assigned, highest priority first.

The computation times were constrained such that the partial task set remained

feasible according to an exact schedulability test. Finally tasks sets with a utilisation

level differing by more than 1% from that required were discarded.

To simulate sporadic task sets, the same hard task sets were used, however,

certain tasks were now designated sporadic. Each task τ i designated as sporadic had

a probability of arrival per tick of 1/T i once its minimum inter-arrival time had

expired. The mean inter-arrival time of each sporadic task was thus 2T i compared to

a minimum inter-arrival time of T i .

To simulate adaptive tasks, the same hard task sets were again used. In this

case, each task designated as adaptive, determined its next release time at completion,

allowing this information to be used by the Slack Stealing algorithms. The inter-

arrival time of the adaptive tasks followed a uniform distribution from T i to 2T i .

Tasks with stochastic execution times were simulated as producing gain time

upon completion. The amount of gain time produced by each task was uniformly

distributed from 0-25% and 0-50% of the task’s worst case execution time.

The overheads involved in scheduling, maintaining counters for extra capacity

or slack, and calculating slack were assumed to be zero. We return to this point in

section 4.3.

We note that in some of the experiments (e.g. 4.14), the "optimal" Slack

Stealing algorithm was marginally outperformed by an approximate algorithm. This

an be explained as follows: the optimal algorithm is optimal in the sense that it

determines the maximum amount of soft task processing which may take place

immediately without causing the deadlines of hard tasks to be missed. However, as

shown in section 3.2.3, this does not necessarily imply that the mean response time

of soft tasks will be minimised.
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4 . 2 . 2 Periodic Tasks: Experiments 4.1-4.4

Experiments 4.1 to 4.4 examined the scheduling of hard task sets with utilisation

levels of 30, 50, 70 and 90% respectively. In these experiments, all the hard tasks

were periodic and every invocation required its worst case execution time. In each

case, the soft task load was varied to give the total utilisation levels shown in the

graphs.

In these experiments, the performance of the DASS algorithm was close to

optimal over the entire range of hard and soft task loads examined. The SASS

algorithm similarly out-performed Extended Priority Exchange for hard task sets with

a utilisation of less than 70%.
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Expt. 4.2: Periodic tasks, 50% utilisation

73 76 79 82 85 88 91 94

0

20

40

60

80

100

120

f f f f
f

f

f

f

× × × × ×
×

×

×

+ + +
+

+

+

+

+

g

g

g
g

g

g

g

g

`

`

`
`

`

`

`

`

Mean

Response

Time of

Soft Tasks

Percentage total utilisation

Key:
` - Background

g - EPE

× - DASS

+ - SASS

o - Optimal

Expt. 4.3: Periodic tasks, 70% utilisation



- 100 -

91 93 95 97 99

0

50

100

150

200

250

300

350

400

450

500

550

600

f f f
f

f

× ×
×

×

×

+
+

+

+

+

`

`

`

`

`

g

g

g

g

g

Mean

Response

Time of

Soft Tasks

Percentage total utilisation

Key:
` - Background

g - EPE

× - DASS

+ - SASS

o - Optimal

Expt. 4.4: Periodic tasks, 90% utilisation

4 . 2 . 3 Gain Time: Experiments 4.5-4.8

The second set of experiments, investigated the response times of soft tasks given

that the hard task set exhibited stochastic execution times, varying from 75-100%

(experiments 4.5 and 4.7) and 50-100% (experiments 4.6 and 4.8) of their worst case

execution times.

In each of these experiments, the DASS algorithm again provided close to

optimal performance. Moreover, the SASS algorithm out-performed the Extended

Priority Exchange approach. All the algorithms studied in these experiments, except

Background scheduling, were shown to be highly effective at reclaiming gain time.
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4 . 2 . 4 Sporadic Tasks: Experiments 4.9 - 4.12

In this series of experiments, we evaluated the performance of the various algorithms

for hard task sets with a worst case utilisation of 70% or 90% and different

proportions of periodic and sporadic tasks. In each case, the soft task load was varied

to give the mean combined loads shown in the graphs. Note in many cases, the

worst case combined load exceeded 100%. For comparison purposes, we simulated a

close to optimal Slack Stealing algorithm referred to as OPT10, which calculates the

exact slack at every priority level every 10 ticks. (Evaluating the exact slack every

tick is prohibitively expensive even for simulation purposes).

In experiments 4.9 and 4.11, each task with an even priority was designated

sporadic, thus half of the tasks followed a periodic arrival pattern and the other half,

a sporadic pattern.

In experiments 4.9 to 4.12, the performance of the SASS and DASS algorithms

was degraded to that of Background scheduling. This is perhaps not surprising as

these algorithms were designed for strictly periodic task sets. In effect, once the

minimum inter-arrival time of a task τ i has expired, then the slack at priority level i

rapidly reduces to zero. As the slack at this priority level is not re-evaluated until the

next time that task τ i completes, there are long periods when one or more low

priority tasks have zero slack; thus preventing soft tasks from executing at a high

priority level.

This problem is addressed by the PASS algorithm which periodically re-

calculates the slack available at each priority level (for example, PASS-40

recalculates the slack every 40 ticks). It is clear from the experimental results, that in

order to provide close to optimal performance, the period of the PASS algorithm

must be of the same order as the shortest hard task inter-arrival time. Increasing the

period of the PASS algorithm above this level increased the response time of soft

tasks, as the spare time brought about by late sporadic arrivals went undetected for a

longer period. When a period of 640 was used, the slack was not re-calculated for

many invocations of higher priority tasks (with periods less than 640) resulting in

these tasks executing in preference to the soft tasks, significantly increasing their

response times.
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4 . 2 . 5 Adaptive Tasks: Experiments 4.13 - 4.16

In experiments 4.13 to 4.16, we examined the scheduling of hard task sets containing

tasks which exhibit adaptive behaviour. In particular, at each adaptive task

completion, the next release time was set to some randomly determined value

between T i and 2T i since the previous release time.

In these experiments, the SASS and DASS algorithms faired somewhat better

than in similar experiments using hard sporadic tasks (4.9 - 4.12). This is because at

completion, the next release and hence next deadline of an adaptive task τ i is known.

The slack available at priority i can therefore be accurately calculated at this point.

However, neither the SASS or DASS algorithms take into account the fact that the

late release of task τ i increases the slack available at lower priority levels.

In experiments 4.13 to 4.16, the period of the PASS algorithm needed to

achieve close to optimal performance was around 160 ticks; a considerable increase

over that required for similar sets of sporadic tasks. This is because the slack at high

priority levels is maintained reasonably accurately by making use of known next

release times. The slack at lower priority levels is however affected by higher priority

tasks not arriving at their maximum rate. To achieve good performance, it is

therefore necessary to re-evaluate the slack at these lower priority levels periodically.



- 107 -

63 68 73 78 83 88 93

0

10

20

30

40

50

60

70

80

90

100

`
`

`

`

`

`

`

f f f f
f

f

f

g

g

g

g

g

g

g

× ×
×

×

×

×

×

+
+

+
+

+

+

+

1 1 1 1 1

1

1

. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . . ..
.
.
.
.
.
.
.
.
.
.
.
.
.
.

2 2 2 2
2

2

2

. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . .

3 3
3

3
3

3

3

. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . .
.

Mean

Response

Time of

Soft Tasks

Percentage total utilisation (hard + soft tasks)

Key:
` - Background

g - EPE

× - DASS

+ - SASS

o - OPT-10

1 - PASS-40

2 - PASS-160

3 - PASS-640

Expt. 4.13: Half Adaptive, half periodic tasks, 70% utilisation
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4 . 2 . 6 Mixed Task Attributes: Experiments 4.17 - 4.18

We evaluated the various algorithms for hard task sets exhibiting sporadic, adaptive

and periodic release, and stochastic execution times. Tasks τ 1 , τ 5 and τ 9 were

designated as sporadic, tasks τ 3 , τ 7 and τ 11 were adaptive, with the remainder

strictly periodic. Each invocation of a task executed for 50-100% of its wcet. Any

gain time produced was detected at task completion.

In these experiments, the DASS and SASS algorithms exhibited similar

performance to the Extended Priority Exchange approach. All three of these methods

reclaim gain time at a high priority level, but are unable to make spare time available

as anything other than a background service opportunity. In contrast, the PASS

algorithm is able to reclaim spare time brought about by the late arrival of adaptive

and sporadic tasks, leading to significantly improved soft task response times.
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Expt. 4.18: Mixed periodic, sporadic, adaptive tasks, 90% utilisation, 0-50% gain time

4 . 3 Overheads and Implementation Issues

In this section, we discuss the implementation of the approximate Slack Stealing

algorithms. We then assess the performance and memory overheads associated with

these algorithms. In particular, we present the results of simulations investigating the

effect which dynamically calculating slack has on performance.

4 . 3 . 1 Data Consistency

To ensure that data synchronisation problems do not arise on the data structures

describing slack, the approximate computation of slack used in the DASS and PASS

algorithms proceeds as follows: First a consistent snap shot of all timing data (i.e.

S i ( t), c i ( t), x i ( t) and d i ( t)) is taken at time t. Next the approximate slack at time t

is calculated for the required priority levels. The extra slack found at each priority

level i, corresponds to additional pessimism in the lower bound on level i slack at

time t. During the computation of slack, the lower bound on slack at each priority

level continues to be maintained according to the generic methods given in section
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4.1.1. Once the extra slack has been computed, it is added, indivisibly, to the slack

counters. This ensures that the data structures describing slack remain consistent.

All three approximate slack stealing algorithms incur a performance overhead

maintaining n slack counters in accordance with the generic methods outlined in

section 4.1.1. In addition, there are execution time and memory overheads involved

in re-calculating the available slack, these are discussed in detail below.

4 . 3 . 2 Slack Stealing: Static Approximation

The memory requirements of the static approximation are due to the tables of slack

values. We note that this storage overhead may be limited by restricting the number

of values stored in each table. For example, assuming the table storing the values of

Si
C (δ) is of size m and has an index l (l = 0,1,2,3...m − 1). Values of slack are

stored corresponding to:

∀ l = 0,1,2...m − 1 : δl = T i + l
R
J
J m

D ihhh
H
J
J

(4.9)

At run-time, at the completion of task τ i , the appropriate array index l is defined by:

l =

J
J
J
J
Q

R
J
J m

D ihhh
H
J
J

d i ( t) − T ihhhhhhhhh
J
J
J
J
P

(4.10)

Thus ensuring that the value of slack retrieved from the table is a lower bound on

Si
C (d i ( t)).

In experiment 4.19, we examined the degradation in performance of the SASS

algorithm caused by limiting the number of table entries to 100 per task (SASS-LT).

In this experiment, we used periodic hard task sets with 50% utilisation level and

periods chosen at random in the range 1000 to 10000 ticks. The number of table

entries which would have otherwise been required varied from 34 (the shortest task

deadline) to 8851 (the longest task deadline). This experiment showed that the

degradation in performance caused by limiting the number of table entries was so
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small as to be insignificant.
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Expt. 4.19: Hard task set, 10 tasks, 50% utilisation

Task periods in the range 1000 to 10000.

By restricting the size of the table used, the memory overheads of the SASS

algorithm can be greatly reduced with only a marginal reduction in performance. In

fact, the version of the SASS algorithm reported in earlier experiments used this

method of limiting the number of table entries.

4 . 3 . 3 Slack Stealing: Dynamic Approximation

The memory requirements of the approximate dynamic algorithms are very low.

Storage is required for the n values of S i , c i , x i and d i . The execution time

overheads are however, more significant. We investigated the execution time

overheads of the PASS and DASS algorithms via worst case execution time analysis

[113]. First, the dynamic approximation was implemented in C, the resulting code

was then compiled using the Zortech C++ compiler (v3.0) and the object code

converted to i486, 32 bit assembler. The worst case execution time was then found

using the techniques given in [113]. The following assumptions were made in
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calculating the worst case execution time.

g Both instructions and data were assumed to need fetching for each instruction (i.e.

no cacheing or pipelining).

g The time to fetch each instruction was 2 clock cycles.

Information on instruction times was taken from the Intel i486 Microprocessor

reference manual [1].

4 . 3 . 4 DASS Algorithm Overheads

In the case of the DASS algorithm, the approximate slack at priority level i is

calculated each time task τ i completes. The worst case number of clock cycles

needed to accomplish this is given by the following function of m, where m is the

number of hard tasks with priority i or higher.

cycles = 94 + 355m (4.11)

Equation (4.11) gives the number of clock cycles which need to be added to the

worst case execution time of each task τ i to account for the dynamic calculation of

slack. Assuming an execution environment comprising an Intel i486 Microprocessor

running at 33MHz, the following table gives this overhead for the mth hard task.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DASS algorithm overheadsiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

mth task Cycles Time (ms)iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

10 3644 0.11iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

20 7194 0.22iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

30 10744 0.33iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

40 14294 0.43iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

50 17844 0.54iiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

We note that the effect which the overheads of the DASS algorithm have on

soft task response times is dependent upon the timing attributes of the hard task set.

Typically, for hard task sets comprising a modest number of tasks (e.g. 20) with long

periods (e.g. 1 second), the overheads will be insignificant and the performance close
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to that illustrated in section 4.2. However, for large task sets with short periods, the

overheads of dynamically calculating slack may make the hard task set infeasible.

We now examine to what extent the overhead of dynamically calculating slack

can be tolerated and still provide close to optimal scheduling of soft tasks. Note, we

assume that the increase in hard task worst case execution times caused by the

addition of overheads does not cause the hard task set to become infeasible.

Experiments 4.20 to 4.23 examined the reduction in performance of the DASS

algorithm caused by a 2% or 5% overhead in calculating slack. With no overheads,

the DASS algorithm offers close to optimal performance over the entire range of soft

task loads. With a 2% or 5% overhead, performance is close to optimal until the total

load (hard + soft + overheads) reaches 85 - 90%, soft task response times then

rapidly increase as the processor becomes fully utilised.
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Expt. 4.21 :Periodic tasks, 70% utilisation
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Expt. 4.22: Periodic tasks, 70% utilisation, 0-50% gain time
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Expt. 4.23: Periodic tasks, 90% utilisation, 0-50% gain time

Assuming that the sets of 12 hard tasks simulated in tests 4.1 to 4.23 are

realistic with 1 tick = 1ms, then the overhead of calculating slack on a 33MHz i486

is given in the table below.

iiiiiiiiiiiiiiiiiiiiiiiiii

DASS algorithm overheadsiiiiiiiiiiiiiiiiiiiiiiiiii

n tasks % overheadiiiiiiiiiiiiiiiiiiiiiiiiii

10 0.2iiiiiiiiiiiiiiiiiiiiiiiiii

20 0.8iiiiiiiiiiiiiiiiiiiiiiiiii

30 1.8iiiiiiiiiiiiiiiiiiiiiiiiii

40 3.2iiiiiiiiiiiiiiiiiiiiiiiiii

50 5.0iiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

The results of our simulations show that for strictly periodic task sets, the

overhead of calculating slack dynamically is justified, provided that this overhead

remains less than approx 3%. In this case, the DASS algorithm provides improved
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soft task response times with respect to static approaches such as the Extended

Priority Exchange and SASS algorithms.

4 . 3 . 5 PASS Algorithm Overheads

For the PASS algorithm, the worst case number of clock cycles needed to calculate

the approximate slack at all n priority levels is given by the following function of n.

cycles = 91 + 56n +
2

n(n + 1)hhhhhhhh 343 (4.23)

The table below gives the worst case number of clock cycles and the corresponding

time in ms for a 33MHz i486 Microprocessor to calculate the approximate slack at

all priority levels.

iiiiiiiiiiiiiiiiiiiiiiiiiiiii

PASS algorithm overheadsiiiiiiiiiiiiiiiiiiiiiiiiiiiii

n tasks Cycles Time (ms)iiiiiiiiiiiiiiiiiiiiiiiiiiiii

10 19516 0.6iiiiiiiiiiiiiiiiiiiiiiiiiiiii

20 73241 2.2iiiiiiiiiiiiiiiiiiiiiiiiiiiii

30 161266 4.9iiiiiiiiiiiiiiiiiiiiiiiiiiiii

40 283591 8.6iiiiiiiiiiiiiiiiiiiiiiiiiiiii

50 440216 13.3iiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

The overheads of the PASS algorithm are clearly dependent on its period and

the cardinality of the hard task set. By dynamically calculating slack on a separate

scheduling co-processor, these overheads can be mitigated. Assuming of course that

the co-processor has sufficient processing capacity to calculate slack at the required

rate. Under these assumptions, the overhead of calculating slack can be taken as zero

and hence the performance of the PASS algorithm will be close to the theoretical

levels illustrated in section 4.2.



- 118 -

We now consider the performance of the PASS algorithm when the calculation

of slack is performed on the processor which is executing the hard and soft tasks.

This requires the addition of a special high priority task which performs the

necessary slack calculations. Unfortunately, the presence of such a task may render

the hard task set infeasible. We therefore modify the PASS algorithm so that the

calculation of slack has no effect on the processing capacity available for hard tasks.

Note, we refer to the new algorithm so formed as the HASS (Hyperperiodic

Approximate Slack Stealing) algorithm.

Under the HASS algorithm, the dynamic calculation of slack is only ever

performed in slack time. A special soft task SC is used to calculate the slack at all

priority levels. Upon release, SC is placed at the head of the queue of soft tasks

awaiting execution. When there is slack available, SC executes re-calculating the

slack at each priority level. Finally, when SC completes at time t, its next release is

set for t + T HASS, where T HASS is the period of the HASS algorithm. This approach

guarantees that the calculation of slack cannot interfere with the execution of hard

tasks whilst ensuring that it is performed as promptly as possible.

The performance of the HASS algorithm is inferior to the theoretical

performance of the PASS algorithm for two reasons. First the calculation of slack

consumes valuable processing time which could otherwise be used to execute soft

tasks. Second, as the HASS algorithm relies on slack time to calculate the available

slack, when one or more of the slack counters reaches zero, the soft task SC has to

wait for a background service opportunity before re-calculating the slack.

4 . 3 . 6 HASS Algorithm Overheads

We investigated the performance of the HASS algorithm in experiments 4.24 - 4.29.

In each of these experiments, the soft task SC, which calculates the slack at all

priority levels, was assumed to require 5 ticks of execution time (corresponding to

5ms for a task set of cardinality 30).

The simulation results show that the HASS algorithm is effective provided that

the total utilisation is less than approximately 90%, above this level, its performance

rapidly degrades as the processor becomes fully utilised.
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Expt. 4.24: Half sporadic, half periodic tasks, 90% utilisation
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Expt. 4.25: All sporadic tasks, 90% utilisation
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Expt. 4.26: Half Adaptive, half periodic tasks, 90% utilisation
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4 . 4 Summary

In this chapter we developed two approximate methods of calculating slack. These

approximate methods were then used to construct various approximate Slack Stealing

algorithms.

We examined the performance of the above algorithms with respect to

responsively scheduling soft tasks. Comparisons were made with Background,

Extended Priority Exchange and optimal Slack Stealing methods. Simulation studies

indicated that for hard periodic task sets, the DASS algorithm provides significant

performance improvements over the Extended Priority Exchange algorithm provided

that the additional overheads incurred represented less than approximately 3%

processor utilisation. For task sets resembling those simulated (i.e. with periods in the

range 40ms to 2s), executing on a i486 processor, this limits the DASS algorithm to

task sets of cardinality less than 30.

For hard task sets with a sizable sporadic or adaptive component, we showed

that the PASS algorithm can provide close to optimal performance under certain

conditions. These conditions are that the period of the PASS algorithm is the same

order of magnitude as the shortest hard task period and that the overheads of

calculating slack are low. Low overheads may be achieved by using a scheduling co-

processor. However, without such a co-processor, a special high priority periodic task

would be needed to calculate slack. Unfortunately, the presence of such a task may

render the hard task set infeasible. We addressed this problem by developing the

HASS algorithm which calculates slack in slack time. Again, simulation studies

showed that this algorithm can provide effective soft task scheduling provided its

period is short with respect to the majority of hard tasks, and that the overhead

involved in calculating slack is low (less then approx. 5%). For hard task sets

containing a large number of tasks, the overheads of dynamically calculating slack

clearly become prohibitive. However, our results show that such techniques are viable

for many real-time systems containing less than 30 hard deadline tasks.
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Chapter 5

Identifying Spare Capacity: Dual Priority Scheduling

In the previous chapter, we saw that in general, the effective identification of spare

capacity requires computationally expensive periodic re-evaluation of the slack, when

dynamic Slack Stealing algorithms are employed.

In this chapter, we introduce an elegant alternative method of identifying spare

capacity: Dual Priority scheduling. This minimally dynamic approach retains the

predictability afforded to hard tasks by fixed priority scheduling, whilst facilitating

the responsive scheduling of soft tasks. By comparison with Slack Stealing, the Dual

Priority approach represents a more efficient means of identifying spare time which

becomes available due to sporadic or adaptive tasks not being released at their

maximum rate.

Under Dual Priority scheduling, hard tasks execute at either an upper or lower

band priority level. Upon release, each hard task assumes its lower band priority,

however, at a fixed time offset from release, the priority of the task is promoted to

the upper band level. At run-time, other tasks with soft deadlines are assigned

priorities in the middle band. Thus soft tasks execute in preference to hard tasks

which are yet to undergo priority promotion.

Off-line analysis is given which determines the latest priority promotion time

for each hard task. Further, we extend the applicability of Dual Priority scheduling

to tasks which exhibit blocking and release jitter and have arbitrary deadlines and

offsets. Finally, we augment the Dual Priority approach to reclaim gain time.

The performance of the Dual Priority approach, (in terms of responsively

scheduling soft tasks) is compared to that of Background, Extended Priority Exchange

and optimal Slack Stealing methods via simulation. Comparisons are made using a

similar approach to the previous chapter. Finally, we discuss overheads and

implementation issues.
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5 . 1 Dual Priority Scheduling

The Dual Priority scheduling strategy, was inspired by previous work on dual

priorities by Burns and Wellings [25] and the Earliest Deadline Last algorithm of

Chetto and Chetto [29]. Harbour et al [48] have also considered the scheduling of

tasks comprising precedence constrained subtasks with multiple priorities. However,

the approach presented here differs, from that investigated by Harbour et al: tasks

have their priority promoted a fixed interval of time after their release, as in [25]. In

essence, the Dual Priority scheme facilitates the responsive execution of soft tasks by

running all hard tasks immediately when there are no soft tasks to execute, or as late

as possible, if there are soft tasks present.

5 . 1 . 1 Computational Model, Assumptions and Notation

The Dual Priority model considered in this chapter is similar to the fixed priority

model detailed in section 2.2.1. We assume that there is a range of unique priorities

split into three bands: Upper, Middle and Lower. Any priority level in the upper

band is considered higher than any in the middle or lower bands. Hard tasks are

assigned two priorities, one each from the upper and lower bands. At run-time, other

tasks, typically with firm or soft deadlines, are assigned priorities in the middle band.

Each hard task has an initial priority in the lower band and a unique promoted

priority i where 1 ≤ i ≤ n, in the upper band. Thus 1 is the highest and n the lowest

priority level in the upper band. Note that the lower band also comprises n priority

levels, however, assignment of lower band priorities may be arbitrary: it need not

reflect the upper band priority order. For notational convenience, we refer to hard

tasks by their upper band priority level, thus task τ i is the hard task with promoted

priority i. We use hp( i) to denote the set of tasks with a higher promoted priority

than i and lp( i) to denote the tasks with promoted priority i or lower.

Each task has a priority promotion delay Y i , (0≤Y i < D i) measured relative to

its release. Upon release, each task τ i assumes its initial priority (in the lower band),

however after Y i time units, its priority steps up to its promoted priority i (in the

upper band).
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5 . 1 . 2 Basic Analysis

Analysis developed for fixed priority scheduling is now applied to the basic Dual

Priority model. We show that the worst case response times of hard tasks scheduled

using dual priorities can be bounded and their time constraints guaranteed. Initially,

we assume that all tasks are independent, do not exhibit release jitter and have

deadlines which are less than or equal to their periods. These restrictions are

subsequently relaxed, permitting tasks to synchronise with other tasks on the same

processor, exhibit release jitter and to have arbitrary deadlines.

First we give a brief description of Dual Priority scheduling. When a hard task

τ i is first released, it has a priority which is in the lower band. It may be pre-empted

by other tasks which have higher, lower band priorities. It may be pre-empted by any

soft or optional task executing at a priority level in the middle band or finally by any

hard task executing at an upper band priority. Once time Y i has elapsed, measured

from the release of task τ i , its priority is promoted to the upper band. Once this has

occurred, task τ i can only be pre-empted by other hard tasks which have also had

their priorities promoted and have a higher upper band priority than i.

To provide an a priori guarantee for task τ i , we seek to obtain its worst case

response time. We assume that in the worst case, task τ i will be unable to execute

any computations at its lower band priority, (perhaps due to the execution of soft

tasks in the middle priority band). Once promoted to its upper band priority level,

task τ i will only be subject to interference from tasks τ j ∈ hp( i) which have also had

their priorities promoted. As priority promotion for each task τ j occurs Y j time units

after its release, the worst case response time R i of task τ i may be calculated, using

analysis derived for fixed priority scheduling [10].

We assume that task τ i was released at time − Y i and has its priority promoted

at time 0. Further, we consider all tasks τ j ∈ hp( i) to have been released at their

respective values of − Y j , hence these tasks also undergo priority promotion at time 0,

giving rise to a critical instant for task τ i . The recurrence relation given below

iteratively computes the length w i , of the priority level i busy period starting at time

0 and culminating in the completion of task τ i .
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wi
m +1 = C i +

j ∈ hp( i)
Σ

R
J
J T j

wi
m

hhhh
H
J
J
C j (5.1)

Iteration starts with wi
0 = 0 and ends when wi

m +1 = wi
m or wi

m +1 > D i − Y i , in which

case task τ i is unschedulable. Assuming that it is schedulable, the worst case

response time of τ i is given by:

R i = w i + Y i

5 . 1 . 3 Synchronisation

We now extend analysis of the Dual Priority model to permit hard tasks to lock and

unlock semaphores according to the Ceiling Semaphore Protocol [82], commonly

referred to as the Immediate Priority Ceiling Protocol. First, we show how this

protocol can be applied to tasks with dual priorities. We then present analysis which

bounds the worst case response time of each task.

Under the Immediate Priority Ceiling Protocol, each semaphore has an

associated ceiling priority which is equal to the highest priority of any task which

accesses that semaphore. With the Dual Priority approach, ceiling priorities are

assigned on the basis of promoted (upper band) priorities. At run-time, when a

process is granted a semaphore, its priority is immediately increased to the ceiling

priority associated with the semaphore. Under the Immediate Priority Ceiling

Protocol, the worst case blocking time which an invocation of task τ i , executing at

its promoted priority, can experience due to tasks in the set lp( i) is denoted by B i .

Where B i is the longest time any task of lower promoted priority than i can lock a

semaphore with a ceiling priority of i or higher. Note, initially, we assume that no

optional or soft tasks executing at priorities in the middle band share any semaphores

with the hard tasks.

In deriving the worst case response time of task τ i , we need to consider two

cases.
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Case 1: Immediately before the priority of task τ i is promoted, task τ k ∈ lp( i),

executing at either its upper or lower band priority, locks a semaphore with a ceiling

priority higher than i. Note, again we assume that task τ i has been unable to carry

out any computations at its lower band priority level. In this case the worst case

response time of task τ i follows directly from analysis of fixed priority scheduling.

wi
m +1 = C i + B i +

j ∈ hp( i)
Σ

R
J
J T j

wi
m

hhhh
H
J
J
C j (5.2)

Note, the iteration start and completion conditions are the same as equation (5.1).

The worst case response time of task τ i remains:

R i = w i + Y i

Case 2: Immediately before the priority of task τ i is promoted, task τ j ∈ hp( i),

executing at its low band priority, locks a semaphore with a ceiling priority higher

than i. In this case, task τ i is apparently subject to blocking not accounted for in the

derivation of equation (5.2). However, we can show that equation (5.2) does in fact

still give us the worst case response time of task τ i .

Due to the operation of the Immediate Priority Ceiling Protocol, only one task

which has not yet reached its priority promotion time, can have locked any

semaphores. We refer to this task as τ j . To find the worst case response time of

task τ i , we consider the situation where τ j locks a semaphore immediately before the

priority promotion of task τ i at time 0. Let y j (≥0) be the time at which task τ j is

promoted to its upper band priority. Further, we assume that z j is the length of time

for which task τ j will continue to hold any semaphores. The worst case time in a

priority level i busy period w i , during which task τ j prevents task τ i from executing

is given below:

I j (w i ) =
I
J
L z i otherwise

C j if w i > y i M
J
O
+

R
J
J T j

w i − y j − T jhhhhhhhhhhh
H
J
J
0

C j (5.3)

As z j ≤C j and y j ≥0, the maximum value of I j (w i ) occurs when y j = 0, and the
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above equation reduces to:

I j (w i ) =
R
J
J T j

w ihhh
H
J
J
C j (5.4)

The worst case response time of task τ i can therefore again be found via equation

(5.2).

Resource Sharing between Hard and Soft Tasks

Resource sharing between hard and soft tasks can be facilitated by including in the

calculation of B i , the longest critical section of any task (hard or soft), of lower

priority than i which may lock a resource of ceiling priority i or higher. Then at run

time, the operation of the Immediate Priority Ceiling Protocol ensures that the

blocking which a hard task τ i is subject to is at most B i irrespective of whether it is

blocked by a hard or soft task.

5 . 1 . 4 Release Jitter

We now relax the restriction that all tasks are released as soon as they arrive. We

assume that tasks can arrive at any time after their minimum inter-arrival interval, but

may then be delayed for a variable time, bounded by the maximum release jitter J i ,

before being released.

As the priority promotion point for each invocation of a task τ i occurs a fixed

time Y i after its release, the analysis given in [10] is directly applicable. The

maximum interference I j (w i ) occurs when an invocation of task τ j with maximum

release jitter J j has a priority promotion point corresponding to the start of the

priority i busy period and subsequent invocations of task τ j have no release jitter.

Thus the worst case response time of task τ i is calculated as follows:

wi
m +1 = C i + B i +

j ∈ hp( i)
Σ

R
J
J T j

wi
m + J jhhhhhhhh

H
J
J
C j (5.5)

Iteration again starts with wi
0 = 0 and ends when wi

m +1 = wi
m or wi

m +1 > D i − Y i − J i .
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The worst case response time of task i, measured from its arrival, is given by:

R i = w i + Y i + J i

5 . 1 . 5 Arbitrary Deadlines

Here we relax the assumption that task deadlines are no greater than their periods,

thus permitting tasks to have arbitrary deadlines (D i ≤T i or D i > T i). Again, by

virtue of considering priority promotion at a fixed offset from task release, we are

able to directly apply the analysis given by Tindell et al in [105]. We assume that

earlier invocations of a given task τ i are executed in preference to later invocations

of the same task, even though they share the same upper and lower band priority

levels. Note that as earlier invocations always have their priority promoted in

advance of later invocations this assumption remains valid with priority promotion.

The analysis given by Tindell, which is modified below, examines q

(q = 0,1,2,3...) level i busy periods to determine the worst case response time of

task τ i . The length of each busy period w i (q) is found according to the following

recurrence relation:

wi
m +1 (q) = (q + 1) C i + B i +

j ∈ hp( i)
Σ

R
J
J T j

wi
m (q) + J jhhhhhhhhhh

H
J
J
C j (5.6)

the response time of each invocation is then given by:

R i (q) = w i (q) − qT i + J i + Y i

Examination of increasing values of q may stop if:

w i (q) ≤(q + 1) T i

In which case, the worst case response time of task τ i is given by;

R i = maxq =0,1,2,3...
I
L w i (q) − qT i

M
O+ J i + Y i
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5 . 1 . 6 Choosing Priority Promotion Times

Our motivation in developing the idea of Dual Priority scheduling is to provide a

strategy which enables system utility to be increased whilst also ensuring that crucial

hard tasks are guaranteed to meet their deadlines. To achieve this, we need to

facilitate the responsive scheduling of soft tasks and the on-line guarantee of optional

tasks with firm deadlines, both of which are assigned priorities in the middle band.

(Note, on-line acceptance tests are elaborated in the next chapter). We therefore

choose to set the values of Y i as large as possible. To achieve this requires that the

worst case response times Ri
FP , are calculated assuming all priority promotion times

are zero (i.e. using exact analysis of fixed priority scheduling). The largest priority

promotion times which still result in a feasible task set are then given by:

Y i = D i − Ri
FP (5.7)

We note that using these values of Y i potentially leads to the situation where a

small computational overrun by a task τ j with a high promoted priority may cause its

deadline to be missed. However, we argue that this is indicative, not of a problem

with Dual Priority scheduling but either, inaccurate worst case execution time analysis

for tasks of promoted priority j or higher, or inaccurate analysis of overheads. In

any case, the value of Y j could be reduced to provide an engineered margin for error.

Further, the Dual Priority approach retains the stability property of fixed priority

scheduling: computational overrun by a task of low promoted priority (outside of a

critical section) cannot cause tasks with higher upper band priorities to miss their

deadlines.

It is interesting to note that we have not placed any restrictions on the priority

assignments used within the lower and middle bands. Within the framework of the

Dual Priority model, it is therefore possible to schedule tasks in these priority bands

according to dynamic value density or best effort policies [68], we return to this issue

in chapter 7.
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5 . 1 . 7 Run-Time Operation of Dual Priority Scheduling

The basic operation of the algorithm is as follows: At each release of a hard task τ i ,

its priority promotion time is set:

y i = t REL + Y i (5.8)

Where t REL is the time of release. When time y i is reached, the task’s priority is

promoted to its upper band level: i. Prior to time y i , task τ i executes at its lower

band priority and may therefore be pre-empted by soft tasks executing at middle band

priority levels.

Reclaiming Spare Time

The Dual Priority approach provides an efficient means of reclaiming spare time

created when sporadic or adaptive tasks do not arrive at their maximum rate. Given

that the earliest next release, x i ( t), of such tasks is known, (typically, x i ( t) = 0 for a

sporadic task τ i which last arrived more than its minimum inter-arrival time ago), the

Dual Priority strategy recognises that the sporadic task will not be promoted to the

upper band until at least y i = x i ( t) + Y i , continually identifying spare time.

Reclaiming Gain Time

Let y i ( t) be the priority promotion time for the current invocation of task τ i at time

t. Given that τ i executes in the interval [ t ,t ′ ), then its priority promotion time is

extended:

y i ( t ′ ) = y i ( t) + ( t ′ − t) (5.9)

In essence, if the computation time of a task is reduced by ( t ′ − t) then its response

time is reduced by at least ( t ′ − t) hence its priority promotion time may be increased

by ( t ′ − t). It is therefore never necessary to interrupt a task to promote its own

priority. Moreover, if task τ i produces gain time g i at time t, then

y i ( t) = y i ( t) + g i (5.10)
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Furthermore, if task τ i is executing at its promoted priority, when gain time is

identified, then the priority promotion times of all tasks with lower (promoted)

priorities are also potentially extended:

∀ j ∈ lp( i) : y j ( t) = max(y j ( t) ,t + c i ( t) + g i ) (5.11)

Effectively reclaiming the priority level i execution, corresponding to gain time g i ,

for soft task execution.

5 . 1 . 8 Example

We now give an example of Dual Priority scheduling using the same hard and soft

task sets used to illustrate the operation of various approaches to identifying spare

capacity reviewed in chapter 2. The timing characteristics of the tasks are detailed in

the tables below. Hard tasks A and B are initially released at time t = 0. Figure 5.1

shows the scheduling of these tasks under the Dual Priority scheduling algorithm. In

this example, the Dual Priority approach allows soft tasks w, x, y and z to be

serviced immediately, giving a mean soft task response time of 1.0; which compares

favourably with other methods (see section 2.2.8).

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hard tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Name Priority T D C Promotion delay (Y)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

A 4 then 1 8 6 2 4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

B 5 then 2 12 12 5 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c
c
c
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Soft tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Name Arrival Time Execution Timeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

w 1 0.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

x 2 1.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

y 13 1.0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

z 14 1.0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

5 . 2 Performance Evaluation

In this section, we compare the performance of the Dual Priority approach to that of

the optimal Slack Stealing algorithm, Background scheduling and Extended Priority

Exchange algorithms. The sets of hard and soft tasks used in these simulations are

the same as those examined in chapter 4. The criteria used to evaluate performance

was the mean response time of soft tasks. The overheads involved in scheduling,

maintaining counters for extra capacity, priority promotion times or slack, and

calculating slack were assumed to be zero.

5 . 2 . 1 Periodic Tasks: Experiments 5.1-5.4

Experiments 5.1 to 5.4 examined the scheduling of hard task sets with utilisation

levels of 30, 50, 70 and 90% respectively. In these experiments, all the hard tasks

were periodic and every invocation required its worst case execution time. In each

case, the soft task load was varied to give the total utilisation levels shown in the

graphs.

In these experiments, the performance of the Dual Priority approach, although

non-optimal was significantly better than that of the Extended Priority Exchange

algorithm.
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Dual Priority Scheduling:
1 and 2 are upper band priority levels, 3 is a middle band priority
and 4 and 5 are lower band priority levels.
t=0, hard tasks A and B are released. The initial priority promotion times
of tasks A and B are y 1 (0) = 4 and y 2 (0) = 3 respectively.
Task A begins executing at its initial priority of 4.
t=1, task A completes. soft task w arrives and begins executing at
priority 3.
t=1.5, task w completes with a reponse time of 0.5. Task B executes at
priority 5.
t=2. task x arrives. Task B has completed one unit of execution, thus
its priority promotion time is extended to t=4. Task x executes.
t=3.5, task x completes, task B is resumed.
t=8, task B completes. Task A is released and executes at priority 4.
t=10, task A completes.
t=12, task B is released. Its priority promotion time is set to t=15.
t=13, task y arrives. As task B has executed for one unit, its
priority promotion time is advanced to t=16. Task y executes.
t=14, task y completes with a response time of 1.0, task z arrives
and executes.
t=15, soft task z completes in a response time of 1.0. Task B is resumed.
t=21, task B completes.
Mean Soft Task Response Time = 1.0.

Figure 5.1: Dual Priority Scheduling.
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5 . 2 . 2 Gain Time: Experiments 5.5-5.8

The second set of experiments, investigated the response times of soft tasks given

that the hard task set exhibited stochastic execution times, varying from 75-100%

(expts. 5.5 and 5.7) and 50-100% (expts. 5.6 and 5.8) of their worst case execution

times.

In each of these experiments, the Dual Priority approach again out-performed

the Extended Priority Exchange algorithm.

5 . 2 . 3 Sporadic Tasks: Experiments 5.9 - 5.12

In this series of experiments, we evaluated the performance of the Dual Priority

approach for hard task sets with a worst case utilisation of 70% or 90% and different

proportions of periodic and sporadic tasks.

In experiments 5.9 and 5.11, each task with an even priority was designated

sporadic, thus half of the tasks followed a periodic arrival pattern, the other half a

sporadic pattern. In experiments 5.10 and 5.12, all the hard tasks were designated as

sporadic.

In this series of experiments, the Dual Priority approach efficiently identified

spare time and thus significantly out-performed the Extended Priority Exchange

algorithm: soft task response times were 2 to 4 times shorter. Moreover, the

performance of the Dual Priority approach was close to that of the PASS algorithm

assuming that the latter had a short period of 40 - 160 ticks (See Experiments 4.9 -

4.12).

5 . 2 . 4 Adaptive Tasks: Experiments 5.13 - 5.16

In experiments 5.13 to 5.16, we examined the scheduling of hard task sets containing

tasks which exhibited adaptive behaviour. In particular, at each adaptive task

completion, the next release time was set to some randomly determined value

between T i and 2T i since the last release.
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In these experiments, the performance of the Dual Priority approach far

exceeded that of the Extended Priority Exchange algorithm. This is due to the ability

of the former approach to reclaim spare time which becomes available when adaptive

tasks do not arrive at their maximum rate.

5 . 2 . 5 Mixed Task Attributes: Experiments 5.17 - 5.18

These experiments evaluated the performance of the Dual Priority approach for hard

task sets exhibiting sporadic, adaptive and periodic release, and stochastic execution

times. In these experiments, the Extended Priority Exchange algorithm is unable to

make spare time available as anything other than a background service opportunity.

In contrast, the Dual Priority approach is able to reclaim spare time brought about by

the late arrival of adaptive and sporadic tasks, leading to significantly improved soft

task response times.
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Expt. 5.12: All sporadic tasks, 90% utilisation
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Expt. 5.13: Half Adaptive, half periodic tasks, 70% utilisation
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Expt. 5.14: All Adaptive tasks, 70% utilisation
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Expt. 5.16: All Adaptive tasks, 90% utilisation
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Expt. 5.18: Mixed periodic, sporadic, adaptive tasks, 90% utilisation, 0-50% gain time

5 . 3 Overheads and Implementation Issues

Both the memory and execution time overheads of the Dual Priority scheduling

strategy are low. Storage is required for n sets of the variables Y i , y i , l i ( t) and

x i ( t). Where Y i is the priority promotion delay calculated off-line, y i is the priority

promotion time for the current release of task τ i , and l i ( t) and x i ( t) are the last

release and earliest next release times respectively for task τ i .

The execution time overheads of the Dual Priority approach stem from the need

to promote the priorities of hard tasks. In addition to hard task release events, there is

an equal number of priority promotion events. Inserting these extra events into the

event queue represents, in the worst case, an O( logn) overhead at each scheduling

point (or release event). Note, this compares favourably with the dynamic slack

stealing algorithms, investigated in the previous chapter, which typically require O(n)

time to recalculate the slack at each priority level. Further, in common with both

Slack Stealing and Extended Priority Exchange algorithms, the worst case overhead

of reclaiming gain time is O(n). The issue of overheads is revisited in chapter 8.
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5 . 4 Summary

In this chapter we introduced an alternative method of identifying spare capacity:

Dual Priority Scheduling. In common with the dynamic Slack Stealing approach,

Dual Priority scheduling is applicable to tasks sets with a wide range of timing

characteristics, including sporadic or adaptive arrival patterns, task which exhibit

blocking, release jitter and have stochastic execution times. Further, the Dual Priority

approach has the advantage of low overheads and simple implementation.

We examined the performance of the Dual Priority approach with respect to

responsively scheduling soft tasks. Comparisons were made with Background,

Extended Priority Exchange and optimal Slack Stealing methods. The Dual Priority

approach provided better performance than the Extended Priority Exchange algorithm

in all our experiments. In particular, the Dual Priority approach is highly effective at

reclaiming spare time produced when sporadic or adaptive tasks do not arrive at their

maximum rate. For task sets with a significant sporadic component, the mean

response time of soft tasks is significantly less (2-4 times better) than under the

Extended Priority Exchange algorithm. Moreover, the run-time overheads of the Dual

Priority approach are low: effectively O( logn) at each hard task release.
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Chapter 6

Guaranteeing Spare Capacity: Acceptance Tests

Under the Approximate Processing and Multiple Versions paradigms, optional

computation aimed at improving the utility of hard real-time services needs to be

guaranteed to complete by a given deadline. Similarly, alternative versions used in

fault recovery also need to be guaranteed to complete by the deadline of the task

which they support.

In this chapter, we introduce a family of acceptance tests which facilitate the

on-line guarantee of optional components, represented by aperiodic tasks with firm

deadlines. Furthermore, we present an optimal priority assignment policy for

aperiodic tasks with arbitrary ready times and firm deadlines, scheduled along with a

set of hard periodic / sporadic tasks. This priority assignment policy is shown to be

optimal both in terms of maximising the computation time which can be made

available before a given aperiodic deadline and with respect to guaranteeing

subsequent aperiodic arrivals.

Acceptance tests are presented for aperiodic tasks scheduled at a fixed priority

level under the Slack Stealing algorithm. The first test is valid for aperiodic tasks

which share a deadline with one of the hard periodic / sporadic tasks (as is often the

case when the aperiodic task represents optional computation aimed at improving

upon the results of a mandatory task). Subsequently, more general acceptance tests

are given for aperiodic tasks with arbitrary deadlines. These latter tests are extended

to aperiodic tasks scheduled according to Background or Dual Priority strategies.

Finally, we compare the performance of the various exact and sufficient acceptance

tests for Background, Slack Stealing and Dual Priority scheduling methods. The

performance metric used is the percentage of the total requested aperiodic task

execution time which can be guaranteed. The affects which acceptance test overheads

have on performance are also considered.
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6 . 1 Overview of Previous Research

Research into on-line acceptance tests has been carried out by Chetto and Chetto [91]

Schwan and Zhou [85] and Kim [54] with respect to Earliest Deadline scheduling.

However, when applied to the case of mixed task sets, (aperiodic and periodic) the

tests presented in [91] and [85] are pseudo-polynominal in complexity: in the worst

case the time taken to perform the tests depends upon the number of task invocations

within the least common multiple of the hard task periods. Further, the model used

by Schwan and Zhou requires that all task invocations, both periodic and aperiodic,

undergo an on-line acceptance test, leading to unnecessarily high overheads. The test

presented by Kim also requires that all task invocations undergo acceptance testing.

Of greater consequence however, is the implicit assumption that tasks with an earlier

ready time are of greater importance and are therefore accepted in preference to those

with a later ready time. When mixed task sets are considered this assumption no

longer holds and it is difficult to see how the algorithm can be applied without

jeopardising the hard deadlines of periodic tasks.

Within the context of fixed priority scheduling, Thuel and Lehoczky have

developed two approximate acceptance tests [83, 84]. These tests assume that tasks

are scheduled using the static Slack Stealing algorithm [59]. Unfortunately, as shown

in section 2.3.1, both of these tests are insufficient: guarantees may be given to

aperiodic tasks which will then miss their deadlines.

Subsequently, Thuel and Lehoczky developed a revised acceptance test [96]

which makes use of the algorithm for calculating slack given in section 3.2. When

an aperiodic task arrives, this acceptance test evaluates the amount of processing time

which the static Slack Stealing algorithm can make available for aperiodic processing

prior to the aperiodic deadline. This is achieved by enacting the operation of the

Slack Stealing algorithm up to the aperiodic’s deadline as follows:

1. An aperiodic task τ A arrives at time a A with an absolute deadline of d A . The

aperiodic processing time available is initially zero. Let time s = a A .

2. The aperiodic processing time available A * (a A , d A ) is incremented by A ′ - the

minimum of the interval from s to the aperiodic’s deadline and the least slack

at any priority level at time s:
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A ′ = min I
L (d A − s) ,

∀ j ∈ lp(1)
min S j (s) M

O

3. The task invocation with the least slack (and the lowest priority, in the case of

a tie) is identified. Let this be invocation τ jk (i.e. task τ j invocation k). The

latest finish time F jk for τ jk is found from a table.

4. If F jk ≥d A then iteration is complete and A * (a A , d A ) gives the available

aperiodic execution time. Otherwise, the slack available at each priority level is

updated to reflect the execution of tasks τ i ∈ hp( j) + j up to time F jk and the

aperiodic execution time A ′ identified in step 2: Initially,

∀ i:S i (F jk ) = S i (s) − A ′

Then for each invocation τ il of task τ i which will execute in the interval

[s ,F jk ) and each priority level, m:

S m (F jk ) =
I
K
L S m (F jk ) + S(F il ) if m = i

S m (F jk ) + C il (s) ∀ m ∈ hp( i)

Where S(F il ) is the increment in priority i slack at the completion of

invocation τ il , assuming that it completes at its latest finish time F il . The value

S(F il ) is found by reference to a table, with entries of the form {F il ,S(F il ) }

created off-line using a variant of algorithm 3.3 (previously published in [39] ).

C il (s) is the outstanding computation time of invocation τ il at time s. (Note, if

τ il has not been released at time s, then C il = C i). Finally, s is set to F jk and

steps 2 - 4 are repeated.

Provided A * (a A , d A ) is greater than the execution requirements of the aperiodic task

then it can be guaranteed.
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6 . 1 . 1 Example

Figure 6.1 gives an example of the operation of the above acceptance test, for an

aperiodic task τ A arriving at time t, with an absolute deadline, d A of 15 and an

execution requirement C A of 6, given the hard task set detailed in the table below.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hard tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Priority WCET Period Deadline Next Release Next Deadlineiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 2 5 5 t+3 t+8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

2 3 10 10 t+3 t+13iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 1 21 21 t+1 t+22iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

S m (F jk ) =
I
K
L S m (F jk ) + S(F il ) if m = i

S m (F jk ) + C il (s) ∀ m ∈ hp( i)

The latest finish times of invocations τ 11 , τ 12 , τ 13 , τ 14 , τ 21 , τ 22 and τ 31 are given

below, along with the corresponding slack increments.

F 11 = t + 8 S(F 11 ) = 3 F 12 = t + 13 S(F 12 ) = 3

F 13 = t + 18 S(F 13 ) = 3 F 14 = t + 23 S(F 14 ) = 3

F 21 = t + 13 S(F 21 ) = 3 F 22 = t + 23 S(F 22 ) = 3

F 31 = t + 22 S(F 31 ) = 6

The aperiodic processing time available before the deadline of τ A is 7, hence τ A is

schedulable.

The pseudo-polynomial time and space complexity of the above test severly limits its

applicability as an on-line acceptance test in real systems. In particular, the table used

to store latest finish times and slack increments requires an entry for each task

invocation in the LCM of task periods. Hence this test places the same restrictions

upon the hard task set as the static Slack Stealing algorithm [59]: all hard tasks must

be strictly periodic and the LCM must be manageably small. In section 6.3, we

address these issues by introducing an exact and a sufficient acceptance test, both of

which are applicable to a more general computational model. First, however, we

present a complementary priority assignment policy.
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t t+5 t+10 t+15 t+20 t+25

A

1

2

3

τ 11 τ 12 τ 13 τ 14

τ 21 τ 21 τ 22 τ 22

τ 31

Time available for aperiodic task execution is shown on timeline A.
Note, task execution is as scheduled by the Slack Stealing algorithm.

At time t, aperiodic task τ A arrives, with a deadline d A of t + 15.
Acceptance test: s = t, S 1 (s) = 6, S 2 (s) = 6, S 3 (s) = 7 and d A − s = 15.
Hence the first interval of aperiodic processing A 1 is of length 6.
A * ( t ,d A ) = 6. τ 2 will be the lowest priority task with zero slack
once A 1 = 6 units of aperiodic processing have taken place. F 21 = t + 13.
Invocations τ 11 , τ 12 and τ 21 complete before F 21 , hence:
S 1 (F 21 ) = S 1 (s) − A 1 + S(F 11 ) + S(F 12 ) − C 21 (s) = 6 − 6 + 3 + 3 − 3 = 3
S 2 (F 21 ) = S 2 (s) − A 1 + S(F 21 ) = 6 − 6 + 3 = 3
S 3 (F 21 ) = S 3 (s) − A 1 = 7 − 6 = 1
Let s = F 21 = t + 13. S 1 (s) = 3, S 2 (s) = 3, S 3 (s) = 1 and d A − s = 2.
Hence the second interval of aperiodic execution A 2 is of length 1,
limited by the slack at priority level 3. F 31 = 22.
τ 13 , τ 14 , τ 22 and τ 31 all complete in the interval [s ,F 31 ).
Hence:
S 1 (F 31 ) = S 1 (s) − A 2 + S(F 13 ) + S(F 14 ) − C 22 (s) − C 31 (s)

= 3 − 1 + 3 + 3 − 3 − 1 = 4
S 2 (F 31 ) = S 2 (s) − A 2 + S(F 22 ) − C 31 (s) = 3 − 1 + 3 − 1 = 4
S 3 (F 31 ) = S 3 (s) − A 2 + S(F 31 ) = 1 − 1 + 6 = 6
Let s = F 31 = t + 22. Iteration is now complete as s > d A .
Aperiodic processing time available A * ( t ,d A ) = 7.

Figure 6.1: Static Slack Stealing: Acceptance test.
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6 . 2 Priority Assignment

Below, we introduce an optimal priority assignment policy for aperiodic tasks with

firm deadlines, given a set of previously guaranteed hard periodic / sporadic tasks.

The latter tasks are assumed to have been assigned unique fixed priorities according

to some arbitrary policy and guaranteed, via off-line feasibility analysis, to meet their

deadlines. In contrast, priority assignment and acceptance testing of aperiodic tasks

is carried out on-line.

The following strategy is assumed for handling aperiodic tasks with firm

deadlines. Upon arrival, each aperiodic task is assigned a unique priority before

being acceptance tested. The acceptance test is in two parts: first the schedulability of

the new aperiodic task is determined. Second, it is necessary to check that admitting

the aperiodic task will not cause any previously guaranteed tasks to miss their

deadlines. Provided that all deadlines can be met, then the aperiodic task is

guaranteed and executed at its assigned priority level. This strategy has the

advantage of simple implementation: once guaranteed, aperiodic tasks are handled in

exactly the same way as hard periodic or sporadic tasks: only fixed priority pre-

emptive dispatch is required. (Note, this strategy differs from that used by Thuel and

Lehoczky [96], where aperiodic tasks are serviced in processing time made available

by the Slack Stealing algorithm at the highest priority level, as illustrated in figure

6.1).

Assuming the scheduling strategy described above, an optimal priority

assignment policy is defined which maximises the computation time that can be

afforded to an aperiodic task without causing any deadlines to be missed. Further,

we show that this priority assignment policy is also optimal in terms of being able to

guarantee subsequent aperiodic arrivals.

6 . 2 . 1 Computational Model and Notation

We consider a set of hard sporadic / periodic tasks which comply with the

computational model given in section 2.1.1. Further, the run-time variables introduced

in chapter 3 are also used, in particular, c i ( t) is the computation due to hard task τ i ,

outstanding at time t and d i ( t) is its next deadline. We also consider an aperiodic
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task τ A which may arrive and be ready to execute at any arbitrary time t. We assume

that τ A requires C A units of computation to be completed by its firm deadline at

d A ( t) = t + D A , where D A is its relative deadline. If accepted, τ A will be assigned

some unique priority j, and executed in preference to hard tasks in the set lp( j). We

assume that acceptance testing of τ A is performed upon arrival, i.e. at time t. We

also assume that the tasks do not exibit blocking and do not voluntarily suspend

themselves.

6 . 2 . 2 Optimal Priority Assignment

Given the above assumptions, we seek to find the optimal priority level, PA
OPT, at

which to schedule aperiodic task τ A . The definition of optimality is as follows: if τ A

is schedulable at any priority level, then it is also schedulable at priority level PA
OPT.

Equivalently, PA
OPT is the priority level at which τ A can be given the maximum

computation time consistent with the task set, including τ A , remaining schedulable.

We denote the maximum permissible computation time at priority level i, which

may be released at time t and complete by time d A ( t), as A i . (Note, under certain

circumstances, an increased amount of execution time may be available in the interval

[ t ,d A ( t)) by delaying acceptance testing and priority assignment. See [97] and

section 6.2.4). A i is constrained first by interference due to higher priority tasks: all

A i units of computation must be completed at priority level i, by d A ( t). Secondly, A i

is constrained by the slack at lower priority levels: executing τ A must not cause a

lower priority task to miss its deadline. Hence:

A i = min I
L (D A − I hp( i) ( t ,D A )) ,

∀ j ∈ lp( i)
min S j ( t) M

O (6.2)

Where I hp( i) ( t ,D A ) is the interference from tasks in the set hp( i) which falls into

the interval [ t ,t + D A ) and S j ( t) is the slack at priority level j, corresponding to the

maximum additional interference which task τ j may be subject to without causing its

next deadline to be missed. (Note, both I hp( i) ( t ,D A ) and S j ( t) can be calculated

from the next release, next deadline and remaining execution time budget of each

task, see section 6.3.4).
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Definition : The priority level PA
OPT for an aperiodic arrival, τ A , is the highest

priority level such that every task of lower priority than PA
OPT has an absolute

deadline later than d A ( t).

Theorem 6.1: Assigning τ A priority PA
OPT, results in the maximum execution time

being available to τ A , before its deadline, consistent with no deadlines being missed.

Proof : The proof is in two parts; first we show that assigning τ A a higher priority

than PA
OPT cannot result in a greater available execution time. Second, we show that

neither can assigning τ A a lower priority.

Case 1 : τ A is assigned a priority level k, where k ∈ hp(PA
OPT ).

Let A PA
OPT be the maximum permissible execution time for τ A when assigned priority

PA
OPT. There are two sub-cases to consider:

Sub-case 1.1 : A PA
OPT is limited by interference due to tasks in the set hp(PA

OPT ).

Let j be the priority level immediately higher than PA
OPT. From the definition of

PA
OPT, d j ( t) ≤d A ( t). As d j ( t) ≤d A ( t), at least S j ( t) units of computation must be

available at priority level PA
OPT prior to d A ( t). Hence A PA

OPT ≥S j ( t). Now if τ A is

assigned a priority k ∈ hp( j), then A k is limited by S j ( t), hence:

∀ k ∈ hp(PA
OPT ) : A k ≤S j ( t) ≤A PA

OPT (6.3)

Sub-case 1.2 : A PA
OPT is limited by the slack S j ( t) at some lower priority level j.

Assigning τ A a priority level k ∈ hp(PA
OPT ) does not change the set of tasks hp( j),

thus the slack at priority level j remains the same and hence:

∀ k ∈ hp(PA
OPT ) : A k ≤S j ( t) = A PA

OPT (6.4)

Case 2 : τ A is assigned a priority level k, where k ∈ lp(PA
OPT ).

Again there are two sub-cases to consider:
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Sub-case 2.1 : A PA
OPT is limited by interference due to tasks in the set hp(PA

OPT ).

Reducing the priority of τ A from PA
OPT to k can only result in additional interference

from tasks in the set lp(PA
OPT ) ∩hp(k), thus:

∀ k ∈ lp(PA
OPT ) : A k ≤A PA

OPT (6.5)

Sub-case 2.2 : A PA
OPT is limited by the slack, S j ( t) at a lower priority level j.

First, A k , where k ∈ lp(PA
OPT ) ∩hp( j) cannot exceed the slack on τ j and hence it

cannot exceed A PA
OPT . (Note, S j ( t) is unaffected by re-ordering the priorities of tasks

in the set hp( j)). Second, consider τ A assigned a priority level k ∈ lp( j) − j. The

computation due to task τ j and tasks in the set hp( j) excluding τ A , results in slack

time S j ( t) being available before d j ( t). Assigning τ A a priority level k, lower than j,

constrains the aforementioned computation to the shorter interval [ t ,d A ( t)), as

d j ( t) > d A ( t). Hence:

∀ k ∈ lp( j) : A k ≤S j ( t) = A PA
OPT (6.6)

`

We note that the above proof also extends to the slightly more complex problem

where a number of aperiodic tasks have previously been accepted. Once accepted,

and until completed, these earlier aperiodic arrivals are treated in an identical manner

to the hard tasks. Further, if no hard tasks are present at all, then the priority

assignment policy reduces to the well known Earliest Deadline first policy, which is

optimal for scheduling a stream of feasible aperiodic tasks [41].

Example

Below, we give a simple example illustrating the optimal priority assignment policy

and showing how the maximum available execution time decreases as the assigned

priority level departs from the optimal.

The example is based upon the hard task set detailed in the table below.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hard tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

P i D i T i d i ( t) C i c i ( t) S i ( t)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 4 10 t+4 2 2 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

2 18 18 t+18 2 2 12iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 20 20 t+12 3 2 4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

4 25 25 t+25 1 1 9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

5 30 30 t+30 3 3 10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
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In addition to the hard tasks given in the table, we also consider an aperiodic task τ A

which arrives at time t and has an absolute deadline d A ( t) of t + 17. Note, we

assume that if τ A is assigned the same priority as a hard task, then if both tasks are

runnable, τ A is executed first. Figure 6.2 illustrates the fixed priority schedule for

the hard task set in the absence of τ A and gives a graphical illustration of how the

available aperiodic processing time varies with priority level.

6 . 2 . 3 Optimality w.r.t Scheduling Subsequent Aperiodic Arrivals

Next, we consider how the priority assigned to an aperiodic task τ A affects the

schedulability of subsequent aperiodic arrivals.

Theorem 6.2 : If an aperiodic arrival τ B is schedulable with a previous aperiodic

arrival τ A scheduled at any arbitrary priority level, then it is also schedulable with τ A

assigned to its optimal priority level, PA
OPT.

Proof: The proof is in two parts; first we consider the case where τ B has a later

deadline than τ A , and second the case where it has an earlier deadline.

Case 1 : τ B has a later deadline than τ A .

Sub-case 1.1 : τ A is assigned a priority level k, where k ∈ hp(PB
OPT ).

From Theorem 6.1, the optimal priority level for an aperiodic task is lower than that

of any task with an earlier deadline. Hence when τ A is assigned its optimal priority,

it is a member of the set of tasks with a higher priority than PB
OPT. Now, assuming
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t t+10 t+20 t+30d A ( t)

1

2

3

4

5

The optimal priority level for τ A is 4, corresponding to the
highest priority level such that all tasks of a lower priority have
a later deadline than d A ( t) = t + 17.

The aperiodic processing time available before d A ( t) at each
priority level is as follows:
Priority 1: A 1 = 2, limited by the slack at priority level 1.
Priority 2: A 2 = 4, limited by the slack at priority level 3.
Priority 3: A 3 = 4, again limited by the slack at priority level 3.
Priority 4: A 4 = 6, limited by interference from tasks τ 1 , τ 2 , τ 3 .
Priority 5: A 5 = 5, again limited by higher priority interference.
Priority 6: A 6 = 2, also limited by higher priority interference.
In accordance with theorem 6.1, the optimal priority level for τ A is 4.

Figure 6.2: Aperiodic processing time at each priority level.
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that τ A is assigned a priority k, rather than PA
OPT, where k ∈ hp(PB

OPT ), then the set

of tasks hp(PB
OPT ) is unchanged. Hence the interference which τ B is subject to is

independent of the priority level to which τ A is assigned, (provided that it is higher

than PB
OPT). Further, the set of tasks lp(PB

OPT ) is also unchanged, hence, any

constraint due to slack at these lower priority levels is also unaltered. The maximum

permissible execution time for τ B is therefore constant for τ A assigned any priority

level, including PA
OPT, which is higher than PB

OPT.

Sub-case 1.2 : τ A is assigned a priority level k, where k ∈ lp(P B ) and P B is the

optimum priority level for τ B when τ A is assigned its optimum priority.

If τ A is assigned a priority level k, which is lower than P B , then the optimal priority

level for τ B , PB
OPT is also lowered. In fact PB

OPT is immediately below k (i.e. k + 1).

This is equivalent to case 2 in the proof of Theorem 6.1. Hence the maximum

permissible execution time for τ B at priority k + 1 can be no greater than it is at

priority P B when τ A is assigned priority PA
OPT. Hence scheduling τ A at priority

level PA
OPT or indeed any priority level higher than PB

OPT results in the maximum

possible execution time becoming available for τ B .

Case 2 : τ B has a earlier deadline than τ A .

From Theorem 6.1, the optimal priority level for τ B , PB
OPT, is independent of the

priority level to which τ A is assigned.

Sub-case 2.1 : τ A is assigned a priority level k, where k ∈ hp(PB
OPT )

Let AB
* be the maximum permissible execution time for τ B when both τ A and τ B are

assigned their respective optimal priority levels. Now, if AB
* is limited by interference

from higher priority tasks, then assigning τ A a priority k ∈ hp(PB
OPT ), can only serve

to increase this interference.

Alternatively, AB
* may be constrained by the slack at some lower priority level

j, then if PA
OPT is a higher priority level than j, assigning τ A priority

k ∈ hp(PB
OPT ) ⊂ hp( j) has no effect on the slack at priority j, whilst if PA

OPT is a

lower priority level than j, assigning τ A priority k ∈ hp(PB
OPT ) can only reduce the

slack at priority j. Either way, the permissible computation for τ B cannot exceed AB
* .
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Sub-case 2.2 : τ A is assigned a priority level k, where k ∈ lp(PB
OPT )

Again let AB
* be the maximum permissible execution time for τ B when both τ A and

τ B are assigned their respective optimal priority levels. Now, if AB
* is limited by

interference from higher priority tasks, then assigning τ A any priority level

k ∈ lp(PB
OPT ) has no effect on this interference. As PA

OPT is a lower priority level than

PB
OPT.

Alternatively, AB
* may be constrained by the slack, S j ( t) at some lower priority

level j. Assuming that PA
OPT is a higher priority level than j, then assigning τ A to any

priority level k ∈ hp( j) has no effect on the slack at priority level j. Further, assigning

τ A a priority level lower than j, results in the execution time available for task τ A

becoming less than or equal to the original slack at priority level j (Case 2.2 of

Theorem 6.1). If PA
OPT is a lower priority level than j, then assigning τ A to any

priority level k ∈ hp( j) can only serve to reduce S j ( t) and hence also reduce the

computation time available to τ B . Further, assigning τ A to any priority level k ∈ lp( j)

has no effect on S j ( t).

Finally, if the slack on task τ A at priority level PA
OPT constrains AB

* , then

assigning τ A any other priority level cannot result in a greater amount of slack

(Theorem 6.1). Hence scheduling τ A at a higher or lower priority level than PA
OPT

cannot result in more execution time becoming available for τ B .

`

6 . 2 . 4 When to Perform an Acceptance Test?

As a corollary to Theorem 6.1, with aperiodic task τ A scheduled at its optimal

priority level, all outstanding computation with an earlier deadline than d A ( t) must

complete before τ A can execute. Carrying out this computation before acceptance

testing τ A cannot reduce the maximum time which can be made available for τ A .

On the contrary, these higher priority tasks may not take their worst case execution

time, increasing the time available for τ A . It is therefore advisable to delay priority

assignment and acceptance testing until all outstanding computation with an earlier

deadline has completed.
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We note that this delay in acceptance testing is not necessarily optimal in

achieving the maximum available execution time for a given aperiodic task as shown

by the following simple example (derived from a similar example given by Tia et al

[97] illustrating soft aperiodic task scheduling).

Example : Consider a single hard periodic task τ 1 , characterised by D 1 = 10,

T 1 = 10, C 1 = 5, which is first released at time t = 2. Further, consider an aperiodic

task τ A with a relative deadline of 17 which arrives at time t = 0. At t = 0 scheduling

τ A at priority 0 (i.e. at a higher priority than τ 1), results in a maximum permissible

execution time of 7 units for the aperiodic task: limited by the slack on the first

invocation of τ 1 . Similarly, applying the optimal priority assignment policy, and

assigning τ A a priority of 2 (lower than τ 1), 7 units of computation time are

available, limited by interference from the first two invocations of τ 1 . However, if

acceptance testing and priority assignment is delayed until t = 7 when the first

invocation of τ 1 completes, the aperiodic task may be scheduled at what is then the

optimal priority level, priority 0, with a maximum of 10 units of computation time

permissible.

In the general case, determining the optimal delay requires prior knowledge of

actual task execution times and therefore clairvoyancy.

6 . 3 Acceptance Tests for the Slack Stealing Algorithm

In this section, we present a family of acceptance tests, which facilitate the on-line

guarantee of aperiodic tasks with firm deadlines. First we give a simple test for

aperiodic tasks which share a deadline with one of their hard sporadic or periodic

counterparts. Exact and sufficient acceptance tests are then given for aperiodic tasks

with arbitrary deadlines, scheduled at a fixed priority level. Subsequent sections

present similar acceptance tests for Background and Dual Priority Scheduling.

6 . 3 . 1 Exact Test: Aperiodics with Specific Deadlines

Optional computation supporting a hard real-time task typically inherits the same

deadline as the mandatory computation. In this case, a very simple acceptance test is

possible. Assuming that the aperiodic task τ A , representing optional computation, is
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assigned the same priority as its mandatory counterpart τ i , then τ A can be guaranteed

to complete by its deadline, provided that:

∀ j ∈ lp( i)
min S j ( t) ≥C A (6.7)

In which case, τ A is accepted and the slack at all priority levels i or lower is reduced

accordingly:

∀ j ∈ lp( i) : S j ( t) : = S j ( t) − C A (6.8)

Note, this is the exact opposite of task τ i producing gain time.

6 . 3 . 2 Generic Acceptance Test Procedure and Computational Model

When the deadline of an aperiodic task does not correspond to that of any of the

hard tasks, then a more complex acceptance test is required. The basic operation of

such exact and sufficient acceptance tests, detailed in subsequent sections, is as

follows: when a firm aperiodic task arrives, it is first given a unique priority

commensurate with its absolute deadline, according to the optimal priority assignment

policy described in section 6.1. That is the highest priority such that all the

guaranteed tasks (i.e. hard periodic / sporadic tasks and uncompleted firm aperiodic

tasks) with lower priorities have later absolute deadlines. The acceptance test then

proceeds by determining if the new aperiodic task and all other tasks of lower

priority are schedulable. If this is the case, then the new aperiodic is afforded an

on-line guarantee. Further, it is given an execution time budget and a slack budget,

which represents the amount of extra interference which the task could be subject to

without causing its deadline to be missed. It is then executed whenever there are no

higher priority tasks runnable.

In formulating each acceptance test, we assume that the set of hard tasks

comply with the computational model outlined in section 2.2.1. Further, we make use

of the run-time variables introduced in chapter 3: recall that c i ( t) is the remaining

execution time of hard task τ i at time t, x i ( t) is its earliest next release time, d i ( t)

its next deadline and S i ( t) is the maximum additional interference which task τ i may
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be subject to without causing its next deadline to be missed. (Note, x i ( t) and d i ( t)

are both measured relative to t).

We also consider a set of aperiodic tasks. Each aperiodic task τ A arrives at

some arbitrary time a A and requires C A units of computation time before its deadline

at d A = a A + D A . Further, let Ahp(A) and Alp(A) be the sets of previously

guaranteed but as yet uncompleted aperiodic tasks with priorities higher than and

lower than A, respectively. Note, in determining whether aperiodic task τ A can be

accepted, we must account for interference from previously guaranteed aperiodics in

the set Ahp(A) and check that tasks in the set Alp(A) remain schedulable. To achieve

this, we make use of the following run-time information: c X ( t) - the remaining

execution time of aperiodic task τ X at time t and S X ( t) - the slack at priority X,

defined as the maximum amount of additional interference that τ X may be subject to

without causing its deadline to be missed.

6 . 3 . 3 Exact Test: Aperiodics with Arbitrary Deadlines

Using the above information, the exact feasibility of a new aperiodic arrival τ A may

be determined as follows: First the aperiodic processing time available, A A ( t ,d A ) at

priority level A in the interval [ t ,d A ) is calculated using a variant of algorithm 3.3:

(Note, as yet τ A is not part of the task set and thus its execution time is not included

in this calculation).
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Exact processing time available at priority level A in the interval [ t ,d A )

A A ( t ,d A ) : = 0

wA
k +1 ( t) : = 0

do while w A ( t) k +1 ≤d A ( t)

wA
k ( t) : = wA

k +1 ( t)

wA
k +1 ( t) : = A A ( t ,d A ) +

∀ j ∈ hp(A)
Σ

I
J
J
L

c j ( t) +
R
J
J T j

wA
k ( t) − x j ( t)hhhhhhhhhhhh

H
J
J
C j

M
J
J
O

+
∀ X ∈ Ahp(A)

Σ c X ( t)

if wA
k ( t) = wA

k +1 ( t)

then gap = min

I
J
J
J
J
L ∀ j ∈ hp(A)

min
R
J
J T j

wA
k ( t) − x j ( t)hhhhhhhhhhhh

H
J
J
0

T j + x j ( t) − wA
k ( t)

D A − wA
k

M
J
J
J
J
O

A A ( t ,d A ) : = A A ( t ,d A ) + gap

wA
k +1 ( t) : = wA

k +1 ( t) + gap + ε

end if

enddo

return A A ( t ,d A ) (6.9)

Note, ε set to the granularity of time is a mathematical device used to force iteration

to continue.

The basic operation of the above algorithm is as follows: first, the length wA
m +1 ( t) of

a priority level A busy period starting at time t is computed. The end of this busy

period is found when wA
m ( t) = wA

m +1 ( t). In which case, the gap to either the end of

the interval or the next release of a higher priority task is identified as aperiodic

processing time. This newly identified aperiodic processing time is assumed to be

released at time t and is added to the total aperiodic execution time found so far -

A A ( t ,d A ). Iteration then continues, computing the length of a priority level A busy

period including aperiodic processing A A ( t ,d A ) and subsequently identifying further

priority A idle periods which can be reclaimed. Iteration terminates when the end of

the interval is reached. Whereupon, A A ( t ,d A ) gives the maximum amount of

aperiodic processing at priority A, guaranteed to be possible during [ t ,d A ).
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If A A ( t) ≥C A then the new aperiodic task is feasible. However, before it can

be accepted, we must first check that all previously guaranteed but uncompleted

aperiodic tasks and all hard tasks remain schedulable. The execution time budget C A

afforded to aperiodic task τ A reduces the slack budget of all lower priority tasks, thus

provided:

∀ X ∈ Alp(A) : S X ( t) ≥C A

and

∀ i ∈ lp(A) : S i ( t) ≥C A (6.10)

then task τ A can be accepted. In which case, the slack budgets of all lower priority

tasks are reduced:

∀ X ∈ Alp(A) : S X ( t) : = S X ( t) − C A

and

∀ i ∈ lp(A) : S i ( t) : = S i ( t) − C A (6.11)

Finally, the slack budget of the new aperiodic τ A is set.

S A ( t) = A A ( t ,d A ) − C A (6.12)

6 . 3 . 4 Sufficient Test: Aperiodics with Arbitrary Deadlines

The sufficient feasibility of aperiodic task τ A may be found by deriving a lower

bound on the aperiodic processing time available to task τ A in the interval [ t ,d A ).

To achieve this, we modify the sufficient and not necessary off-line schedulability

test given by Audsley in [7] for use at run-time.

Consider a hard periodic task τ j with a higher priority than aperiodic task τ A

(i.e. j ∈ hp(A)). The maximum interference I j ( t ,d A ), due to task τ j which could

fall into the interval [ t ,d A ) is given by:
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I j ( t ,d A ) = c j ( t) + f j ( t ,d A ) C j + min
I
J
L
C j , IL D A − x j ( t) − f j ( t ,D A ) T j

M
O
0

M
J
O

(6.13)

Where f j ( t ,d A ) is the number of complete invocations of task τ j which fall within

the interval.

f j ( t ,d A ) =
J
J
Q T j

D A − x j ( t)hhhhhhhhhh
J
J
P
0

(6.14)

Thus the interference generally comprises three components: computation due to the

current invocation of task τ j , f j ( t ,d A ) complete invocations of task τ j and a

potentially only partially complete final invocation.

A lower bound on the execution time available for aperiodic task τ A is given

by the length of the interval less the upper bound on interference due to all tasks

with a priority higher than A.

A A ( t ,d A ) = I
L D A −

∀ j ∈ hp(A)
Σ I j ( t ,D A ) −

∀ X ∈ hp(A)
Σ c X ( t) M

O
0

(6.15)

Once a value of A A ( t ,D A ), has been calculated, then task τ A will be able to meet its

deadline provided:

A A ( t ,D A ) ≥C A (6.16)

If τ A is feasible, then examination of the schedulability of lower priority tasks and

subsequent adjustments to the slack available at each priority level proceeds in the

manner detailed previously.

The time complexity of the above acceptance test is O(n + m) where n is the

number of hard periodic / sporadic tasks (with off-line guarantees) and m is the

number of previously guaranteed but as yet uncompleted aperiodic tasks. By

comparison, the complexity of the exact test is O(Kn + m) where K is the number of

iterations required, which depends upon the ratio of aperiodic deadline to hard task

minimum inter-arrival times. Thus the exact test has pseudo-polynomial complexity.
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6 . 3 . 5 Slack Stealing

In order for the acceptance tests derived above to function correctly, we require that

the slack available at each priority level is maintained according to the principles of

the Slack Stealing algorithm [59]. In effect, once guaranteed, firm aperiodic tasks

are treated in exactly the same manner as hard periodic / sporadic tasks. For example

if between times t and t ′, the processor is busy with priority level j computation, then

the slack is reduced at all higher priority levels:

∀ A ∈ Ahp( j) : S A ( t) : = S A ( t) − ( t ′ − t)

and

∀ i ∈ hp( j) : S i ( t) : = S i ( t) − ( t ′ − t) (6.17)

Similarly, if gain time is produced by a guaranteed task (periodic, sporadic or

aperiodic) completing in less than its worst case execution time, then the slack

available at that and all lower priority levels is increased accordingly. Further, soft

tasks may be scheduled at priority level k provided that there is slack available at all

lower priority levels. That is if:

∀ i ∈ lp(k) : S i ( t) ≥0

and

∀ A ∈ Alp(k) : S A ( t) ≥0 (6.18)

Thus both responsive soft task scheduling and an efficient means of providing

guarantees for hard aperiodic tasks can be achieved using the same model.
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6 . 3 . 6 Incorporating Blocking

We now relax the assumption that the hard tasks are independent, however, we still

require that all aperiodic tasks are independent and as such do not share any

resources with the hard tasks. Each hard task τ i may be subject to a bounded delay

of up to B i waiting for a resource which is shared with lower priority tasks. We

assume that resource access is controlled by the Immediate Priority Ceiling Protocol

[82]. Under this protocol, at any given time, only one task with priority lower than i

can have locked a resource with a ceiling priority greater than i.

Assuming that a firm aperiodic task τ A arrives at time t, let b A ( t) be the

remaining execution time of task τ k (k ∈ lp(A)) before it releases all resources of

ceiling priority greater than A. (Note, it may be the case that no such resources are

held by any lower priority task τ k , in which case, b A ( t) = 0). Taking account of the

additional interference which aperiodic task τ A is subject to, the execution time

available at priority level A is reduced:

A A ( t ,d A ) : = A A ( t ,d A ) − b A ( t) (6.19)

Provided that:

A A ( t ,d A ) ≥C A (6.20)

then τ A is schedulable. However, it can only be accepted if all lower priority hard

tasks and previously guaranteed aperiodic tasks remain schedulable i.e. provided that:

∀ i ∈ lp(A) : S i ( t) − b i ( t) ≥C A

and

∀ X ∈ Alp(A) : S X ( t) − b X ( t) ≥C A (6.21)

Where b i ( t) is defined similarly to b A ( t) as the longest delay which the current

invocation of task τ i may be subject to due to blocking by a lower priority task.

Note, if, at time t, task τ i is awaiting release, then b i ( t) = B i (see section 3.4.2).
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6 . 3 . 7 Resource Sharing between Aperiodics and Hard Tasks

We now consider the situation where aperiodic tasks share resources with hard

sporadic / periodic tasks. Again, we assume that resource access is controlled

according to the Immediate Priority Ceiling Protocol. Allowing such resource sharing

raises two issues. First, the acceptance test must account for blocking which

aperiodic task τ A is subject to. This is readily achieved using the analysis given

above. Second, the feasibility of tasks in the set hp(A) ∩ lp( j), (where j is the

highest ceiling priority of any resource accessed by τ A) must be determined, as the

blocking which they may be subject to is potentially increased. Note, task τ A cannot

affect higher priority aperiodic tasks, as these are runnable at time t and therefore

complete before task τ A can execute and lock a resource.

For the set of hard tasks only, let Si
C (D i ) be the slack available at priority

level i at a critical instant for all hard tasks of priority i and higher (see section

4.1.2). Si
C (D i ) is equivalent to the maximum blocking which task τ i may be subject

to and yet still be guaranteed to meet its deadline. Further, at each completion of task

τ i , the slack available at priority level i increases by at least Si
C (D i ). Making use of

this information, we now determine the schedulability of subsequent invocations of

each task τ i ∈ hp(A) ∩ lp( j). Let z Aj be the longest time for which aperiodic task τ A

locks a resource of ceiling priority j or higher. We must check that the blocking

caused by task τ A cannot cause the next or subsequent deadlines of each task

τ i ∈ hp(A) ∩ lp( j) to be missed. Task τ i will meet its next deadline provided that:

S i ( t) − b i ( t) ≥0 (6.22)

Where b i ( t) is defined as follows:

1. If task τ i is runnable at time t, then the system ceiling is inspected, if it is less

than i then b i ( t) = 0. If the system ceiling is greater than or equal to i, then

we must determine if there is a task of lower base priority than i which has

locked a resource with ceiling priority i or higher. There is at most one such

task τ k . If there is no such task, then again b i ( t) = 0, otherwise, b i ( t) is equal

to the worst case remaining execution time of the critical section which task τ k

is in. Note, if τ i is runnable at time t its current invocation cannot be blocked
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by aperiodic task τ A as it is of higher priority.

2. If task τ i is not runnable at time t, then we must assume that the next

invocation could be blocked by any lower priority task, including the aperiodic

τ A . Hence b i ( t) = max(B i , z Ai ).

In addition to the next invocation of each task τ i ∈ hp(A) ∩ lp( j), we must also check

that subsequent invocations will also be schedulable when subject to blocking from

aperiodic τ A , this is the case, provided that:

Si
C (D i ) ≥z Ai (6.23)

Finally, if aperiodic task τ A is accepted, then the blocking factors b i ( t) for each hard

and each aperiodic task must be maintained according to 1. and 2. above. Thus at

each release of τ i , b i ( t) is set according to 1. During the interval between release

and completion, b i ( t) is decremented by an amount of time corresponding to the

execution of the blocking task τ k . Finally, at each completion, b i ( t) is set according

to 2. When aperiodic task τ A completes, there can be no runnable tasks with

priorities higher than A, thus the system is subsequently free of any direct or push

through blocking effects due to task τ A .

6 . 4 Acceptance Tests for Background Scheduling

Extension of the above acceptance tests to Background scheduling is straightforward:

all aperiodic tasks are given priorities below those of hard sporadic / periodic tasks.

In this case, the optimal priority assignment policy reduces to ordering the aperiodic

tasks according to Earliest Deadline First, i.e. the aperiodic task with the earliest

absolute deadline has the highest priority amongst the background priority levels

occupied by aperiodics.

Acceptance testing of an aperiodic task τ A then reduces to determining if it is

schedulable according to equation 6.20, that it does not cause any previously

guaranteed but as yet uncompleted lower priority aperiodic task to miss its deadline

(inequality 6.21), and that accessing resources with a ceiling priority of at most j

does not cause any tasks in the set hp(A) ∩ lp( j) to miss their deadlines. In the case
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of Background scheduling, the latter check reduces to testing that:

∀ i ∈ hp(A) ∩ lp( j) :Si
C (D i ) ≥z iA (6.24)

Again, higher priority aperiodic tasks cannot be blocked as they are already runnable

when aperiodic τ A arrives and therefore complete before τ A gets a chance to execute.

6 . 5 Acceptance Tests for Dual Priority Scheduling:

Using the approach taken in section 6.2, we now derive exact and sufficient

acceptance tests for aperiodic tasks with firm deadlines scheduled under the Dual

Priority paradigm.

Recall that under the Dual Priority paradigm, there are three priority bands,

upper, middle and lower. Each hard task τ i is assigned two priority levels, one in

each of the lower and upper bands. Upon release, τ i initially executes at its lower

band priority level. However, once the priority promotion delay Y i has elapsed, its

priority is promoted to its upper band level, i. Aperiodic tasks, such as τ A , are

assigned priorities in the middle band. Thus the optimal priority assignment policy

again reduces to assigning priorities to aperiodic tasks such that a task with an earlier

absolute deadline is assigned a higher middle band priority than any such task with a

later deadline. Let Mhp(A) be the set of tasks in the middle band with priorities

which are higher than A. Similarly, Mlp(A) denotes the set of tasks in the middle

band with priorities lower than A. Note, we initially assume that the set of hard

tasks may share resources according to the Immediate Priority Ceiling Protocol [82],

but that the aperiodic tasks are independent.

Analysis of the execution time afforded to an aperiodic task τ A under the Dual

Priority model requires the following run-time information. (Note, we define the

current invocation of a hard task τ i as that invocation which will next utilise the

processor).

ci
* ( t) - the remaining execution time budget for the current invocation of task τ i .

(Note, if τ i is awaiting release, then ci
* ( t) = C i , otherwise ci

* ( t) = c i ( t)).
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xi
* ( t) - the earliest possible subsequent release of task τ i . (If τ i is awaiting release,

then, xi
* ( t) = x i ( t) + T i , otherwise, xi

* ( t) = x i ( t).

y i ( t) - the earliest time at which the current invocation of task τ i will be promoted

to the upper priority band. If at time t, task τ i is awaiting release, then y i ( t)

typically corresponds to Y i time units after its earliest possible next release x i ( t).

Note that y i ( t) is measured relative to t, thus if the current invocation of τ i has

already been promoted to the upper band, then y i ( t) = 0.

z i ( t) - the worst case remaining execution time of any critical section which task τ i

is in at time t. Note, z i ( t) is zero if task τ i is not within a critical section.

In order to provide an acceptance test for aperiodic tasks with fixed priorities in the

middle band, we need to derive an exact or upper bound on the execution at upper

band priority levels during some arbitrary interval. Invocations of a hard task τ i can

only normally interfere with aperiodic task τ A once their priority has been promoted

to the upper band. However, the current invocation of task τ i may also block task τ A

by executing a critical section at a raised priority under the Immediate Priority

Ceiling Protocol. Recall that the Immediate Priority Ceiling Protocol ensures that only

one hard task which has not yet had its priority promoted may be in a critical

section.

6 . 5 . 1 Exact Acceptance Test: Aperiodics with Arbitrary Deadlines

An exact bound on the amount of aperiodic processing time available to τ A in the

interval [ t ,d A ) is given by the algorithm below, again derived from algorithm 3.3.
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Exact priority level A processing time available in an interval [ t ,d A )

A A ( t ,d A) : = 0

wA
k +1 ( t) : = 0

do while w A ( t) k +1 ≤d A ( t)

wA
k ( t) : = wA

k +1 ( t)

wA
k +1 ( t) : = A A ( t ,d A ) +

∀ j ∈ hp(A)
Σ

I
J
L z i ( t) otherwise

ci
* ( t) if wA

k ( t) > y i ( t) M
J
O

+
∀ j ∈ hp(A)

Σ
R
J
J T j

wA
k ( t) − xj

* ( t) − Y jhhhhhhhhhhhhhhhh
H
J
J
C j +

∀ X ∈ Ahp(A)
Σ c X ( t)

if wA
k ( t) = wA

k +1 ( t)

then gap = min

I
J
J
J
J
J
J
J
L
∀ j ∈ hp(A)

min
R
J
J T j

wA
k ( t) − xj

* ( t) − Y jhhhhhhhhhhhhhhhh
H
J
J
0

T j + xj
* ( t) + Y j − wA

k ( t)

∀ j ∈ hp(A)
min

I
J
L∞ otherwise

y j ( t) − wA
k ( t) if y j ( t) ≥wA

k ( t) M
J
O

D A − wA
k ( t) M

J
J
J
J
J
J
J
O

A A ( t ,d A ) : = A A ( t ,d A ) + gap

wA
k +1 ( t) : = wA

k +1 ( t) + gap + ε

end if

enddo

return A A ( t ,d A ) (6.25)

The above calculation of available aperiodic processing time proceeds in a similar

manner to algorithm (6.9). Due regard is however given to the fact that hard tasks

only execute at a priority higher than A, either when they are accessing resources or

once they have had their priorities promoted to the upper band. Again calculation

proceeds by determining the extent of priority level A busy and idle periods, claiming

the idle periods as aperiodic execution time.
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Once a value of A A ( t ,d A ), has been calculated, then task τ A can be guaranteed

provided:

A A ( t ,d A ) ≥C A (6.26)

and all lower priority, previously guaranteed aperiodic tasks remain schedulable:

∀ X ∈ Mlp(A) : S X ( t) ≥C A (6.27)

If aperiodic τ A is accepted, then its slack budget S A is set to A A ( t ,d A ) − C A and the

slack budgets of all lower priority aperiodic tasks are reduced by C A . Note, typically,

no maintenance of these slack budgets is required save at the acceptance of further

aperiodic tasks. This is because, up to the completion of τ A , the only execution

which takes place is of higher priority than A. Further, as there is only one

invocation of τ A , once it completes, it is of no further concern.

6 . 5 . 2 Sufficient Acceptance Test: Aperiodics with Arbitrary Deadlines

An upper bound on the interference I i ( t ,d A ), which aperiodic task τ A is subject to,

due to the execution of task τ i , in the interval [ t ,d A ), is given by:

I i ( t ,d A ) = min I
L z i ( t) ,D A

M
O+

min I
L D A − y i ( t) ,ci

* ( t) − z i ( t) M
O+

f i ( t ,D A ) C i +

min
I
J
L

I
L D A − xi

* ( t) − Y i − f i ( t ,d A ) T i
M
O
0

,C i

M
J
O

(6.28)

Where, f i ( t ,D A ) is the number of complete invocations of task τ i , excluding the

current one, which may complete before the end of the interval.

f i ( t ,D A ) =
J
J
Q T i

D A − xi
* ( t) − Y ihhhhhhhhhhhhhh

J
J
P
0

(6.29)
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Thus the interference due to each hard task generally comprises four components: the

remainder of the critical section which task τ i is in, if any; the computation due to

the current invocation of task τ i once its priority has been promoted; f i ( t ,D A )

further invocations of task τ i which undergo priority promotion and complete before

the end of the interval; and a potentially partially complete final invocation of task

τ i .

A lower bound on the execution time available for aperiodic task τ A is given

by the length of the interval less the upper bound on interference due to all hard

tasks which may execute at an upper band priority level and the interference due to

higher priority aperiodic tasks which have not yet completed.

A A ( t ,d A ) = I
L D A −

∀ j ∈ hp(X)
Σ I j ( t ,d A ) −

∀ X ∈ Mhp(A)
Σ c X ( t) M

O
0

(6.30)

Once the lower bound has been calculated, then the acceptance test proceeds by

checking if all lower priority aperiodic tasks will remain schedulable in the presence

of task τ A . If so, then the slack budgets of these tasks are adjusted accordingly and a

slack budget of A A ( t ,d A ) − C A is assigned to τ A .

The complexity of the sufficient acceptance test formulated above is O(n + m)

where n is the number of hard tasks and m is the number of previously accepted but

as yet uncompleted aperiodic tasks. By comparison, the complexity of the exact test

is O(Kn + m) where K depends upon the ratio of the aperiodic deadline to hard task

minimum inter-arrival times.

6 . 5 . 3 Resource sharing

To permit resource sharing between hard tasks and aperiodics under the Dual Priority

paradigm, it is necessary to take account of the additional blocking which hard tasks

may be subject to due to aperiodic tasks accessing resources. To achieve this

requires that this additional source of blocking is accounted for in the term B i when

calculating the priority promotion delay Y i for each hard task (see section 4.2.3).
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6 . 5 . 4 Soft Tasks

We now consider adding soft tasks to our model. As with firm deadline aperiodic

tasks, we assume that soft tasks are assigned priorities in the middle band. Typically,

soft tasks are of most value to the system if they are executed responsively.

However, we must also ensure that they do not cause firm tasks with on-line

guarantees to miss their deadlines. To achieve this, soft tasks are normally assigned a

priority below those of tasks with on-line guarantees. If more responsive execution is

required, then soft tasks may be given an execution time budget at a high priority

level (in the middle band). This budget is enforced by the kernel and must not

exceed the slack on previously guaranteed aperiodic tasks. Affording soft tasks such a

budget reduces the slack budgets of aperiodic tasks in the manner described

previously. When considering the acceptance of new aperiodics however, the

remaining execution time budget of the soft tasks may be rescinded increasing the

slack available and the probability of guaranteeing a new task.

6 . 5 . 5 Scheduling Policies

There are many trade-offs in choosing which particular, hard, firm or soft aperiodic

tasks to schedule. Once a hard aperiodic task has been accepted, then the semantics

of such tasks often dictate that the 100% guarantee afforded at acceptance must not

be rescinded. In the case of firm aperiodic tasks, any guarantee could be overturned

in order to accommodate a more valuable alternative. Finally, soft tasks may be

required to execute at high priority deferring the execution of aperiodic tasks with

firm or hard deadlines, provided their guarantees are not violated. In the next

chapter, we examine admission policies which arbitrate between competing requests

for spare capacity.

6 . 6 Performance Evaluation

In this section, we evaluate the performance of the acceptance tests derived earlier.

The percentage of total aperiodic execution time requested which comprises aperiodic

tasks afforded a 100% guarantee is used as the performance metric. This criteria is

dependent on both the ability of the underlying scheduling policy to defer the

execution of hard tasks (which we examined in detail in chapters 4 and 5) and the
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efficiency of the acceptance test used.

During each simulation run, the appropriate acceptance test was used to

determine if each aperiodic task could be guaranteed. Only aperiodic tasks which

were given a guarantee were allowed to execute.

The hard task sets used in these simulations were the same as those described

in chapter 4. That is, they had an exponential distribution of periods between 40 and

2560 ticks and a worst case utilisation of 30, 50, 70 or 90%.

The firm task load was simulated by a queue of aperiodic tasks the arrival

times of these tasks followed a uniform distribution over the test duration of 100000

ticks (i.e a Poisson arrival process). The execution requirements of the aperiodic tasks

were varied to examine the effect on the percentage of tasks accepted. In each case

the number of aperiodic tasks in the queue was set such that the combined utilisation

of all hard sporadic / periodic and all firm aperiodic tasks was 100%. The queue of

aperiodic tasks was ordered by arrival time prior to commencing the simulation.

During each simulation run, once the arrival time of the aperiodic task at the head of

the queue had been reached, it was removed from the pending queue and subject to

an acceptance test. If accepted, the task was placed in the aperiodic task run-queue

and executed under the appropriate scheduling algorithm.

In experiments 6.1 to 6.4, scheduling and acceptance test overheads were

assumed to be zero. The issue of overheads is examined in section 6.5.3.

6 . 6 . 1 Results

Experiments 6.1 to 6.4 examined the percentage of aperiodic tasks with an

exponential distribution of deadlines in the range 10 to 2560 ticks (mean 60) which

were accepted and scheduled by the various approaches. The execution time of each

aperiodic task corresponded to a fixed proportion of its deadline (10 - 90%). This

proportion was varied to examine the effect on the number of aperiodic tasks

guaranteed and is plotted on the x-axis of the graphs. The percentage of total

aperiodic task execution time guaranteed is plotted on the y-axis.
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In these experiments, the Slack Stealing algorithm supported by an exact test

gave the best theoretical performance over the entire range of hard periodic and firm

aperiodic task loads examined.

The approximate acceptance tests simulated for Background, Dual Priority and

dynamic Slack Stealing approaches, typically resulted in 3-10% fewer aperiodic tasks

being accepted than their exact counterparts. In each experiment (6.1 - 6.4), the

percentage of total aperiodic execution time guaranteed drops sharply as the

utilisation of each aperiodic task reaches X%, where X% is equivalent to 100%

minus the hard task set utilisation. This is because on average, in any given interval,

the aperiodic execution time available is X%. For aperiodic tasks with a utilisation

greater than this level, the differential between Background and Dual Priority or

Background and Slack Stealing increases as hard task execution must typically be

deferred to accommodate the aperiodic tasks.
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From the results of experiments 6.1 - 6.4, it is clear that the Slack Stealing algorithm

in conjunction with its associated exact acceptance test, can theoretically guarantee

the largest percentage of aperiodic task execution. This is perhaps not unexpected, as

the Slack Stealing algorithm has been shown to be optimal in terms of making spare

capacity available (see section 3.2.2) and is thus an optimal method of deferring hard

task execution.

In the simulations reported so far, it was assumed that all scheduling overheads,

including the performance of acceptance tests and the calculation and maintenance of

data describing extra capacity or slack, were zero. However in practice these

overheads have an impact on the effectiveness of a particular technique. These issues

are discussed in the next section.
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6 . 6 . 2 Practical Considerations

In terms of overheads, Dual Priority scheduling results in an extra event (similar to

task release) at the promotion point of each invocation of a hard task. This event

requires that the priority of the task is increased and hence its position in the run-

queue altered accordingly. In the worst case, this operation takes O( logN) time,

where N is the number of tasks in the run-queue. The acceptance testing of a task

also incurs an overhead which is O(n + m), where n is the number of hard tasks and

m the number previously guaranteed but as yet uncompleted aperiodic tasks. Thus

the run-time overheads involved in Dual Priority scheduling are relatively low,

making the approach suitable for many practical systems.

Although offering higher theoretical levels of performance, the dynamic Slack

Stealing approach incurs higher overheads. Typically, the PASS and HASS

algorithms, introduced in chapter 4, periodically require O(n 2 ) time to calculate the

slack. In addition, O(n) time is required at each context switch to maintain slack

counters. Finally, the sufficient acceptance test used has O(n + m) complexity.

By comparison, Background scheduling has no overheads save those of the

acceptance test - O(n + m), however, its performance is poor compared with that of

Slack Stealing or Dual Priority scheduling.

6 . 6 . 3 Overheads: Simulation

To determine the effect of overheads on the percentage of aperiodic task execution

guaranteed, we carried out further simulations using only the Slack Stealing approach

but including various levels of overhead for the acceptance test. Note, these

overheads were only incurred in accepting or rejecting aperiodic tasks which, at the

time of acceptance testing, could have any chance of being accepted. Thus aperiodic

tasks with less than their execution time to go before their deadline were assumed to

be rejected immediately without incurring any overhead.

Experiments 6.5 to 6.8 illustrate the effects of overheads which were varied

from 0 to 32 ticks per acceptance test. In these simulations, the same exponential

distributions of hard periodic and aperiodic tasks were used as in experiments 6.1 to

6.4.
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Expt 6.5: Periodic Tasks 30% utilisation, Aperiodics 70%
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Expt 6.7: Periodic Tasks 70% utilisation, Aperiodics 30%
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From the graphs, it is clear that increasing overheads rapidly results in degraded

performance. Assuming that the task sets used are realistic with 1 tick = 1ms, an

exact test requiring approximately an extra 1-2ms compared to the corresponding

sufficient test, would result in inferior performance.

Typical worst case overheads for the sufficient acceptance tests, carried out on

a 33 MHz i486, are given in the table below

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Sufficient Acceptance Test Overheadsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

n + m tasks Time (ms)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

10 0.11iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

20 0.22iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

30 0.33iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

40 0.43iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

50 0.54iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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By comparison, each iteration of an exact test requires a similar amount of

computation to the corresponding sufficient test. The number of iterations is however

dependent upon the ratio of aperiodic task deadline to hard sporadic/periodic task

minimum inter-arrival times. A rough approximation to the number of iterations

required is given by:

∀ j ∈ hp(A)
min (T j )

D Ahhhhhhhhhhhh

For the task sets studied, the mean number of iterations required was 3.5 whilst the

worst case was 73. In the average case, an exact test may give superior

performance, particularly for hard task sets of small cardinality. In the case of

periodic / sporadic / aperiodic task sets with a similar distribution of deadlines to

those used in our experiments, on average, using an exact test will result in better

performance for task sets of cardinality <∼ 50. (Assuming that 1.5ms additional

overhead for an exact test gives performance similar to an equivalent sufficient test,

on average an additional 2.5 iterations must be accommodated = 0.6ms per iteration,
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which is possible for task sets of cardinality < ∼ 50).

However, there are difficulties associated with implementing exact acceptance

tests within an operating system kernel. Typically, such tests are executed non-pre-

emptively within the scheduler. However, in the case of exact tests with effectively

unbounded worst case execution times, this would lead to long non-pre-emptable

kernel sections (of up to 5-35ms for 10-50 tasks with the distribution of deadlines

considered): sufficient to cause many task sets to become unschedulable.

6 . 7 Summary

In this chapter, we introduced an optimal priority assignment policy for aperiodic

tasks with arbitrary ready times and deadlines, scheduled along with a set of periodic

/ sporadic tasks. Our model assumed that the periodic / sporadic tasks were assigned

unique fixed priorities according to some arbitrary policy and guaranteed to meet

their deadlines via off-line feasibility analysis. In contrast, priority assignment and

acceptance testing of aperiodic tasks was carried out on-line. Within this framework,

we showed that assigning each aperiodic task the highest priority, such that every

task of a lower priority has a later absolute deadline, maximises the computation time

which can be made available before the aperiodic’s deadline. Furthermore, this

priority assignment policy is also optimal in terms of being able to guarantee

subsequent aperiodic arrivals.

We derived exact and sufficient acceptance tests for guaranteeing firm or hard

deadline aperiodic tasks. The time complexity of the sufficient tests is O(n + m)

where n is the number of hard periodic tasks (with off-line guarantees) and m is the

number of previously guaranteed but as yet uncompleted hard aperiodic tasks. By

comparison, the complexity of the exact tests is O(Kn + m) where K is approximated

by D A /T MIN , where D A is the aperiodic deadline and T MIN the minimum hard task

inter-arrival time.

We showed that the scheduling strategy assumed by these acceptance tests fully

integrates the scheduling of hard sporadic / periodic, firm aperiodic and soft tasks.

Once guaranteed, firm aperiodic tasks are dealt with in exactly the same manner as

hard tasks, whilst soft tasks may be executed at the highest priority under the control



- 185 -

of the Slack Stealing algorithm.

Similar acceptance tests were derived for Background and Dual Priority

Scheduling approaches. We also extended this family of acceptance tests thus

permitting aperiodic tasks to share resources with hard sporadic / periodic tasks.

We evaluated the effectiveness of the sufficient and exact acceptance tests using

the percentage of total requested hard aperiodic task execution time as a performance

metric. Our simulations showed that the sufficient tests provide performance which

is 3-10% worst than that of their exact counterparts. However, investigation of

overheads revealed that the theoretical performance advantage which exact tests have

over their sufficient counterparts is negated by increased overheads equivalent to less

than 5% of the mean aperiodic task deadline. For the task sets studied, this increase

corresponds to an additional overhead of 1-2ms per acceptance test. Typical

overheads for the sufficient tests were approximately 0.1ms for 10 tasks and 0.5ms

for 50 tasks, assuming that the acceptance test was executed on a 33 MHz i486.

Theoretically, using an exact test would result in better performance for task sets of

cardinality < ∼ 50, (assuming the distribution of deadlines given), however, the long

(5-35ms for 10-50 tasks) non-pre-emptable sections required to accommodate such a

test within the operating system kernel are generally unacceptable. For practical

reasons, it is therefore preferable to use the sufficient acceptance tests derived in this

chapter.
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Chapter 7

Allocating Spare Capacity: Admission Policies

In chapter 1, two fundamental requirements for future real-time systems were

presented: mission critical services must be guaranteed a priori to meet their

deadlines, and system utility should be maximised.

In the mid 1970’s, Jensen considered using time-value functions in task

scheduling, with the objective of maximising system utility [68]. These time-value or

utility functions, can be used to combine the notions of service precision, timeliness

and importance. Thus utility functions provide a means of describing how the

contribution made to the overall utility of a system, by a given service, depends upon

the accuracy of the results produced by that service and the time at which they are

delivered. Further, this concept extends to the idea of negative utility or damage

caused when a safety critical service fails to meet its requirements [19].

Typical utility functions for a safety critical (hard) task and a task with a soft

deadline are shown in figures 7.1 and 7.2 respectively (reproduced from [19] ).

The contribution to overall system utility made by each task also depends upon the

algebra of utility values. For independent services, system utility is typically the sum

of contributions from individual services. However, when a single real-time service

comprises a precedence related chain of tasks, the utility of the service is often only

as good as its worst task. Hence service utility equates to the minimum utility of any

of its constituent tasks [19].

With precedence constrained tasks, there is also a problem of "utility inversion",

a high value task can be constrained to execute once a predecessor of low value has

completed. Utility based scheduling policies may, however, delay execution of the

low value task in order to accommodate other tasks with medium value at the

expense of being unable to schedule the high value successor. In his thesis [114],

Zlokapa addresses this problem by means of utility inheritance: predecessor tasks

effectively inherit utility from their successors.
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Figure 7.1: A Safety Critical (Hard Deadline) Task
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Figure 7.2: A Task with a Soft Deadline

With regard to scheduling tasks to meet both time constraints and to maximise

system utility, fixed priority pre-emptive scheduling facilitates the a priori guarantee

of hard tasks, however, in its purest form it is too inflexible to ensure a high level of

system utility. Alternatively, Best-Effort scheduling [68] maximises system utility, but

at best provides only probabilistic guarantees that time constraints will be met. In

this chapter, we show how these two schemes can be integrated.
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A new Adaptive Value-Density Threshold policy is introduced which

approximates to the Best-Effort policy but incurs much lower overheads. This policy

is used to admit optional utility enhancing tasks for on-line acceptance testing. Such

tasks are assigned a fixed priority according to the optimal priority assignment policy

described in section 6.3. If guaranteed by a sufficient on-line acceptance test (see

section 6.4) then they are executed when no higher priority tasks are runnable. This

approach combines the benefits of guaranteeing hard timing requirements with

increased system utility.

We evaluate the performance of FCFS, Best-Effort and Adaptive Threshold

policies when applied to Background, Dual Priority and Slack Stealing methods of

scheduling optional components. The performance criteria used is the fraction of an

upper bound on achievable system utility which is obtained by each combination of

admission policy and scheduling method. The limitations of our simple model of

utility functions are then discussed along with issues arising in the practical

implementation of the above policies. Finally, we extend the Adaptive Value-Density

threshold approach to Multiple Version scheduling.

First however, we review previous research into policies for maximising system

utility. As part of this review, we build upon previous research by Baruah [18]: thus

deriving an upper bound on the ratio of the maximum utility which can be

guaranteed by an on-line admission policy to that which can be obtained by a

clairvoyant algorithm, for the case of task sets comprising both mandatory and

optional tasks.

7 . 1 Review of Scheduling Policies for Maximising Utility

A real-time system is said to be overloaded if it is not possible to meet the time

constraints of all task invocations. Under overload, it is important that the system

degrades gracefully, completing the most important tasks and discarding those of least

utility (or value). In this section we review policies for task admittance / scheduling,

which seek to maximise the total value of completed tasks.
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Research in this area has mainly focused on a simple computational model: all

tasks are assumed to be aperiodic, have arbitrary start times and deadlines, fixed

execution times and a constant value which is obtained only if the task completes

prior to its deadline.

Below, we review five admittance / scheduling policies which aim to maximise

the total value of completed tasks.

1. Earliest Deadline First [41].

2. Maximum Value Density [68].

3. Best-Effort [68].

4. D over [55].

5. Robust Earliest Deadline [27].

Examples of the operation of these algorithms are given using the task set detailed

below. (Note, value-density is defined as the value which will be accrued at task

completion divided by the task’s remaining computation time).

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Aperiodic tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Name Arrival WCET Deadline Value Value-Densityiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

A 0 4 25 10 2.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

B 2 6 10 24 4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

C 2 7 9 7 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

D 5 2 12 2 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

E 5 7 15 24.5 3.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

F 12 5 26 7.5 1.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G 18 11 29 11 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

H 18 3 28 9 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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7 . 1 . 1 Earliest Deadline - FCFS

In 1974, Dertouzos [41] showed that for the underloaded case (i.e. < 100%

utilisation), the Earliest Deadline First (EDF) algorithm achieves 100% of the

maximum possible value. However, in the case of overload, its performance is very

poor. This is due to a domino effect. EDF continually executes tasks with early

deadlines which cannot be met. This delays the execution of tasks with later

deadlines subsequently causing them to also miss their deadlines.

The performance of EDF under overload conditions may be improved by only

scheduling those tasks which can be guaranteed to meet their deadlines. This requires

an on-line acceptance test which determines if a newly arrived task is schedulable.

Such tests have been given by Kim [54] and Buttazzo and Stankovic [27]. However,

simply admitting tasks in First Come First Served (FCFS) order results in a low total

value being accrued. In effect, tasks of low utility which arrive early are given

preference over later arrivals with higher values. This effect is illustrated in figure

7.3, where the execution of task C with an early deadline and low value results in

high value tasks B and E, both missing their deadlines.

Better performance can be obtained if task value (utility) is considered when

arbitrating between conflicting demands for processor time.

7 . 1 . 2 Maximum Value-Density Scheduling

In his thesis [68], Locke gives two algorithms for scheduling tasks based on their

utility functions: a forward looking Best-Effort algorithm and a greedy Value-Density

algorithm. Both algorithms make use of the following result which was proved by

Locke [68].
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t=0 5 10 15 20 25

A C B D E A F H G

t=0, Task A arrives and commences execution.
t=2, Tasks B and C arrive. Task C has the earliest deadline and therefore

executes.
t=5, Tasks D and E arrive, task C continues to execute.
t=9, Task C completes, accrueing a value of 7. Task B now has the

earliest deadline and executes.
t=10, Task B misses its deadline and is abandoned. Task D executes.
t=12, Task D completes, accrueing a value of 2. Task F arrives.

Task E executes as it has the earliest deadline.
t=15, Task E misses its deadine and is abandoned. Task A now has the

earliest deadline and executes.
t=17, Task A completes, accrueing a value of 10. Task F executes.
t=18, Tasks G an H arrive. Task F continues to execute.
t=22, Task F completes, accrueing a value of 7.5. Task H executes.
t=25, Task H completes, accrueing a value of 9. Task G executes.
t=29, Task G misses its deadine and is abandoned.
Earliest Deadline First, total value accrued = 35.5.

Figure 7.3: Operation of the Earliest Deadline First Policy.

"Given a set of of tasks with precisely known constant values for
completing them, it can be shown that a sequence of tasks in decreasing
order by value density (V/C, in which V is its value and C is its
processing time) will produce a total value at every task completion time
at least as high as any other schedule."

The Value-Density scheduling algorithm, allocates the processor to the task with the

highest value-density. In this case, value-density is defined as the expected value at

task completion divided by the expected execution time. Note, tasks which are

expected to complete after their deadlines have zero or very low expected values and

are removed from the queue of ready tasks. Figure 7.4 illustrates the operation of

this algorithm.
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t=0 5 10 15 20 25

A B D F H

t=0, Task A arrives and commences execution.
t=2, Tasks B and C arrive. The value densities of tasks A, B and C

are 5, 4 and 1 respectively. Task A has the highest value density
and therefore continues to execute.

t=4, Task A completes, accrueing a value of 10. Task B now has
the highest value density and therefore executes.

t=5, Tasks D and E arrive, with value densities of 1 and 3.5, compared
to 4.8 and 1 for tasks B and C respectively. Task B continues.

t=10, Task B completes, accrueing a value of 24. Tasks C and E
are abandoned as they cannot meet their deadlines. Task D executes.

t=12, Task D completes, accrueing a value of 2. Task F arrives and
executes.

t=17, Task F completes with a value of 7.5.
t=18, Tasks G and H arrive, with value densities of 1 and 3

respectively. Task H therefore commences execution.
t=21, Task H completes with a value of 9. Task G is abandoned.
Value Density policy, total value accrued = 52.5.

Figure 7.4: Operation of the Value Density Policy.

In effect, the Value-Density algorithm assumes that there is always a high

probability that a task with a high value-density and little slack will arrive soon. It

therefore accrues utility early by executing the task with the highest value-density

first. However, this is not always the best choice, as illustrated by the example given

in figure 7.4. At time 2, the Value-Density algorithm executes task A, even though it

has a later deadline than task B. This has the knock on effect of the algorithm being

unable to schedule task E which has a high value.

7 . 1 . 3 Best-Effort Scheduling

In contrast with Value-Density scheduling, the Best-Effort algorithm assumes that the

probability of a high value-density task arriving is low. It therefore attempts to obtain

the highest possible value for executing those tasks which are currently runnable. To

achieve this, the Best-Effort algorithm admits tasks for scheduling based upon their
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value-densities and schedules them according to the Earliest Deadline First policy.

In summary, the Best-Effort algorithm operates as follows:

Locke’s Best-Effort algorithm:

At each task arrival and completion:
Place any new task in the ready queue.
Transfer all tasks in the pending queue to the ready
queue.
For each task in the ready queue (ordered by earliest
deadline):

Calculate the probability of overload using a
heuristic based on expected computation times.
While the probability of overload is greater
than some threshold:

Remove the task with the lowest
value-density from the
ready queue and put it back in the
pending queue.

Endwhile
Endfor
Execute the tasks in the ready queue in earliest
deadline order.

The operation of the Best-Effort algorithm is illustrated in figure 7.5.

Through extensive simulations, Locke showed that the Best-Effort algorithm

"consistently achieved a high total value (utility) from the scheduling of processes

(tasks) under time constraints", outperforming various simpler scheduling algorithms,

such as Shortest Processing Time First, Earliest Deadline First, First Come First

Served (FCFS) and Least Slack Time First. However, practical issues such as the

complexity - O(n 2 ) and potentially high overheads involved in Best-Effort scheduling

were not addressed.

The overheads of Best-Effort scheduling were later investigated by Tokuda et al

[109] and Wendorf [110]. Wendorf showed that executing the Best-Effort scheduling

policy on the same processor as application tasks can result in very large overheads

under overload conditions. In Wendorf’s experiments, with a task set of cardinality

36, once the potential load reached 200%, up to 80% of the processors time was

spent choosing which task to execute according to the Best-Effort policy, drastically

reducing the total utility obtained. By comparison, off-loading the scheduling to a
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t=0 5 10 15 20 25

A B E A F H

t=0, Task A arrives and commences execution.
t=2, Tasks B and C arrive. Overload is detected. The value densities

of the tasks are A - 5, B - 4, C - 1. Task C has the lowest value
density and is therefore placed in the pending queue.

t=5, Tasks D and E arrive. Again, there is an overload. The value
densities of the tasks are, A - 5, B - 8, C - 1, D - 1, E - 3.5. Tasks
C and D are placed in the pending queue, removing the overload

t=8, Task B completes, accrueing a value of 24. Task C is abandoned as
it can no longer meet its deadline. Task E commences execution.

t=12, Task F arrives. Task D is abandoned. Task E continues to execute.
t=15, Task E completes with a value of 24.5. Task A executes
t=17, Task A completes with a value of 10. Task F executes
t=18, Tasks G and H arrive. Overload is detected. Tasks F, G and H

now have value densities of 1.875, 1 and 3 respectively. Task G is
placed in the pending queue, relieving the overload. Task F has the
earliest deadline and continues executing.

t=22, Task F completes with a value of 7.5. Task G is abandoned.
Task H commences executing.

t=25, Task H completes with a value of 9.
Best-Effort policy, total value accrued = 75.

Figure 7.5: Operation of the Best-Effort Policy.

co-processor resulted in consistently high utility under overload conditions, as only

2% of the application processors capacity was required for scheduling.

7 . 1 . 4 D over Algorithm

In 1992, Baruah et al showed via an adversary argument that the best an on-line

algorithm can guarantee during overload, is
(1 + √dk )2

1hhhhhhhhh of the value that can be

achieved by a clairvoyant algorithm with knowledge of all future task arrivals [18].

Where, k is the importance ratio of the task set, defined as the ratio of the highest

and lowest task value densities. This result is valid for the simple computational
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model described earlier (section 7.1). Subsequently, Koren and Shasha [55]

introduced the D over algorithm which they proved achieves the above best possible

guarantee, when task execution times are known upon arrival. They also showed that

if task execution times are stochastic, such that (1 − ε) c max ≤c≤c max , where c is the

actual execution time and c max the worst case execution time, then the D over

algorithm achieves
(1 + √dk )2 + εk(1 + √dk ) + 1

1hhhhhhhhhhhhhhhhhhhhhhhh of the maximum achievable value.

The D over algorithm is implemented using three queues, a ready queue, a

pending queue and a latest start time (LST) queue. The ready queue is ordered by

earliest deadline and contains all tasks accepted for execution. The pending queue is

also ordered by deadline and contains tasks which have arrived but have not as yet

been accepted. Finally, the latest start time queue contains the same tasks as the

pending queue, but ordered by absolute deadline less execution time. At any time, the

task at the head of the ready queue is executed. Upon arrival, each task is first

inserted into the pending and LST queues. When a task arrives or completes, the task

at the head of the pending queue is subject to an acceptance test, if it can be

accepted without causing overload, then it is removed from the pending and LST

queues and inserted into the ready queue. When the latest start time of the task τ lst

at the head of the LST queue is reached, it is removed from the pending and LST

queues and its value is compared with the total value of all the tasks in the ready

queue. If its value is greater than (1 + √dk ) times the total value of the tasks in the

ready queue, then all the tasks in the ready queue are removed and inserted into the

pending and LST queues and task τ lst is placed in the ready queue and executed.

Otherwise, task τ lst is abandoned.

The complexity of the D over algorithm is O( logn) at each scheduling point,

where n is the number of tasks present in the three queues.

Figure 7.6 illustrates the operation of the D over algorithm.

Although the D over algorithm guarantees to achieve at least 1/(1 + √dk )2 of the total

value achieved by a clairvoyant algorithm, for realistic importance ratios e.g. k = 10

this bound is small (2.8%). However, in order to make this guarantee, in the case of

extremely adverse arrival patterns the D over algorithm is conservative in abandoning

previously accepted tasks. For example, in figure 7.6, at time 8, the D over algorithm
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t=0 5 10 15 20 25

A B D A F G

t=0, Task A arrives and commences execution.
t=2, Tasks B and C arrive. The system is overloaded. The LST interrupt

for Task C is t=2. As the value of task C is less than (1 + √dk ) = 3,
times the total value of tasks A and B, it is abandoned. Task B
executes as it has the earliest deadline.

t=5, Tasks D and E arrive. The system is again overloaded. The LST
interrupt for task E is set to t=8. Task B continues to execute.

t=8, Task B completes, accrueing a value of 24. The LST interrupt for
task E goes off. The value of task E is 24.5 which is less than

(1 + √dk ) = 3, times the total value of tasks A and D (12). Task E is
therefore abandoned. Task D executes.

t=10, Task D completes, accrueing a value of 2. Task A executes.
t=12, Task A completes, accrueing a value of 10. Task F arrives and

executes.
t=17, Task F completes with a value of 7.5.
t=18, Tasks G and H arrive. Overload is detected. The LST of task H is

t=25. Task G executes.
t=25, The LST interrupt for task H goes off. As its value is less than 3

times the value of task G, task H is abandoned.
t=29, Task G completes with a value of 11.
D over policy, total value accrued = 54.5.

Figure 7.6: Operation of the D over Policy.

rejects task E (value 24.5) in favour of tasks A and D, even though executing task E

only really conflicts with the execution of task D (value 2). This conservatism in

rejecting previously accepted tasks results in average case performance which is

generally worse than that of the Best-Effort scheduling algorithm.

7 . 1 . 5 RED Algorithm

In 1993, Buttazzo and Stankovic extended the Best-Effort approach with the Robust

Earliest Deadline algorithm (RED) [27].
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The RED algorithm is implemented using a ready queue and a pending queue.

When a task arrives, it is inserted into the ready queue. The algorithm then

determines if an overload exists in any of the intervals up to the deadline of each

task in the ready queue. If no overload exists, the new task τ new is accepted.

Otherwise, the tasks in the ready queue are scanned in value order, least value first.

The first task found which if removed results in the other tasks being schedulable, is

rejected and placed in the pending queue. At each task completion, the task at the

head of the pending queue is inspected, if it has negative laxity, it is rejected,

otherwise the above acceptance test is repeated.

The operation of the RED algorithm is illustrated in figure 7.7.

The complexity of the RED algorithm is O(n) at each scheduling point, where

n is the total number of tasks in the ready queue and pending queue. This reduced

complexity with respect to the Best-Effort approach is due to differences in the

rejection policies used by the two methods. The RED algorithm rejects at most one

task to make processing time available for a newly arrived task of high value. By

comparison, the Best-Effort algorithm may reject any number of previously accepted

tasks.

Unlike the Best-Effort approach which uses value density, the RED algorithm

uses task value to determine which task to reject. This can however lead to a long

task with high value (but low value density) being scheduled at the expense of a

number of shorter tasks which individually have lower values, but in total, have a

higher value. For example, in figure 7.7, at time 18, both tasks F and H are rejected

in favour of task G which has a lower value and needs more execution time than

both F and H combined.

7 . 1 . 6 Review Summary

In the underloaded case, the Earliest Deadline First algorithm achieves 100% of the

possible value, assuming that task execution times are known upon arrival. In the

presence of overload however, the EDF algorithm performs poorly.
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t=0 5 10 15 20 25

A B E A F G

t=0, Task A arrives and commences execution.
t=2, Tasks B and C arrive. The system is overloaded. The values of the

tasks are, A - 10, B - 24, C - 7. Task C is the lowest value task
which removes the overload. It is therefore placed in the pending queue.
Task B executes.

t=5, Tasks D and E arrive. Again there is an overload. The values of
the tasks in the run-queue are, A - 10, B - 24, D - 2, E - 24.5. Task D
is the lowest value task which removes the overload. It is therefore
placed in the pending queue and Task B continues to execute.

t=8, Task B completes, accrueing a value of 24. Task C is abandoned.
Task D remains pending and Task E commences execution.

t=12, Task F arrives. Task D is abandoned as it can no longer meet its
deadline. Task E continues to execute.

t=15, Task E completes with a value of 24.5. Task A executes
t=17, Task A completes with a value of 10. Task F executes
t=18, Tasks G and H arrive. Overload is detected. Tasks F, G and H

have values of 7.5, 11 and 9 respectively. Both tasks F and H are placed
in the pending queue, as they have lower values. Task G executes.

t=29, Task G completes with a value of 11. Tasks F and H are
abandoned.

RED algorithm, total value accrued = 69.5.

Figure 7.7: Operation of the RED algorithm.

The Best-Effort, RED and D over algorithms build upon the EDF approach. In

the presence of overload, they admit or reject tasks based on their values or value-

densities, thus relieving the overload. The EDF policy is then used to schedule the

remaining tasks.

In the worst case, during overload, the best any on-line algorithm can guarantee

to obtain is a small percentage of the total value obtained by a clairvoyant algorithm.

(For task execution times which may be arbitrarily small and an importance ratio of

10, this bound is less than 1%).
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In the average case however, the Best-Effort algorithm achieves a high total

utility, outperforming other simpler techniques (provided that overheads are assumed

to be negligible). In reality, the overheads of the Best-Effort algorithm may be large

as its complexity is O(n 2 ). The RED algorithm is somewhat less effective at

obtaining maximum utility due to its policy of rejecting at most one task to

accommodate a newly arrived task of high value. This however means that the RED

algorithm has O(n) complexity. Finally, the D over algorithm has O( logn) complexity

and guarantees to obtain
(1 + √dk )2

1hhhhhhhhh of the possible value obtained by a clairvoyant

scheduler. In the average case however, this method is not particularly effective, due

to the conservative rejection policy needed to provide the guarantee.

The table below summaries the performance of each algorithm, given the task

set used in our examples.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Performanceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Policy Total Value Obtained Overheadsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

EDF 35.5 O(logn)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Value-Density 52.5 O(logn)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

D over 54.5 O(logn)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

RED 69.5 O(n)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Best-Effort 75 O(n 2 )iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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7 . 1 . 7 Maximum Guaranteed Utility

In this section, we build upon the research of Baruah [18]. Given a set of mandatory

tasks which are guaranteed to meet their deadlines, (and therefore must be completed)

and a set of optional tasks with constant values for their timely completion, we

derive an upper bound on the ratio of the additional value which an on-line algorithm

can guarantee to obtain from completing optional tasks, compared to that which can

be obtained by a clairvoyant algorithm, with prior knowledge of optional task

arrivals.
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Theorem 7.1: The upper bound on the ratio of additional value guaranteed by an

on-line algorithm, to that which can be obtained by a clairvoyant scheduler is zero;

for a set of mandatory tasks which must be completed and a set of optional tasks

with constant values for completion prior to their deadlines.

Proof: The proof follows from an adversorial argument. Let τ 1 be a hard task with

computation time C 1 and deadline D 1 = C 1 + ε. Task τ 1 is a mandatory task and

must therefore be completed, however, it contributes nothing to the additional value

accrued for the timely execution of optional tasks. We assume that τ 1 is released at

time 0.

At time 0, the adversary offers an optional task τ A with computation time

C A = ε, deadline D A = ε and value V A = ε.

Case 1: The on-line algorithm chooses to reject τ A . The adversary offers no other

optional tasks, thus the additional value obtained by the on-line algorithm is zero

whilst a clairvoyant algorithm can achieve a value of ε by scheduling τ A .

Case 2: The on-line algorithm chooses to execute τ A . At time t, ε < t < D 1 − ε the

adversary offers optional task τ B with C B = X, absolute deadline d A = D 1 + X − ε and

value Xk where k is the importance ratio. By executing τ A , the on-line algorithm is

unable to accommodate τ B , whilst a clairvoyant scheduler can reject τ A and achieve

a value of kX by completing τ B . The ratio of value obtained, for the completion of

optional tasks, by the on-line algorithm and clairvoyant scheduler is therefore ε:kX.

As ε:X may be arbitrarily small, this bound is effectively zero.

`

Alternatively, if X is the ratio of the longest to shortest optional task execution time,

then the bound becomes 1/kX.

For realistic systems, this bound is very small, in the rest of this chapter, we

therefore concentrate on defining admission policies which provide good average case

performance but do not offer any guarantee of the value which will be obtained for

completing optional tasks.
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7 . 2 Admission Policies

In this section we integrate Best Effort and Fixed Priority approaches to task

scheduling. We assume that the set of hard sporadic / periodic tasks complies with

the computational model given in section 2.2.1. In addition, the following

assumption applies: The hard deadline task set is assumed to be schedulable using

fixed priority pre-emptive dispatching with a priority ordering determined by some

means such as Deadline Monotonic priority assignment [63].

In addition to the set of hard tasks, we consider a set of optional tasks. Each optional

task τ A has a deadline D A measured relative to its arrival and a worst-case execution

time of C A . Further, τ A is assigned the optimal fixed priority level commensurate

with its absolute deadline (i.e. the highest priority level such that every hard task and

every previously guaranteed optional task of lower priority has a later absolute

deadline). Each optional task is aperiodic and arrives at time φA (it arrives only

once). Further, each optional task τ A has a constant utility or value V A , determined

upon arrival, which will add to the total utility of the system, provided that τ A

completes by its deadline. There is no penalty and no utility in completing an

optional task after its deadline.

Upon arrival, each optional task is subject to an admission policy and on-line

acceptance test. Three admission policies are considered; a simple FCFS policy

which admits optional tasks in arrival time order, a Best-Effort policy which takes

account of the value of completing the various competing tasks, and a new Adaptive

Value-Density Threshold policy which rejects optional tasks if their value-density is

less than a variable cut-off, but otherwise admits tasks in order of arrival time. Each

of these policies uses a sufficient on-line acceptance test (see section 6.3) to

determine if each optional task is schedulable.

7 . 2 . 1 FCFS Policy

The simplest possible admission policy is FCFS. Under this policy, optional tasks are

acceptance tested in order of arrival. Once accepted and given an on-line guarantee,

an optional task will not have its guarantee rescinded. This means that a low value-

density task arriving earlier than a high value-density task will prevent the latter from
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executing, assuming that there is insufficient spare capacity to schedule both.

As the complexity of the sufficient acceptance tests given in chapter 6 is

O(n + m), where n is the number of hard tasks and m is the number of previously

guaranteed but as yet uncompleted optional tasks, the overall complexity of the FCFS

policy is also O(n + m). Note, this assumes that rejected optional tasks are discarded:

in effect each task is given only one chance of being accepted.

7 . 2 . 2 Best-Effort Policy

The Best-Effort approach to optional task admission is summarised below.

Best-Effort Policy:

Insert the new optional task in the (empty) pending-queue
For each optional task in the run-queue

Calculate the task’s current value-density
If the task’s value-density is less than that of the new
optional task then

rescind its on-line guarantee
reclaim the task’s remaining execution time
remove it from the run-queue and
insert it into the pending-queue

endif
endfor
For each optional task in the pending-queue,

(ordered by value-density)
Remove the task from the pending-queue
Check if it can be accepted
If the optional task is accepted

insert it into the run-queue
endif

endfor

We note that when the on-line guarantee given to an optional task τ A is rescinded, its

remaining execution time, c A ( t) is reclaimed, exactly as if it had completed early

producing gain time c A ( t) (see section 3.3.1).

In common with the FCFS policy, optional tasks have only one chance of being

accepted under the Best-Effort policy. However, unlike FCFS, the Best-Effort policy

arbitrates between competing optional tasks on the basis of their value-densities.

Hence Best-Effort discards previously accepted optional tasks in favour of later



- 204 -

arrivals with higher value-densities. Despite this ’intelligent’ determination of which

optional task to admit, spare capacity may still be wasted if a low value-density task

is partially executed and then abandoned.

The worst-case time complexity of the Best-Effort policy is O(m(m + n)).

7 . 2 . 3 Adaptive Threshold Policy

The Adaptive Value-Density Threshold policy (AVDT) approximates the operation of

the Best-Effort policy but incurs a much lower overhead. In effect, each time the

Best-Effort policy is executed, a value-density level cut-off may be observed; most

optional tasks with a value-density below this level are not accepted for execution.

The AVDT policy filters out optional tasks whose value-densities are lower

than some threshold level. Such tasks are rejected out of hand. Optional tasks which

are not removed by this filter are admitted for acceptance testing in order of arrival.

Further, the run-time guarantees afforded to optional tasks are never rescinded under

the AVDT policy.

The value-density threshold used in the filter, is determined according to the

equation below.

threshold =
spare − time( t)

score( t)hhhhhhhhhhhhh (7.1)

Where score( t) is the sum of the utilities of optional tasks completed up to time t

and spare − time( t) is the processor time not utilised by hard task computation up to

time t. Stated otherwise, the threshold is the running average of system utility

accrued per unit of processing time which was either idle or used to execute an

optional task.

The AVDT policy is based upon the idea that executing low value-density

optional components is counter productive, it is better to save spare capacity for high

value-density tasks which might be expected to arrive soon. By setting the filtering

threshold based on the utility or value achieved per unit of previous (potential)

optional task execution, this policy adapts to the given level of optional components
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present. In effect it predicts the need to save spare capacity for future high value-

density tasks based upon its level of success in doing so in the past.

The overheads of the AVDT policy are similar to those of FCFS, however,

additional accounting is required to maintain values for score( t) and spare − time( t).

We note that when applying the AVDT policy in a highly dynamic system, it is

necessary to determine the required filtering threshold using running values of

score( t) and spare − time( t) which correspond to the utility achieved and optional

task processing time available in, an interval of time prior to t. The appropriate

length for this interval needs to reflect the dynamic nature of the system.

7 . 2 . 4 Policy Operation

We now give a simple example of the operation of the FCFS, Adaptive Threshold

(AVDT) and Best-Effort (BE) policies. Our example is based on the task set detailed

in the table below.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Task set
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Name Type Arrival time Value Execution time Deadline
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

A optional 0 6 2 2
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

B optional 2 3 3 5
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

C optional 3 10 2 5
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

D optional 7 4 1 9
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

M mandatory 0 - 4 9
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(Note, deadline refers to the absolute deadline of the task). Initially, the slack on the

mandatory task, M, is 5 units, (i.e. the mandatory task may be subject to an addition

5 units of interference without missing its deadline). Further, all the optional tasks

have deadlines which are less than or equal that of the mandatory task and are

therefore allocated higher priority levels.
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t=0 2 3 5 7 9

FCFS

AVDT

BE

A B M

A M C M D M

A B C M

FCFS:
t=0, Optional task A arrives. Mandatory task M has 5 units of slack
hence, task A is accepted and commences executing.
t=2, task A completes with a value of 6. Optional task B arrives and
is also accepted, reducing the slack on task M to zero.
t=3, Optional task C arrives and is rejected as there is no slack on
either task B or M.
t=5, task B completes with a value of 3. Task M commences execution.
t=7, task D arrives and is rejected, as there is no slack on task M.

FCFS policy, total value accrued = 9.
Best-Effort:
t=0, Optional task A arrives, is accepted and commences executing.
t=2, task A completes with a value of 6. Optional task B arrives and
is also accepted, reducing the slack on task M to zero.
t=3, Optional task C arrives. As task B has a lower value-density
(1.5 v 5) its guarantee is rescinded in favour of task C.
t=5, task C completes with a value of 10. Task M commences execution.
t=7, task D arrives and is rejected, as there is no slack on task M.

Best-Effort policy, total value accrued = 16.
AVDT:
t=0, Optional task A arrives, as the value-density threshold is
initially zero, task A is accepted and commences executing.
t=2, task A completes with a value of 6. Optional task B arrives and
is rejected as the threshold is now 3 whilst the value-density of B is 1.
t=3, Optional task C arrives and is accepted as its value-density
of 5 is greater than the threshold (3).
t=5, task C completes with a value of 10. Task M executes.
t=7, Optional task D arrives and is accepted as its value-density is
the same as the threshold (4), and task M has 1 unit of slack remaining.
t=8, task D completes with a value of 4.

AVDT policy, total value accrued = 20.

Figure 7.8: Operation of the FCFS, Best-effort and AVDT Policies.
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The example given in figure 7.8, serves to highlight the salient features of the

policies studied: the FCFS policy accepts low value-density tasks at the expense of

being unable to accept higher value-density tasks which arrive later. By comparison

the Best-Effort policy initially accepts any schedulable low value-density task but

later may rescind its guarantee (potentially wasting processor time), in order to accept

a higher value density task. Finally, the Adaptive Threshold policy rejects low

value-density tasks out of hand, preserving spare capacity for any subsequent arrivals

of high value-density tasks.

7 . 3 Performance Evaluation

We now evaluate the performance of the FCFS, Best-Effort and Adaptive Threshold

policies when combined with the sufficient acceptance tests given in chapter 6 for

Background, Dual Priority and Slack Stealing methods of identifying spare capacity.

In our simulations, we assumed that the admission policy and scheduling

overheads were zero. (Note, overheads are discussed further in section 7.4.2).

The criteria used to assess performance was the percentage of an upper bound

on the achievable system utility which was obtained by each approach.

In our experiments, the hard task load was simulated using groups of task sets

with utilisation levels of 30, 50, 70 and 90%. Each task set had an exponential

distribution of task periods in the range 40 to 2560 ticks. Task deadlines and

execution times were chosen at random such that C≤D≤T. The optional task load

was simulated by a stream of aperiodic tasks with an exponential distribution of

deadlines from 20 to 1280 ticks and execution times chosen at random to be

10,20,30...90% of the task’s deadline. The mean optional task deadline was half the

mean hard task deadline; a reasonable assumption given that optional tasks supporting

mandatory counterparts typically have shorter deadlines. The arrival times of the

optional tasks were given by a Poisson arrival process. Further, each optional task

was given an initial value-density (from a uniform distribution in the range 1 to 10).

This initial value-density was used to calculate the utility to be gained by completing

the task before its deadline (utility equals initial value-density multiplied by
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computation time). The number of optional tasks was varied to give combined

potential utilisation levels (for hard + optional tasks) from 40 to 900%, plotted on the

x-axis of the graphs.

The queue of optional tasks was ordered by arrival time prior to commencing

simulation. During each simulation run, once the arrival time of the optional task at

the head of the queue had been reached, it was subject to the appropriate admission

policy and acceptance test. The results presented in subsequent sections, represent

the averages over a group of ten task sets.

7 . 3 . 1 Results

In experiments 7.1 to 7.4, we investigated the utility obtained by the three admission

policies, FCFS, BE and AVDT when combined with Slack Stealing, Dual Priority

and Background scheduling of optional tasks. The hard task sets used in experiments

7.1 to 7.4 had utilisations of 30, 50, 70, and 90% respectively.
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Each of the graphs shows the same basic behaviour for the nine approaches

studied. At low optional task utilisation levels, the admission policy makes very little

difference to the total utility obtained. This is because there is seldom more than one

optional task pending at any given time. This optional task can either be

accommodated by the scheduling method or not. Hence the utility obtained is highly

dependent on scheduling method but insensitive to admission policy. As the

utilisation of optional components is increased, up to a total utilisation level of 100%,

all nine approaches show a decrease in the percentage of the upper bound obtained.

This is because for utilisation levels of up to 100%, the upper bound corresponds to

the sum of all optional tasks utilities, however as the total utilisation approaches

100%, an increasing proportion of the optional task load cannot be scheduled.

Above approximately 100% utilisation, the Best-Effort policy combined with

each scheduling method provides increasing utility with increasing optional task

utilisation. In effect, there are more schedulable high utility tasks to choose from,

thus the Best-Effort policy is able to keep the processor busy with predominantly

high value-density optional tasks. At very high utilisation levels, (e.g. 900%
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equivalent to a 9 fold overload) the scheduling policy becomes less important as there

are nearly always a number of high value-density optional tasks which could be

scheduled. Thus the utility obtained becomes highly dependent on admission policy.

At very high utilisation levels, the Best-Effort policy outperforms FCFS irrespective

of the underlying scheduling method.

The Adaptive Threshold policy outperforms Best-Effort at high utility levels

(>∼ 150%). This can be explained by considering the following scenario. Assume that

at a given time, there is a set of runnable optional tasks with medium or low value-

densities. The Best-Effort policy admits a subset of these tasks, perhaps those with

medium value-densities. By comparison, the AVDT policy rejects all these tasks and

instead allows hard tasks to continue executing. Now at some later time, when a high

value-density task arrives, the AVDT policy has preserved sufficient spare capacity to

admit it. However, under the Best-Effort policy, any available spare capacity has

been exhausted by executing lower value-density tasks, thus obtaining a lower total

utility. This effect is most significant when the hard task set has a high utilisation

(e.g. experiment 7.4) as there is a high probability that a high priority hard task can

be executed, thus preserving the spare capacity.

This is a key difference between scheduling task sets comprising solely optional

tasks and scheduling tasks sets containing a mixture of mandatory and optional tasks.

In the latter case, it is often best not to schedule a low value optional task even

though it is possible to do so, as hard tasks can execute, preserving spare capacity for

later more valuable computation.

At very high utilisation levels, (e.g. 900%), the above effect becomes less

marked as there are nearly always optional tasks with the highest value-density

available for the Best-effort policy to admit. Further, when the AVDT policy is

combined with Background scheduling, the above effect no longer occurs as optional

tasks are only ever executed when there are no hard tasks runnable. Thus spare

capacity is never preserved and the Best-Effort policy always outperforms AVDT.

Also, at very high utilisation levels (e.g. 300-900%), the FCFS policy tends

towards attaining 55% of the upper bound utility. In fact, this is exactly as expected;

with a very large number of optional tasks to choose from, the upper bound



- 212 -

corresponds to fully utilising the processor by executing optional tasks with the

highest value-density (= 10), (as well as executing the mandatory tasks). By

comparison, FCFS admission effectively makes a random choice, w.r.t. value-

density. As the value-densities of optional tasks follow a uniform distribution in the

range (1-10), the expected total utility for the FCFS policy is 55% of the upper

bound.

7 . 4 Discussion

In this section, we discuss the limitations of our simple model of utility functions, the

overheads of the various policies and issues relating to practical implementation.

7 . 4 . 1 Utility Model

Our simple model of utility functions assumes that the utility of an optional task is a

constant value which is set upon arrival. Further, there is no utility in completing the

task after its deadline. Although simplistic, this basic model has an appropriate form

for use with optional components which improve the utility of mandatory tasks.

Typically, such optional computation is of no value if it is not delivered prior to the

deadline of the hard task which it supports. Further, setting the optional task’s utility

upon arrival, allows the necessary flexibility for optional components to have

different utility levels depending upon the perceived state of the external environment

and the mode of the system.

The simple model described above lacks some of the expressive power of the

more general utility functions proposed by Locke [68]. It has however, the

advantage of much lower overheads in terms of the evaluation of such functions.

7 . 4 . 2 Overheads

The worst-case overheads, in terms of the number of acceptance tests required per

optional task arrival are: FCFS - O(1), AVDT - O(1) and Best-Effort O(m). Where

m is the number of optional tasks previously accepted, but as yet uncompleted. Recall

that the complexity of the sufficient acceptance test used is O(m + n), where n is the

number of hard tasks.
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The complexity of the AVDT policy is thus O(m) less than that of Best-Effort.

Given the results of the simulations reported in the previous section and the outcome

of Wendorf’s experiments [110] into the overheads of Best-Effort scheduling, it

would appear that the Adaptive Threshold policy is a better choice for practical

systems. However, the optional task load in our experiments was roughly consistent

across each simulation duration. This allowed the Adaptive Threshold policy to

effectively predict future optional task arrivals. In a more dynamic system, the

threshold used by the AVDT policy needs to be based on a time interval which

reflects the time period over which the optional task load may change dramatically.

It remains an open issue; whether the performance of the AVDT policy would still

approach that of Best-Effort under these more stressful circumstances.

7 . 4 . 3 System Dynamics

In hard real-time systems where the optional components are related to the (periodic)

hard task set, the Adaptive Threshold policy represents a highly effective means of

addressing one of the main issues in maximising system utility: to execute a low

utility task now or to conserve spare capacity in the hope that a higher utility task

will arrive soon. In this respect, the AVDT policy could be considered as providing a

limited form of clairvoyance. If the system’s average value-density is high then

AVDT discards low value-density tasks as it assumes that ones of higher value-

density will arrive soon. In a predominantly periodic system, with optional

components related to the hard task set, this is the correct assumption to make and

thus the policy performs well.

The policies described earlier assume that each optional task is either accepted

or rejected out of hand. Alternatively, tasks failing the acceptance test could be kept

on the pending queue awaiting further spare capacity. This increases the worst-case

overheads and raises the issue of when to re-invoke the acceptance testing of such

tasks. Typically, a pragmatic approach may be taken, whereby at each task

completion, the optional task, if any, at the head of the pending queue is subject to

admission / acceptance testing, as per the RED algorithm [27].
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Finally, there is the orthogonal issue of whether or not the on-line guarantees

given to optional tasks may be rescinded. If this is not permissible for any optional

component, then the Best-Effort policy effectively reduces to simple FCFS. In

general, allowing guarantees to be rescinded provides more flexibility: to, for

example, schedule soft tasks at the highest priority level. However, some optional

tasks may exhibit 1/0 constraints: once started, such tasks must be guaranteed to

complete. In this case, it may still be permissible to rescind the on-line guarantee

after acceptance testing but prior to the task commencing execution.

7 . 5 Multiple Versions Scheduling

In this section, we outline how the Adaptive Threshold approach can be extended to

choosing which version or strategy to execute under the multiple versions paradigm

[94].

The multiple versions paradigm assumes that there are a number of strategies

available to implement a given service τ i . We refer to these strategies as τ i
1 , τ i

2 ,

τ i
3 ...τ i

k . Each strategy τ i
k is assumed to have a worst case execution time Ci

k and a

value Vi
k which is determined upon arrival. Further, the service has a relative

deadline D i which is inherited by each strategy. A mandatory version of the service

described by τ i
MAN , Ci

MAN , Vi
MAN is guaranteed via off-line analysis.

Upon release of service τ i , the maximum processing time, A i ( t), which can be

guaranteed to be made available before its deadline is calculated using the techniques

given in chapter 6. (Note, this requires O(n) time). In effect, A i ( t) is the minimum

of the processing time available at priority level i in the interval [ t ,t + D i ) and the

extra interference (termed slack) which any task of priority less than i may be subject

to without causing its next deadline to be missed. Thus,

A i ( t) = Ci
MAN + min I

L A i ( t ,D i ) ,min ∀ j ∈ lp( i) S j ( t) M
O (7.2)

Where A i ( t ,D i ) is a lower bound on the additional execution time available at

priority level i in the interval [ t ,t + D i ) and S j ( t) is the slack at priority level j at

time t
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Once the available computation time A i ( t) has been calculated, then the set of

schedulable strategies can be identified (τ i
k :Ci

k ≤A i ( t)).

To determine which of the schedulable strategies to choose for execution, we

use the idea of effective system value-density, E SYS , defined as the "running average"

value accrued by the system per unit time. (Note, E SYS is similar to the value-density

threshold introduced earlier, however, as we now assume that all computation has a

value, the average is taken over all processor time, not just that which is unused by

mandatory tasks).

We assume that if a given strategy τ i
k is executed, then it will require

processing time Ci
k and accrue value Vi

k . Further, in any remaining processing time

(A i ( t) − Ci
k) it is assumed that the system will accrue value at a rate given by the

current system value-density. Hence the effective value-density (Ei
k) of strategy τ i

k is

given by:

Ei
k =

A i ( t)

Vi
k + (A i ( t) − Ci

k ) E SYS
hhhhhhhhhhhhhhhhhhhh (7.3)

Once the effective value-density of each schedulable strategy has been computed,

then the one with the highest effective value-density is chosen for execution. (Note,

as A i ( t) is constant over all the strategies of τ i then division by A i ( t) is not

required in determining which the strategy has the highest effective value-density).

Finally, the slack at priority levels i and lower needs to be adjusted to reflect the

strategy chosen for execution:

∀ j ∈ lp( i) S j ( t) : = S j ( t) + (Ci
MAN − Ci

k ) (7.4)

Where the slack at each priority level is initially determined assuming that the

guaranteed mandatory strategy for each service is always executed.

The complexity of the above approach is O(n + k) where n is the number of

services and k is the number of strategies for the service.
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7 . 5 . 1 Example

We now give a simple illustration of the operation of the Adaptive Threshold policy,

as applied to multiple versions scheduling. Our example assumes that there are 3

strategies, τ i
1 , τ i

2 and τ i
3 available to implement a given service, τ i . Typically, τ i

1

might be a "quick and dirty" approximation, τ i
2 an efficient and relatively accurate

approximation and τ i
3 a precise but computationally expensive method. The

computation times and values, for the particular invocation of τ i examined, are as

follows: Ci
1 = 1, Ci

2 = 3, Ci
3 = 7, Vi

1 = 1, Vi
2 = 9 and Vi

3 = 14, hence the value densities

of τ i
1 , τ i

2 and τ i
3 are 1, 3 and 2 respectively.

Let us assume that the processing time available, A i ( t), is 8, thus all three

strategies are schedulable. We now consider 3 cases, corresponding to low, medium

and high system value-densities.

Case 1: High system value-density:

Assuming that E SYS = 5, then τ i
1 has the highest effective value-density. Executing τ i

1

for 1 unit of time accrues a value of 1, whilst over the 7 remaining time units, other

tasks are expected to accrue a value of 35, giving a total of 36 and an effective

value-density of 4.5. By comparison, executing τ i
2 for 3 units of time and other tasks

for 5, gives a total value of 34 and an effective value-density of 4.25. Finally,

executing τ i
3 for 7 units of time and other tasks for 1, gives a total value of 19 and

an effective value-density of 2.375. In this case, the average system value-density is

high compared to that of any of the strategies for τ i , hence, it is better to execute a

quick and dirty strategy, releasing spare capacity for other services with higher

value-density methods.

Case 2: Medium system value-density:

Assuming that E SYS = 2, then τ i
2 has the highest effective value-density. The values

expected to be accrued in the 8 time units available are 15, 19 and 16 for strategies

τ i
1 , τ i

2 and τ i
3 respectively; giving effective value-densities of 1.875, 2.375 and 2. In

this case, the average system value-density is similar to that of the strategies for τ i ,

hence the method with the highest value-density (τ i
2) also has the highest effective

value-density.
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Case 3: Low system value-density:

Assuming that E SYS = 0, then τ i
3 has the highest effective value-density. The values

expected to be accrued in the 8 time units available are 1, 9 and 14 for strategies τ i
1 ,

τ i
2 and τ i

3 respectively; giving effective value-densities of 0.125, 1.125 and 1.75. In

this case, the average system value-density is much less than that of the strategies for

τ i , hence, with little or no contribution from other services, the method with the

highest value i.e. τ i
3 , (but not necessarily the highest value-density) has the highest

effective value-density.

7 . 5 . 2 Local Optimality

Providing the assumptions that each strategy τ i
k takes Ci

k to execute and that any

spare time not used by τ i
k will on average result in value being accrued at the rate of

E SYS hold, then the Adaptive Threshold approach makes locally optimal decisions

regarding which strategy to execute, in order to achieve maximum system utility.

Whether such a simple policy can be successfully employed in real systems where

execution times are stochastic and the rate at which system utility is accrued varies

widely, remains an open issue.

7 . 6 Summary

In this chapter, we showed that for the case of mixed task sets, comprising optional

tasks with constant values for completion before their deadlines, and hard tasks which

must meet their time constraints; the best an on-line algorithm can guarantee, for

completing optional tasks, is 1/kX of the value which could be obtained by a

clairvoyant scheduler. Where k is the importance ratio, equal to Max : Min optional

task value-density and X is the ratio Max : Min optional task execution time. As this

bound is very small for realistic task sets, our research therefore focussed on policies

which have good average case behaviour.

We showed how Best-Effort and Fixed Priority scheduling can be integrated,

combining the desirable features of both approaches: guaranteeing tasks with hard

time constraints and maximising system utility.
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Our approach partitioned the problem of scheduling optional components into

two parts: first an admission policy determines the order in which optional tasks are

presented for on-line acceptance testing. As part of the acceptance test, tasks are

assigned a priority level commensurate with their deadlines, according to the optimal

priority assignment policy given in chapter 6. Successful tasks are then scheduled on

the basis of this priority.

We investigated the effectiveness of three admission policies combined with

Background, Dual Priority and Slack Stealing methods of scheduling optional tasks.

These policies were FCFS, Best-Effort and a new Adaptive Value-Density Threshold

(AVDT) approach which uses a variable cut-off to filter out optional tasks on the

basis of their value-densities. Our simulations showed that for an exponential

distribution of mandatory and optional task deadlines, the AVDT policy can result in

significantly higher system utility than the Best-Effort policy (assuming Slack

Stealing or Dual priority as the underlying scheduling method). As the worst case

overheads of the AVDT policy are O(1) acceptance tests per optional task arrival,

compared with O(m) for the Best-Effort policy, it appears that the AVDT policy is

the more appropriate for use in practical systems. Finally, we showed how the idea

of a value-density threshold could be extended to scheduling tasks under the multiple

versions paradigm.
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Chapter 8

Proof of Concept: Implementation

Before we can be certain that any particular theoretical scheduling technique is truly

practical and effective, it is necessary to tailor the theory to the performance

characteristics of an actual real-time kernel, and to implement the new scheduling

policy and determine the effects of overheads on its performance.

Previous chapters have investigated the performance of the Dual Priority and

dynamic Slack Stealing algorithms via simulation. This chapter focuses on measuring

the overheads of a proof of concept implementation and incorporating these

overheads into the supporting feasibility analysis. Both dynamic Slack Stealing and

Dual Priority algorithms were implemented within the DRTEE hard real-time kernel

[16]. This kernel was chosen due to its simple analysable design, its policy

mechanism separation which provides the interface necessary for integrating

experimental scheduling policies, and most importantly, the accessibility of the source

code.

First, the basic operations of the DRTEE kernel are described, including the

timer, monitor and logging facilities which enable various performance metrics to be

examined. We then provide analysis which tailors response time scheduling theory

(section 2.1.4) to the characteristics of the DRTEE kernel, thus enabling the

schedulability of tasks with hard deadlines to be determined, given the overheads due

to the implementation of each scheduling policy. Furthermore, we explain how the

non-integrated method of event handling, used in the kernel, means that the release of

lower priority hard tasks and soft aperiodic tasks impinges upon the schedulability of

high priority hard tasks.

Subsequently, the generation of the synthetic task sets used in performance

testing, is described. We then report on a series of experiments used to determine the

overheads involved in soft task scheduling using Background, Dual Priority and

dynamic Slack Stealing methods, for a range of task set cardinalities. Finally, we
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discuss the limitations of the proof of concept implementation and possible areas for

future improvement within the kernel.

8 . 1 DRTEE Kernel

The DRTEE kernel version 1.0 [6] is a basic event driven kernel which runs on the

Intel i486. Initially, the kernel supported only basic fixed priority scheduling with

timer facilities to prevent budget or deadline overrun. As part of this research, policy

modules were added which support dynamic Slack Stealing and Dual Priority

scheduling. The monitoring facilities were also extended (see section 8.1.4).

8 . 1 . 1 Timer Facilities

The kernel interfaces to a custom designed timer board which provides a real-time

clock (48 bits, 62.5ns resolution) and three count-down timers (32 bits, 1µs

resolution). Note, only one of these count-down timers is actually used in version 1.0.

The count-down timer is programmable: it can be set to any 32 bit value and raises

an interrupt when the count reaches zero. The timer facilities enable accurate logging

and monitoring of the time spent executing tasks and the time spent in the scheduler.

It is also possible to determine the time spent in the Timer Interrupt Handler (TIH)

by comparing logged real-time clock and counter values. We return to this point in

section 8.3.

8 . 1 . 2 Kernel Operation

Task scheduling is implemented using an array of task control blocks (TCB) and an

event queue. The CHOOSE_TASK policy module inspects the array of TCBs and

determines which task to execute. CHOOSE_TASK policy modules were

implemented for each of the three scheduling policies: Background, Dual Priority and

dynamic Slack Stealing.

The DRTEE Kernel also makes use of an event queue. This is a doubly linked

list of timer events ordered by event time: the real-time clock value at which the

event notionally takes place. Each timer event data structure contains the event time,

the task identifier corresponding to the event and an event type. Event types include:



- 221 -

DEADLINE, BUDGET, PRIORITY_PROMOTION and RELEASE.

The underlying operation of the scheduler loop is as follows:

1. On entering the scheduler, interrupts are disabled, the count-down timer is

stopped and read (Note, it may have already stopped at zero if the scheduler

has been entered via the TIH). The real-time clock is also read.

2. The policy module ACCOUNTING is called and updates variables such as

the current task’s remaining execution time and, in the case of the dynamic

Slack Stealing policy, the slack at each priority level above that of the current

task.

3. The scheduler determines if a timer event has occurred. If this is the case

then the current timer event is removed from the event queue and processed

according to its type, as follows:

RELEASE: The task identified by the event‘s task id is marked as runnable and

the RELEASE procedure called. This policy module returns either a DEADLINE

event, (or in the case of Dual Priority Scheduling a PRIORITY_PROMOTION

event) which is inserted into the event queue.

PRIORITY_PROMOTION (Dual Priority Scheduling only): The task identified

by the event’s task id has its priority raised to the appropriate upper band

priority level.

DEADLINE (missed): The task identified by the event’s task id is marked as

both killed and not runnable. This is a failure condition.

BUDGET (overrun): If the current task is a guaranteed task, then it is marked

as both killed and not runnable. Again this is a failure condition. If the current

task is a soft task, then the budget event is used to force a return to the

scheduler once the soft task’s allotted execution time has been consumed. The

task is therefore left as runnable. Note, this is the mechanism by which soft

tasks are executed in slack time under the dynamic Slack Stealing policy.
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4. If the scheduler has been entered via the task completion call gate, then there

is no timer event to process, however, the scheduler now has the completion of

the current task to deal with. On task completion, the COMPLETION procedure

is called. This policy module removes the corresponding

PRIORITY_PROMOTION or DEADLINE event from the event queue and in the

case of periodic tasks, inserts a new RELEASE event into the event queue.

Finally, the current task is marked as not runnable.

5. A runnable task is chosen for execution by the CHOOSE_TASK policy

module. CHOOSE_TASK also determines the execution time budget for the

task. Note, the idle task is always runnable and is therefore chosen if no

application task wishes to execute.

6. Immediately prior to task dispatch, the real-time clock is read and the count

down timer set to a value corresponding to the elapsed time to the next event.

Note, if the time of the next event is at or before the current time, then the

counter is set to 1 (as the interrupt is generated on the transition from 1 to 0).

This ensures that the timer interrupt will be recognised immediately that

interrupts are enabled.

7. The task chosen for execution is dispatched. (As part of dispatch, interrupts

are enabled).

8. The task executes. (Note, it may not actually get chance to do any

processing if there is a timer interrupt pending).

Either:

9a. The task completes, in which case, the scheduler is re-entered via the task

completion call gate (which disables interrupts).

or

9b. The count down timer reaches zero and raises the timer interrupt, in which

case, the scheduler is re-entered via the TIH, which also disables interrupts.
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8 . 1 . 3 Discussion

There are two important underlying features of the operation of the DRTEE kernel.

First, the kernel provides a non-integrated method of setting timer interrupts.

This simplifies both the kernel implementation and its analysis, however, the fact that

the event which is set is simply the one with the earliest notional arrival time, means

that the release events of low priority tasks interfere with the execution of higher

priority tasks, increasing their response times. Note, that this is not the case with low

priority completions, as these events can only occur when no higher priority task is

runnable. We return to this issue in section 8.4.

Second, the scheduler is "one pass": on any invocation of the scheduler, only

one logical event (i.e. task release, deadline, priority promotion or budget overrun) is

dealt with. Again, this simplifies the implementation of the kernel and the analysis of

its overheads. If subsequent events, still in the event queue, have notionally expired,

then they are dealt with by setting the count-down timer to 1 and exiting the

scheduler. The count-down timer immediately expires, raising the timer interrupt,

which causes the scheduler to be re-entered via the TIH.

It would appear that only dealing with one event per pass through the scheduler

is inefficient, due to the additional overheads of dispatch and the TIH, compared to

looping within the scheduler until all notionally expired events have been dealt with.

Whilst this is undoubted true in the average case, in the worst case, we must allow

for the fact that event times may be such that they each occur a vanishingly small

time after task dispatch. In these worst case circumstances, the scheduler will only

ever deal with one event at a time, resulting in similar worst case overheads.

8 . 1 . 4 Logging and Monitoring

Within the DRTEE kernel, a comprehensive set of monitoring and logging facilities

are provided.
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Monitor Informationiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Field Contentsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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02 Number of hard task budget overrunsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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08 Total response time (soft tasks)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

09 Number of acceptance testsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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11 Max. scheduler time for soft task completioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

12 Max. scheduler time for priority promotioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

13 Max. scheduler time for budget eventiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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The Monitor facilities allow data such as the number of task completions, deadline

misses, total soft task response time and maximum scheduler execution time to be

inspected at the end of an experimental run. The table above gives a summary of

the information monitored. In addition, the monitor also records the maximum

response time of each of the first 20 hard tasks.
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The data logging facilities enable a trace of scheduler decisions and task

execution to be constructed. On each pass through the scheduler, a log entry is made

into a circular buffer. At the end of a run, the log entries present in the buffer can be

inspected. Each log entry records; the real-time clock and count-down timer values on

entering the scheduler, the event type (e.g. task release, deadline, budget, completion

or priority promotion), any interrupts which are raised, the id of the task chosen for

execution and its execution time budget, the real-time clock value on exiting the

scheduler, and finally, the count-down timer value set.

8 . 2 Analysis of Kernel Overheads

As mentioned previously, the DRTEE kernel operates a non-integrated scheduling and

timer interrupt policy. This means that the execution of a high priority hard task is

interrupted in order to deal with the release of any lower priority tasks. Although

simplifying the implementation of the kernel, this leads to undesirable priority

inversion.

8 . 2 . 1 Computational Model and Notation

The operation of the kernel can be modelled as a set of fictitious tasks of different

priorities, with timing attributes inherited from their actual counterparts. The

following variables represent the worst case scheduler execution time (WCST) for

dealing with the various events. (Note, the values of these variables are typically

dependent upon the number of tasks present in the application and the scheduling

policy used, see section 8.3).

K MREL - The WCST for a hard (mandatory) task release event.

K OREL - The WCST for a soft (optional) task release event.

K MCOMP - The WCST for a hard (mandatory) task completion.

K OCOMP - The WCST for a soft (optional) task completion.
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K BUDGET - The WCST for a budget event.

K PROMO - The WCST for a priority promotion event.

(Note, the initial version of the kernel used in our experiments supports only periodic

hard tasks).

In determining the worst case response time of hard task τ i , we must account

for an initial period of blocking due to the scheduler dealing with the release or

completion of either lower priority hard or soft tasks, interference due to the release,

execution and completion of higher priority hard tasks and interference due to the

release of low priority hard and soft tasks. We note that this requires that the timing

attributes (i.e. minimum inter-arrival time) of soft tasks are known a priori, as this

has an impact on the schedulability of hard tasks. This is a major drawback of the

non-integrated scheduling and event handling policy. We return to this issue in

section 8.4.

In the following analysis, the overheads of scheduling events are modelled as a

set of high priority ficticious tasks with, for example an execution time K MREL and a

period inherited from the task which the scheduling event corresponds to.

8 . 2 . 2 Analysis of Background Scheduling

The schedulability of a hard task τ i executing under the DRTEE Background

scheduling policy, is determined by the following analysis:

B i = max(K MREL ,K OREL ,K MCOMP ,K OCOMP ) (8.1)
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Where soft is the set of soft / optional tasks. Note, the completion overhead for task

τ i is not included in the task’s response time, as we are interested in the response

time to the last observable operation of task τ i , this does not include the final context

switch away from τ i [22]. Iteration begins with r i = 0 and ends when ri
m +1 = ri

m or

ri
m > D i in which case, τ i is unschedulable. If task τ i is schedulable, then its worst

case response time is given by the final value of r i .

8 . 2 . 3 Analysis of Dual Priority Scheduling

Under Dual Priority Scheduling, we are interested in both determining the

schedulability of each hard task τ i and the corresponding maximum permissible

priority promotion delay Y i . Following the analysis given in chapter 5, we assume

that task τ i will not be able to execute until its priority is promoted to its upper band

level. Once its priority has been promoted, then τ i will be subject to interference

from hard tasks with a higher promoted priority than i, including their release,

priority promotion and completion overheads. With the non-integrated scheduling

model, it will also be subject to interference due to the release and priority promotion

events of lower priority hard tasks and the release events of optional tasks. Hence we

have:

B i = max(K MREL ,K OREL ,K MCOMP ,K OCOMP ,K PROMO ) (8.3)
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Given the worst case response time of task τ i as calculated above, its maximum

priority promotion delay is given by:

Y i = D i − r i (8.5)
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8 . 2 . 4 Analysis of Dynamic Slack Stealing

There is a fundamental difference between Slack Stealing and Dual Priority or

Background approaches to soft task scheduling. With both of the latter techniques,

soft task execution is pre-empted when a hard task becomes runnable at a higher

priority level (i.e. at an upper band priority level in the case of Dual Priority

scheduling). Under the dynamic Slack Stealing approach, a hard task τ j may be

runnable at effectively the same priority as the soft task which is executing. In this

case, task τ j needs to be resumed once the available slack has been exhausted, i.e.

once:

∀ i ∈ lp( j)
min S i ( t) = 0 (8.6)

Thus a budget event must be set to terminate the execution of a soft task in slack

time. Further, the budget set, needs to account for the fact that before hard task τ j

can be resumed, an additional pass through the scheduler may occur, dealing with

either the completion of the soft task or the expiry of its execution time budget.

(Note, the next event might be a release, in which case no extra scheduling event is

observed ). To ensure that the hard tasks remain schedulable, any additional pass

through the scheduler must be accounted for in terms of decrementing the available

slack. Hence at time t, when τ j is the highest priority runnable hard task, and there

is a soft task pending, then the soft task may execute provided that:

∀ i ∈ lp( j)
min S i ( t) > max(K OCOMP ,K BUDGET ) (8.7)

In which case, its execution time budget is set to:

∀ i ∈ lp( j)
min S i ( t) − max(K OCOMP ,K BUDGET ) (8.8)

Further, in dealing with soft task completion or budget expiry, the scheduler calls the

ACCOUNTING policy module to decrement the available slack by the appropriate

overhead i.e. K OCOMP or K BUDGET .
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Under the dynamic Slack Stealing approach, the feasibility of hard tasks is

determined according to the equations given below.

B i = max(K MREL ,K OREL ,K MCOMP ,K OCOMP ,K BUDGET ) (8.9)
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Similarly, the calculation of available slack, using the dynamic approximation detailed

in section 4.1.3, is modified as follows: the interference in the interval [ t ,d i ( t)), due

to each higher priority task τ j and its associated scheduling overheads is given by:

I j ( t ,d i ( t)) =
I
J
L c j ( t) + K MCOMP otherwise

0 ifc j ( t) = 0 M
J
O
+ f j ( t ,d i ( t))(K MREL + C j + K MCOMP ) +

min I
L (K MREL + C j + K MCOMP ) ,(d i ( t) − x i ( t) − f j ( t ,d i ( t)) T j ) 0

M
O (8.11)

Where:

f j ( t ,d i ( t)) =
J
J
Q T j

d i ( t) − x i ( t)hhhhhhhhhhh
J
J
P
0

(8.12)

Further, the kernel overheads due to the releases of lower priority hard tasks and soft

tasks are given by:

K j ( t ,d i ( t)) = f j ( t ,d i ( t)) K MREL + min I
L K MREL ,(d i ( t) − x j ( t) − f j ( t ,d i ( t)) T j ) 0

M
O (8.13)

and

K o ( t ,d i ( t)) = f o ( t ,d i ( t)) K OREL
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+ min I
L K OREL ,(d i ( t) − x o ( t) − f o ( t ,d i ( t)) T o ) 0

M
O (8.14)

respectively.

Note, the time t used in determining, for example, the time x j ( t) to the next

release of task τ j is assumed to be the exit time from the current scheduler

invocation. This is found by adding the worst case scheduler overhead for an

invocation of the particular type (e.g. K MCOMP ) to the real-time clock value read on

entry to the scheduler. This ensures that the slack calculated is a lower bound on that

which is actually available at dispatch time. This lower bound is given by:

S i ( t) = d i ( t) − ci
* ( t) −

∀ j ∈ hp( i)
Σ I j ( t ,d i ( t)) −

∀ j ∈ lp( i)
Σ K j ( t ,d i ( t)) −

∀ o ∈ so ft
Σ K o ( t ,d i ( t)) (8.15)

Where ci
* ( t) = c i ( t) if task τ i is runnable and C i otherwise.

8 . 3 Performance Measurement and Evaluation

In this section, we describe a series of experiments used to determine the average and

worst case overheads of Background, Dual Priority and dynamic Slack Stealing

scheduling policies as implemented in the DRTEE kernel. Previous simulations (see

chapters 4 and 5), investigated the average case performance of the different

techniques over many task sets. In this chapter, we focus on the effect of overheads

and thus make use of tasks sets which theoretical (i.e. assuming zero scheduling

overheads) present the same load, but in practice lead to different levels of overhead

due to the variation in task set cardinality.

8 . 3 . 1 Task Set Generation

The task sets used to evaluate the DRTEE kernel and experimental scheduling

policies resembled those used in previous simulations.
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The synthetic application comprised two sets of tasks, mandatory and optional.

The optional task set was used to represent soft tasks. These tasks had an exponential

distribution of periods in the range 80-2560ms (and very long deadlines c. 30

minutes). The utilisation of the optional task set was varied from 10 to 30%. The

cardinality of the optional task set was 5.

The mandatory task sets comprised 5, 10, 15, 20, 25, 30 or 35 tasks, again with

an exponential distribution of periods in the range 80-2560ms. The utilisation of each

mandatory task set was 50%. Each mandatory task set with greater than 5 tasks was

effectively replicated from a similar task set of cardinality 5. Hence a mandatory task

set of cardinality 20, comprised 4 replicas of each of the 5 tasks in the base set

(cardinality 5). Each of these replicas had one quarter of the execution time

requirement of the task it was derived from and shared the same timing requirements.

Thus the higher cardinality task sets presented exactly the same processor load in

terms of task execution, however, the scheduling requirements were markedly

increased. This approach was taken to factor out variations due to random differences

in the timing characteristic of task sets generated with differing cardinalities.

As part of task generation, each mandatory task set was shown to be feasible

under each of the scheduling policies (Background, Dual Priority and Slack Stealing),

assuming the worst case scheduling overheads measured on the DRTEE test-bed and

the timing characteristics of the corresponding optional task set.

Once the timing characteristics of a task set had been determined, the task set

generation tool was used to produce an application definition file This was down-

loaded to the DRTEE kernel to set up Task Control Block data such as; task periods,

wcets, deadlines etc. Further, the task set generation tool also produced a Task#.c file

for each application task by copying a template file and replacing tokens

corresponding to execution time. The template file contained the C code for two

nested for loops. In effect, one of the loop counts was given a value such that the

worst case execution time of the task corresponded to the desired quantity. Graph 8.1

shows how the measured worst and best case execution times of a task varied

according to the loop count. (Note, the minimum and maximum permitted task

execution times produced by the task set generation tool were, 80µs and 500ms

respectively).
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From experiment 8.1, it is clear that the synthetic tasks exhibited very little

variation in execution time, thus providing a severe test of the scheduling theory and

kernel implementation: even a small degree of optimism in the calculation of slack or

priority promotion times would lead to missed deadlines.
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Expt 8.1: Synthetic Task Execution Time v. Loop Count

8 . 3 . 2 Measurements

Before any proper experimentation could take place, it was first necessary to

determine the worst case scheduling overheads given a particular policy and number

of tasks. This was achieved by generating random task sets of the desired cardinality

and recording the worst case time spent in the scheduler for various events. These

worst case times were then fed into the task generation tool and further task sets

produced. This process was repeated a number of times until stable worst case values

were obtained. The final values were used in the generation of the task sets used in

subsequent experiments.
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We note that this method is not entirely satisfactory, as we cannot be sure that

the worst case scheduler overheads for each event type and task set cardinality have

been obtained. However, in each experimental run, the scheduler overheads were

monitored and the worst case compared with the values previously found. If a larger

value was produced, then the series of experiments was abandoned, a new worst case

value set and task generation and subsequent experiments repeated.

Ideally, worst case execution time analysis could be applied to the kernel,

however, it is unreasonable to do this by hand due to the complexity and size of the

kernel and unfortunately no analysis tools exist as yet (the development of such a

tool is part of on-going research).

Anomalies

Initial experimentation with one or two tasks showed up two anomalies which had to

be corrected for. First, the monitored value of the time spent in the scheduler,

recorded only the time between reading the real-time clock at the start of the

scheduler code and a similar reading immediately prior to task dispatch. However,

this did not include the overheads of the TIH or task completion call gate prior to

entering the scheduler, nor the time spent dispatching an application task before it

was actually executed by the processor. Measured worst case values were obtained

for these quantities by reference to logged and monitored data.

The ‘TIH + Dispatch’ time was found by subtracting the value set in the

count-down timer from the time elapsed between setting the count-down timer at the

end of one scheduler invocation and reading the real-time clock at the start of the

next scheduler invocation, following a count-down timer interrupt. The dispatch time

was found via measuring the difference in the apparent execution time of a task with

a long computation time when it is allowed to execute without pre-emption and when

it is interrupted by a series of budget events. The latter is longer due to the inclusion

of multiple dispatch calls. Finally, the overhead of the task completion call gate was

found by setting up a race condition between budget expiry and task completion.

Immediately the task completion call gate is entered, interrupts are disabled. Thus by

setting progressively smaller budgets for a given task, it is possible to determine

when task completion is just before the timer interrupt and hence the actual task
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execution time (excluding task completion call) and thus the task completion call gate

overhead.

iiiiiiiiiiiiiiiiiiiiiiiii

Missing Timeiiiiiiiiiiiiiiiiiiiiiiiii

TIH 162µsiiiiiiiiiiiiiiiiiiiiiiiii

Task Completion 120µsiiiiiiiiiiiiiiiiiiiiiiiii

Dispatch 17µsiiiiiiiiiiiiiiiiiiiiiiiiic
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c
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c
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c
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We now present the results of a series of experiments which investigated scheduling

overheads. First, we compare measured and calculated worst case task response

times under the various scheduling policies. We then examine how the worst case

and average case overheads of each scheduling policy vary with the cardinality of the

mandatory task set. Finally, the mean response time of soft tasks was used as a

performance metric to illustrate how scheduling policy effectiveness is degraded by

increasing overheads.

8 . 3 . 3 Measured v. Calculated Worst Case Response Times

In experiment 8.2, we compared the calculated and measured worst case response

times of mandatory tasks scheduled under fixed priority pre-emptive scheduling (i.e.

the Background policy for soft tasks). In this experiment, the task set comprised 20

mandatory tasks with a total utilisation of 80% and 5 optional tasks with a utilisation

of 10%. The worst case Scheduler overheads amounted to 6.3% of the total

processing time, whilst the average case overheads were 5.5%. The small differences

between measured and calculated worst case response times for the tasks were due to

a combination of the small variations in both scheduler and task execution times.
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Expt 8.2: Worst Case Response Times

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Worst Case Response Times (µs)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Priority Calculated Measured % Differenceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 13130 11358 13.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

2 16820 14970 11.0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 20510 18550 9.6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

4 24200 22135 8.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

5 26490 24328 8.2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

6 28780 26523 7.8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 31070 28718 7.6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

8 33360 30916 7.3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

9 73310 70561 3.7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

10 129440 125685 2.9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Priority Calculated Measured % Differenceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

11 169780 165342 2.6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

12 236490 230485 2.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

13 322240 314254 2.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

14 418180 398056 4.8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

15 503540 491858 2.3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

16 810410 776479 4.2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

17 870010 850295 2.3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

18 935210 914021 2.3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

19 1000410 962301 3.8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

20 1076580 1036154 3.8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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8 . 3 . 4 Overheads v. Number of Tasks

In this section, we investigate how the worst case and average case scheduling

overheads of Background, Dual Priority and Slack Stealing approaches vary with task

set cardinality. In these experiments, the mandatory task sets used had a utilisation of

50% (cardinality of 5-35) whilst the optional task set had a utilisation of 30% and a

cardinality of 5. (Note, a maximum of 40 tasks are permitted by the DRTEE kernel).

The graphs for experiments 8.3, 8.4 and 8.5 illustrate how the overheads of a

single pass through the scheduler vary with task set cardinality for each scheduling

approach. Each of these graphs shows the different overheads for the various types of

scheduling event (e.g. MREL - mandatory task release, OREL - optional task release,

MCOMP - mandatory task completion, OCOMP - optional task completion, PROMO

- priority promotion and BUDGET - soft task budget expiry).

The overheads of Background and Dual Priority scheduling are well contained

(<250µs for Background and < 300µs for Dual Priority) and show a linear growth

with increasing task set cardinality. Similarly, graph 8.5 shows that the overheads of

all scheduling events except mandatory task completions are less than 400µs for the



- 237 -

dynamic Slack Stealing approach. However, the calculation of slack, performed at the

completion of each mandatory task, although also growing linearly, represents a large

overhead: >1500µs for 35 tasks. This trend is reflected in graph 8.6 which illustrates

the total scheduling overheads of each approach as a percentage of the total

processing time.

These results show that although all three approaches incur overheads which are

O(n) at each scheduling point, it is necessary to also take into account the constant

of proportionality when assessing the impact of these overheads. This constant is

much larger for the dynamic Slack Stealing approach and its performance suffers as a

consequence.

Experiment 8.7 shows the effect which increasing overheads (due to higher task

set cardinality) have on the response time of soft tasks. In this experiment, once the

task set cardinality reaches 25, the response time of soft tasks scheduled under the

Slack Stealing approach rapidly degrades to that of Background scheduling.
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8 . 4 Limitations and Possible Improvements

During development and experimentation with the DRTEE kernel, two areas where

the implementation could be improved were identified.

8 . 4 . 1 16 v 32 Bit Machine Code

The kernel was compiled using the Zortech C compiler which produces 16 bit

machine code instructions. However, most of the variables manipulated by the kernel,

indeed all the times (e.g. periods, release times, deadlines, budgets, priority promotion

times and slack) were 32 bit quantities. This resulted in an implementation which was

considerably less efficient than a corresponding 32 bit version. (Note, the initial

version was produced in 16 bit form due to the unavailability of a suitable 32 bit

compiler). This explains why the difference between the scheduling time for

mandatory task completion, including the overhead of calculating slack (1300µs) is

approximately 1000µs greater than that for mandatory task release (for 30 tasks

scheduled under the slack stealing algorithm - see experiment 8.5); whereas this

difference was expected (see section 4.3.4) to be approx 330µs assuming a 32 bit

compiler.

8 . 4 . 2 Integrated Event Handling and Scheduling

The second drawback of the initial kernel implementation is the non-integrated

method of handling events. As noted previously, this means that the release of low

priority tasks impinges upon the schedulability of those with higher priorities.

It is intended that subsequent versions of the kernel will address this problem

by only setting events which have a higher priority than the task which has been

chosen for execution. Integrated event handling and scheduling can be achieved via

the model and analysis given in appendix C.

Background Scheduling

The feasibility of hard tasks scheduled using the integrated event handling and

scheduling approach is found according to the equations below:
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B i = max(K MREL ,K OREL ,K MCOMP ,K OCOMP ) (8.16)

ri
m +1 = B i + K MREL + C i +

∀ j ∈ hp( i)
Σ

R
J
J T j

ri
m

hhh
H
J
J
(C j + K MREL + K MCOMP ) (8.17)

By comparison with equations (8.1) and (8.2) it is clear that the integrated approach

has the significant advantage that the timing attributes of soft / optional tasks have no

impact on the feasibility of hard tasks. Only the blocking factor due to the scheduling

overheads of a single soft task release or completion need be considered.

Dual Priority Scheduling

Under the integrated Dual priority approach, although the initial priority of a hard

task is actual in the low priority band, all release events are assumed to have the

corresponding upper band priority. If this were not the case, then release and

subsequent priority promotion events could be subject to unbounded blocking due to

soft tasks executing at middle band priority levels. Equations (8.3) and (8.4) are

modified accordingly:

B i = max(K MREL ,K OREL ,K MCOMP ,K OCOMP ,K PROMO ) (8.18)

ri
m +1 = B i + K MREL + K PROMO + C i +

∀ j ∈ hp( i)
Σ

R
J
J T j

ri
m

hhh
H
J
J
(C j + K MREL + K MCOMP + K PROMO) + (8.19)

Given the worst case response time of task τ i as calculated above, its maximum

priority promotion delay is again given by:

Y i = D i − r i (8.20)
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Dynamic Slack Stealing

Using an integrated approach to event handling and scheduling, the feasibility of hard

tasks under the dynamic Slack Stealing algorithm may be determined according to

equations (8.16) and (8.17) above, with the values of K MREL , K MCOMP etc reflecting

the scheduling overheads of Slack Stealing rather than Background scheduling.

The handling of soft task release events is however somewhat more complex

under the dynamic Slack Stealing algorithm. Here, we wish to deal with soft task

releases as soon as possible, assuming that there is sufficient slack available. Hence

if:

∀ i ∈ lp( j)
min S i ( t) > max(K OREL) (8.21)

Then soft task release events are considered to be of higher priority than the highest

priority runnable hard task. The timer event set prior to dispatch may therefore

correspond to a soft task release, even though there are hard tasks runnable. The

scheduling overhead of dealing with soft task releases therefore reduces the slack at

each priority level and must be accounted for when handling the event. (Note, this is

different from the non-integrated approach where such overheads interfered with hard

task execution and were therefore accounted for when the slack at each priority level

was calculated, rather than when they actually occurred).

The calculation of slack at priority level i also needs to be modified to reflect

the reduced interference on hard tasks.

S i ( t) = I
L d i ( t) − c i ( t) −

∀ j ∈ hp( i)
Σ I j ( t ,d i ( t)) M

O
0

(8.22)

Where I j ( t ,d i ( t)) is defined by equation (8.12).
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8 . 5 Summary

The experiments reported in this chapter showed that it is important to take into

account the actual overheads of a given scheduling policy. Although all three policies

examined (Background, Dual Priority and Dynamic Slack Stealing) have O(n)

overheads per scheduling event, the constants of proportionality are very different.

Thus the overheads of dynamic Slack Stealing rapidly increase the response time of

soft tasks and decrease the feasibility of hard tasks. In our experiments, the

performance of the dynamic Slack Stealing algorithm degraded to worst than that of

background scheduling, once the cardinality of the task set reached 30. The Dual

Priority approach proved to be more effective due to its significantly lower

overheads.

We showed that scheduling theory can be tailored to the characteristics of a

given real-time kernel implementation and that the worst case response times of tasks

can be bounded to within a few percent of the measured values.

Finally, we suggested a means of improving the schedulability of high priority

hard tasks by using scheduling mechanisms which avoid priority inversion. This is a

particularly important issue if the timing characteristics of soft tasks are not known a

priori. In this case, an integrated event handling and scheduling policy is essential if

hard task timing constraints are to be guaranteed.
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Chapter 9

Conclusions and Future Work

9 . 1 Review of Objectives

In chapter 1, we stated that the aim of the research described in this thesis is to

provide the mechanisms and theory required to enable the utility of real-time systems

to be improved whilst also ensuring that the a priori guarantees made regarding hard

time constraints are honoured at run-time.

The central proposition of the thesis is that:

On-line techniques, which exploit knowledge of the run-time state of
the system, can be used to integrate adaptive scheduling policies into
the framework provided by fixed priority pre-emptive scheduling.
Thus combining the benefits of guaranteed predictability with the
flexibility necessary to attain improved system utility.

In the previous seven chapters, we charted the development of the theory and

mechanisms required to meet this goal. In chapter 2, we concluded that fixed

priority pre-emptive scheduling provides a suitable basis for research into the

techniques needed to facilitate the dynamic, adaptive and intelligent behaviour

required in the next generation of real-time systems. We noted that much of this

adaptive behaviour can be integrated into real-time systems through the use of

techniques aimed at improving the utility of hard real-time services.

To achieve this integration we developed a three tier approach, comprising:

1. Mechanisms which identify spare capacity.

2. Acceptance tests which provide on-line guarantees for utility-enhancing tasks.
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3. Admission policies which arbitrate between competing optional components.

Chapters 3, 4 and 5 recorded the development of theoretical and practical methods of

identifying spare capacity. Chapter 6 built upon this work, providing an optimal

priority assignment algorithm for aperiodic tasks with firm deadlines and a family of

exact and sufficient acceptance tests which enable on-line guarantees to be given to

aperiodic tasks with firm or hard deadlines. The scheduling strategy assumed by these

acceptance tests fully integrates the scheduling of hard sporadic / periodic, firm

aperiodic and soft tasks.

Chapter 7 provided the third tier of our approach; presenting a method of

integrating Best-Effort and fixed priority scheduling via an Adaptive Threshold

admission policy. This policy is used to arbitrate between optional components,

competing for execution time on the basis of their contribution to system utility.

Finally, chapter 8 examined the issues involved in implementing the underlying

algorithms (dynamic Slack Stealing and Dual Priority scheduling). This highlighted

the need to tailor scheduling theory to the characteristics of a particular kernel

implementation and the effects which basic kernel mechanisms have on hard task

feasibility; particularly in systems which also contain soft / optional components.

Analysis showed that there are inherent problems in using a non-integrated event

handling / scheduling approach in this case.

9 . 2 Meeting the Objectives

In chapter 1, we cited various criteria for judging whether the techniques developed

in this thesis are useful in meeting the objectives given above. These criteria were;

coverage, performance / overheads and simplicity.

9 . 2 . 1 Coverage

The dynamic Slack Stealing and Dual Priority methods of identifying spare capacity

are both applicable to task sets with a wide variety of timing characteristics including

periodic, sporadic and adaptive release patterns, release jitter and bounded blocking.

In addition, and unlike previous techniques, both of these methods are able to take

advantage of spare capacity which comes about due to sporadic / adaptive tasks not
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arriving at their maximum rate.

The on-line acceptance tests developed in chapter 5 cover a similar spectrum of

task timing behaviours. Such coverage is essential if these techniques are to be of

practical use in the next generation of hard real-time systems.

9 . 2 . 2 Performance / Overheads

The performance of the dynamic Slack Stealing, Dual Priority and Extended Priority

Exchange algorithms were compared in terms of their effectiveness at identifying

spare capacity, as reflected in their ability to responsive schedule a stream of soft

tasks. Our simulation studies showed that both new techniques outperform the EPE

algorithm, particularly when much of the spare capacity is due to sporadic / adaptive

tasks not arriving at their maximum rate - a likely scenario in next generation real-

time systems. Measurements of the overheads and performance of the Slack Stealing

and Dual Priority algorithms as implemented in an experimental real-time kernel,

showed that although O(n), the overheads of the dynamic Slack Stealing algorithm

become prohibitive once the cardinality of the task set reaches 25-30. The overheads

of the Dual Priority approach are the same order as those of simple fixed priority

pre-emptive scheduling. With hardware co-processor support mitigating the higher

scheduling overheads of dynamic Slack Stealing, it provides an optimal method of

scheduling soft tasks. When scheduling is carried out by the processor which also

executes application tasks, the Dual Priority approach can be recommended as the

more practical method.

In chapter 2, two existing on-line acceptance tests were shown to be flawed:

each accepted aperiodic tasks for execution when in fact their deadlines would later

be missed. Chapter 6, presented families of exact and sufficient on-line acceptance

tests based upon the dynamic Slack Stealing and Dual Priority approaches. The exact

tests provided a baseline against which the performance of approximate tests could be

judged. The sufficient acceptance tests provided a practical and effective method of

giving on-line guarantees to optional components with firm deadlines. Using these

approximate methods rather than the exact tests has the advantage of significantly

lower worst case overheads. Typically, these overheads are approximately 0.5ms, (for

50 tasks on an i486 running at 33MHz) enabling the longest critical section in the
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kernel to be bounded.

In chapter 7, we showed that in the case of mixed mandatory and optional task

sets, the maximum value which any on-line algorithm can guarantee to obtain through

scheduling optional tasks is very small compared to that which a clairvoyant

algorithm may obtain (typically 1% for a realistic range of value-densities and

execution times). We therefore focussed on policies with good average case

behaviour.

The Adaptive Threshold (AVDT) admission policy was shown to provide

similar or better performance than that of the Best-Effort policy (given either Dual

Priority or Slack Stealing as the underlying scheduling algorithm). Further, the

overheads of the AVDT policy are one acceptance test per optional task arrival,

whilst in the worst case, the Best-Effort policy results in m such acceptance tests,

(where m is the number of optional tasks previously given an on-line guarantee but

which have not as yet completed).

9 . 2 . 3 Simplicity

The Dual Priority scheduling algorithm is simple to implement, requiring only

additional kernel support for changing the priority of tasks a given time after their

release. The burden of complexity is restricted to the off-line analysis, which is in

fact no more complex than that for simple fixed priority pre-emptive scheduling.

The implementation requirements of the Adaptive Threshold admission policy

are also very simple. The value and expected execution time of an optional task must

be determined upon arrival and compared with the running average of system value-

density.

The dynamic Slack Stealing algorithm and the approximate on-line acceptance

tests are somewhat more complex, making more use of run-time information

pertaining to the guaranteed tasks. However, the computation time of each of these

algorithms is bounded, enabling them to be implemented within a real-time kernel or

scheduling co-processor.
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9 . 3 Contribution

The major contribution of this thesis lies in providing a scheduling strategy which

enables system utility to be improved via the timely execution of optional

components. These components may be used to improve upon the precision,

reliability, frequency and confidence in, the results produced by their mandatory

counterparts. The strategy developed supports optional components which have

aperiodic arrival patterns, share resources with the mandatory tasks and have soft or

firm deadlines.

The dynamic Slack Stealing and Dual Priority scheduling algorithms represent

effective methods of identifying spare capacity in real-time systems with complex

timing characteristics (e.g. sporadic / adaptive arrival patterns, release jitter, arbitrary

deadlines etc). They enable optional tasks with soft deadlines to be scheduled

responsively, thus maximising their value to the system. Building upon these

methods, the corresponding approximate acceptance tests enable optional components

with firm deadlines or indeed alternatives with hard deadlines to be guaranteed at

run-time. Finally, the Adaptive Threshold admission policy provides a simple yet

effective means of determining which optional components to consider for execution

in order to achieve the highest possible system utility.

In addition, the research comprising this thesis has lead to an improved

understanding of the techniques used in examining task feasibility and the criteria

influencing the design of real-time kernels.

9 . 4 Further Work

In this section, we outline further areas of research which have opened up due to the

progress recorded in this thesis.

9 . 4 . 1 Sensitivity Analysis

In the initial design of a real-time system, the application is typically decomposed

into a set of tasks and resources which are assigned execution time budgets. During

subsequent development, progressively more accurate estimates, measurements and

analysis of wcets become available. However, it is often the case that wcets exceed
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the initial budgets, leading to an unschedulable system. Similarly, with an

operational system, it may be necessary to add enhancements which cause the wcets

of certain tasks to increase or new tasks to be added. In both cases, sensitivity

analysis allows the system developer to determine if optimisation is needed and to

focus effort on those tasks / resources where it will have the most benefit in terms of

obtaining a schedulable system.

Despite the wealth of research into feasibility tests (reviewed in chapter 2),

these tests often provide little or no indication of the changes in task timing

characteristics required to achieve a feasible system, nor any indication of the extent

to which the worst case execution times of tasks may be increased without causing

deadlines to be missed (in the case of a feasible system). In practice, however, it is

useful to know how sensitive system feasibility is to changes in task timing

characteristics. Sensitivity analysis provides such information.

The algorithm for determining slack, given in chapter 3, can be used to

calculate the amount by which the execution time of each task may be increased in

order to obtain a system which is just schedulable. This information provides system

designers with the necessary sensitivity data and indicators as to which task(s) to

optimise [32]. A prototype sensitivity analysis tool has recently been developed to

automate this process.

9 . 4 . 2 Feasibility Tests for SRPT Scheduling

The Shortest Remaining Processing Time first (SRPT) scheduling policy has the

desirable property that it minimises the mean response time of tasks. Similarly, the

Maximum Value Density first (MVD) policy maximises the value accrued per unit

time. The feasibility of tasks scheduled under both these algorithms can be

determined via feasibility tests derived from the algorithm for calculating slack given

in chapter 3.
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9 . 4 . 3 Dual Priority Scheduling in Distributed Systems

The Dual Priority scheduling policy can be used in distributed real-time systems, for

example, to control the order in which messages are broadcast on a Controller Area

Network (CAN) bus [104]. In this scenario, the Dual Priority approach can be used

to improve the response time of messages with soft deadlines.This approach has a

significant advantage over "server" based methods. With a server based method,

global information about the remaining capacity of the server must be maintained by

each node. This is not possible unless each node receives all soft messages, however,

this imposes a large overhead due to handling interrupts for what are essentially

unwanted messages. (Note, CAN controllers provide an effective means of filtering

out unwanted messages, reducing unnecessary interrupts to a minimum).

Alternatively, nodes may be separately allocated a small slice of available bandwidth,

however, this approach is ineffective when the number of soft messages sent by each

node varies at run-time: the bandwidth is not available where it is needed.

Tindell has also shown that the Dual Priority approach can be used to prevent

the jitter on message arrival, which is inherited by tasks waiting on that message,

from impinging upon the feasibility of lower priority tasks [106].

9 . 4 . 4 Avoiding Priority Inversion in Real-Time Kernels

The research reported in chapter 8 highlighted the need to avoid priority inversion in

the underlying kernel mechanisms used to choose which task to execute and which

timer interrupt event to set. For systems containing soft tasks with arbitrary timing

behaviours, it is essential that such priority inversion is avoided if hard timing

constraints are to be guaranteed. Further work is needed in this area.

9 . 4 . 5 Fault Tolerant Real-Time Systems

The results presented in this thesis form a basis for further investigation into adaptive

strategies, scheduling policies and feasibility tests for fault-tolerant real-time systems

[80]. Such systems can take advantage of diverse implementations under the multiple

versions paradigm, use spare capacity to improve reliability / error checking and on-

line acceptance tests to guarantee that sufficient execution time is available for re-
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trys.

9 . 5 In Conclusion

The research described in this thesis provides a basis for implementing flexible and

adaptive real-time systems. Such systems are expected to do the best they can to

obtain results of the highest possible utility, whilst in the worst case, still

guaranteeing a minimum acceptable level of performance.

We note that in order for such adaptable real-time systems to be developed, a

shift in emphasis is needed in the requirements specification and design phases. The

traditional approach of attempting to make the behaviour of a system entirely

deterministic will no longer be sufficient. The development of suitable specification

methods and acceptance metrics remains one of the greatest challenges in the

deployment of next generation real-time systems.
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Appendix A: Acceptance Tests

In this appendix, we review the acceptance tests given by Thuel and Lehoczky,

giving examples where the tests guarantee hard aperiodic tasks which subsequently

miss their deadlines. Further, we identify the faulty assumptions at the root of the

problem in each case. First, to aid discussion, we outline the computational model

used [83].

A . 1 Computational Model

This computational model assumes that there are n hard periodic tasks. Each periodic

task is assigned a unique priority from 1 to n. Further, each task τ i has a period,

worst case execution time, deadline and initiation time denoted by T i , C i , D i and φi

respectively. These parameters are assumed to be known deterministic quantities. It

is also assumed that the deadlines of tasks are less than or equal to their periods. At

run-time, each periodic task τ i gives rise to an infinite sequence of invocations. The

jth invocation (j = 1,2,3...) of task τ i , denoted by τ ij , is released at time

φi + ( j − 1) T i and requires at most C i units of execution to be completed by its

deadline d ij = φi + ( j − 1) T i + D i . An arbitrary set of hard aperiodic tasks is also

considered. Each hard aperiodic task τ F is released at some arbitrary time φF and

has a relative deadline of D F . In the subsequent analysis, it is also assumed that

tasks are independent, do not voluntarily suspend themselves and that any task can be

instantly pre-empted by another task of higher priority.

A . 2 Static Slack Stealing Algorithm

Before describing the acceptance test, we first introduce the data structures used, by

giving an outline of the analysis of the Slack Stealing algorithm [59]. The operation

of the Slack Stealing algorithm relies on a table of values, recording the cumulative

slack, A ij for each invocation τ ij of a hard periodic task τ i . These values are used

to define a cumulative slack function A i (0,t), which gives the largest amount of

aperiodic processing possible at priority level i or higher in the interval [0,t) such

that all invocations of task τ i meet their deadlines. In turn, the cumulative slack

function A i (0,t) is used to calculate the aperiodic processing time available Ai
* ( t) at
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time t whilst guaranteeing that task τ i will meet its next deadline. Finally, to ensure

that the deadlines of all hard periodic tasks are met, the Slack Stealing algorithm uses

the functions Ai
* ( t) to determine the actual processing time A * ( t), which it will

make available to aperiodic tasks. In [59], the cumulative slack, A ij is defined as:

The largest amount of aperiodic processing possible at level i or higher
during [0,C ′ ij ], such that C ′ ij ≤d ij , where C ′ ij refers to the completion
time of τ ij .

Further, the cumulative slack function A i (0,t) used to ensure the schedulability of all

invocations of task τ i is defined as follows:

∀ t : C ′ ij −1 ≤ t < C ′ ij , j≥1 : A i (0,t) = A ij (A.1)

It is also asserted that:

A i (0,t) gives the largest amount of aperiodic processing possible at
priority level i or higher during [0,t] such that all invocations of task τ i
meet their deadlines.

Strictly, the above assertion and the definition of A i (0,t) are not entirely consistent.

This discrepancy can be seen by considering the first invocation of a single periodic

task with the following timing attributes: C 1 = 1, T 1 = 10, D 1 = 10, φ1 = 0, d 11 = 10.

Now the latest completion time of the first invocation is C ′ 11 = 10 and hence the

cumulative slack, A 11 = 9. However, for say t = 2, the largest amount of aperiodic

processing possible in the interval [0,2) (i.e. A 1 (0,2)) is clearly 2 rather than 9.

Effectively, A i (0,t) represents the cumulative priority level i aperiodic

processing possible in the interval [0,t) plus that level i aperiodic processing which

is permitted from time t onwards before the current invocation of task τ i must be

resumed to avoid missing its deadline.

The analysis given in [59] continues:

Ai
* ( t) = A i (0,t) − A ′ i ( t) − I i ( t) (A.2)

Where A ′ i ( t) denotes the cumulative aperiodic processing consumed at priority level

i or higher during the interval [0,t) and I i ( t) denotes the level i inactivity during
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[0,t).

The Slack Stealing algorithm thus enables aperiodic task execution whilst

A * ( t) = min (1≤i≤n) Ai
* ( t) > 0 (A.3)

Despite the minor discrepancy noted earlier the above inequality is correct for

scheduling soft aperiodic tasks. This is because A * ( t) actually represents the

aperiodic processing which is permitted from time t onwards until one of the hard

deadline tasks must be resumed. In the case of scheduling soft aperiodic tasks, this is

exactly the quantity required.

A . 3 Acceptance Test #1

In the case of scheduling hard aperiodic tasks, the effects of the discrepancy noted

previously are far more significant. Consider a hard aperiodic task which is released

at time t a and has a deadline at time t b . It is necessary to find the aperiodic

processing time available in the interval [ t a ,t b ) in order to determine if the task can

be guaranteed.

Thuel and Lehoczky [83] calculate the aperiodic processing time available as

follows: first, the invocation j of task τ i which constrains the cumulative level i slack

at time t b is found. This is then used to find the maximum aperiodic processing time

available in the interval [ t a ,t b ) without violating any deadlines of task τ i . Note, C ′ ij

is the latest possible completion time for invocation j of task τ i .

A i ( t a , t b ) = min I
L A ij , A ij −1 + ( t b − C ′ ij −1 ) M

O− A ′ 1 ( t a ) − I i ( t a )

Ai
* ( t a , t b ) = min I

L ( t b − t a ) ,A i ( t a , t b ) M
O (A.4)

Here, in effect, an attempt was made to correct the minor discrepancy noted

previously. The analysis given in [83] states that:
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At time C ′ ij −1 , there is a jump in the cumulative slack function A i (0,t)
of size ∆s = (A ij − A ij −1 ). This means that at time C ′ ij −1 , ∆s additional
units of aperiodic processing time become available. If t b < (C ′ ij −1 + ∆s),
some of the additional processing time ∆s cannot be used until after the
aperiodic deadline. Thus the amount of cumulative aperiodic processing
available in [0,t b ), as constrained by task τ i is given by:

min I
L A ij , A ij −1 + ( t b − C ′ ij −1 ) M

O

However, this simple correction is not sufficient, as it does not account for the fact

that the ∆s additional units may not be available until after time t b due to the

execution requirements of higher priority periodic tasks. This point is illustrated by

the example given in figure A.1.

The analysis of Thuel and Lehoczky proceeds from the above equations by

asserting that:

As in the soft aperiodic case, once the maximum cumulative aperiodic
processing times are computed for each task, the aperiodic processing
time available at the highest priority level is the minimum of these values
as given by: A * ( t a , t b ) = min (1≤i≤n) Ai

* ( t a , t b )

Unfortunately, this assertion is not valid. In the soft aperiodic case, the interval over

which slack is stolen extends from time t to time t + A * ( t). During this interval, no

hard tasks execute and therefore none can complete. Hence, the slack available in

the interval is limited by a single periodic task. Equation (A.3) therefore gives an

accurate value for the available slack. However, in the hard aperiodic case, the

interval [ t a ,t b ) may constitute many sub-intervals of aperiodic execution followed by

hard periodic task execution. In each sub-interval, the slack available may be limited

by a different periodic task. Simply taking the minimum slack available over the

entire interval is not sufficient: equation (A.4) can give much larger values than the

actual slack available. Again, this point is illustrated by the example in figure A.1.

In this example, the acceptance test outlined above guarantees a hard aperiodic task.

However, the aperiodic processing time made available by the Slack Stealing

algorithm between the release and the deadline of this task is substantially less than

its execution requirement, causing its deadline to be missed.
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The example is based on the task set detailed below.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hard Periodic tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Priority Period Offset Deadline WCETiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 36 13 5 4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

2 36 7 6 5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 36 0 7 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

For this task set, the cumulative slack functions A i (0,t) are as follows:

A 1 (0,t) =
I
K
L 46, 18 < t≤54

14, 0≤ t≤18

A 2 (0,t) =
I
K
L 35, 13 < t≤49

8, 0≤ t≤13

A 3 (0,t) =
I
K
L 22, 7 < t≤43

1, 0≤ t≤7

In addition to the hard periodic tasks given above, we also consider a single aperiodic

task which is released at time t = 0 with a deadline of 18 and a processing

requirement of 10 units.

According to the analysis given by Thuel and Lehoczky, the maximum aperiodic

processing time in the interval [0,18) is calculated as follows. Note, the aperiodic

processing time and idle time prior to the interval are zero.

A 1 (0,18) = min(46,14 + (18 − 18)) = 14

A 2 (0,18) = min(35,8 + (18 − 13)) = 13

A 3 (0,18) = min(22,1 + (18 − 7)) = 12

The maximum aperiodic processing permitted in the interval [0,18)

A * (0,18) = min(14,13,12) = 12
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Hard aperiodic task execution is shown on timeline A. Similarly, the
execution of periodic tasks is illustrated on timelines 1, 2 and 3.
Note, task execution is as scheduled by the Slack Stealing algorithm.

Figure A.1: Insufficient Acceptance Test #1.

Hence the aperiodic task is given a guarantee. The execution of the tasks, as

scheduled by the Slack Stealing algorithm, is shown in figure A.1. By inspection, it

is clear that only 3 units of aperiodic processing may be permitted in the interval

without causing a periodic task to miss its hard deadline. Indeed, the Slack stealing

algorithm affords the aperiodic task 3 units of execution time prior to its deadline

being missed at time t = 18.

A . 4 Acceptance Test #2

The revised acceptance test presented by Thuel at the 1993 Real-Time Systems

Symposium [84], uses a different approach to calculate the aperiodic processing time

available in a given interval.

Off-line, a list of triplets of the form {t h , i ′, s( t h )} is defined. Where t h is the

h th latest completion time of a periodic task, i ′ is the priority of that task and s( t h )

is the amount by which the slack at priority level i ′ increases at that completion of

task τ i ′ . The list is ordered by increasing values of t h .
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At run-time, to determine the aperiodic processing time available in a given

interval, [t a , t b), requires iteration over all the triplets with latest completion times in

that interval. A set of n scratch variables S i ( t) are used to store the slack available

at priority level i at any arbitrary time t. A counter S * ( t) is used to store the

aperiodic processing time available from time t onwards at the highest priority level.

S * ( t) =
∀ i

min S i ( t) (A.5)

Further, a cumulative slack counter Q is used to total the available aperiodic

processing time found at each iteration.

Assuming a hard aperiodic task arrives at time t a , with a deadline at t b , the

acceptance test proceeds as follows: first, the scratch variables S i ( t a ) are set to

Ai
* ( t a ) and the aperiodic processing time available immediately (S * ( t a )) is found.

Q = min(S * ( t a ) ,t b − t a ) (A.6)

Iteration then proceeds over all the triplets with completion times in the interval. On

each iteration, the scratch variables are updated according to the data stored in the

triplet. (Note, on the first iteration, t h = t a).

S k ( t h +1 ) =

I
J
K
J
L S k ( t h ) − S * ( t h ) ,

S k ( t h ) − S * ( t h ) + s( t h +1 ) ,

S k ( t h ) − S * ( t h ) − C * ,

ifk > i ′
ifk = i ′
ifk < i ′

(A.7)

Where C * is the execution time remaining at time t a for the invocation which

completes at time t h +1 . A new value of S * ( t h +1 ) is determined and Q updated

accordingly.

Q = Q + min(S * ( t h +1 ) ,t b − t h +1 ) (A.8)

Once all the triplets with completion times in the interval have been processed, Q

gives the available aperiodic processing time.
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Unfortunately, there is a subtle problem with this approach: the latest

completion times and indeed the order of task completions may change at run-time.

This is illustrated by the following example based on the task set defined below.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hard periodic tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Priority Period Deadline Offset WCETiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 8 1 7 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

2 6 6 4 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 7 7 0 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

The slack functions for these tasks are:

A 11 = 7, A 12 = 14

A 21 = 8, A 22 = 12

A 31 = 5, A 32 = 9

and the latest completion times are:

C ′ 11 = 8, C ′ 12 = 16

C ′ 21 = 10, C ′ 22 = 15

C ′ 31 = 7, C ′ 32 = 14

At time 0, we assume that an aperiodic task arrives and requests 6 units of

computation by its deadline at time 8. Using the approach given by Thuel and

Lehoczky [84], the completion time triplets {latest completion time, priority, slack

increment} of interest are {7,3,4}, {8,1,7} and {10,2,5}. Thus the aperiodic

processing time available in the interval [0,8), is calculated as follows:

S * (0) = 5

S 1 (7) = 7 − 5 − 1 = 1

S 2 (7) = 8 − 5 − 1 = 2

S 3 (7) = 5 − 5 + 4 = 4

S * (7) = 1
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Hence Q = 6 and the aperiodic task is given a guarantee. However, τ 21 (the first

invocation of task 2) is forced to complete at time 6 in order for τ 31 to meet its

deadline at time 7. Hence the slack available in the interval is in fact only 5 units, as

illustrated by figure A.2. The aperiodic task therefore misses its deadline at time 8.

0 5 10 15

A

1

2

3

g

Hard aperiodic task execution is shown on timeline A. Similarly, the
execution of periodic tasks is illustrated on timelines 1, 2 and 3.
Note, task execution is as scheduled by the Slack Stealing algorithm.

Figure A.2: Insufficient Acceptance Test #2.

It is interesting to also consider the case where τ 31 executes and completes at

time 1, whereupon an aperiodic task arrives and requests 6 units of execution time by

its deadline at time 8. Now, the Slack Stealing algorithm can delay the execution of

τ 21 until time 9, without causing any deadlines to be missed, thus making 6 units of

computation available to the aperiodic task. In this case, the order of task completion

is different, τ 31 completes before τ 21 .

The above example highlights the problem with using latest completion time

triplets to determine the slack available in an interval: the latest completion time of a

task may change at run-time. To formulate an exact acceptance test using this

approach would require run-time maintenance of the latest completion times,

associated triplets and their position in the list.





- 263 -

Appendix B: Calculating Slack for Tasks with D > T

In this appendix, we describe an iterative computation which determines a

monotonically increasing lower bound on the slack at priority level i, given that

D i > T i . For task sets with utilisation < 100%, this lower bound is guaranteed to

converge to the exact slack available. Further, we provide a criteria for determining

convergence using a monotonically decreasing upper bound.

B . 1 Analysis

In the following analysis, we assume that all invocations of task τ i have the same

base priority i and that earlier releases take precedence over later releases. That is

invocation q cannot commence execution until invocation q − 1 has completed.

Si
T ( t ,q) is notation for the slack on the qth invocation of task τ i , which is present

prior to the release of the (q + 1)th invocation. Further, xi
* ( t ,q) denotes the earliest

possible time at which the qth invocation of task τ i may be released,

(xi
* ( t ,q) = (d i ( t) − D i ) + qT i , for a periodic task). Hence Si

T ( t ,q) corresponds to the

level i idle time in the interval [t ,t + xi
* ( t ,q + 1)). Similarly, Si

D ( t ,q) is the slack

found on the qth invocation of task τ i prior to its deadline (denoted by d i ( t ,q),

where d i ( t ,q) = d i ( t) + qT i). Hence Si
D ( t ,q) is equivalent to the level i idle time in

the interval [t ,t + d i ( t ,q)) excluding computation corresponding to invocations q+1,

q+2, q+3... of task τ i .

We now derive relationships between the slack present on different invocations

of task τ i . These relationships are then used to provide upper and lower bounds on

the exact slack available.

Consider the two intervals [t ,t + xi
* ( t ,q + 1)) and [t ,t + xi

* ( t ,q + 2)), over which

Si
T ( t ,q) and Si

T ( t ,q + 1) are calculated. The level i idle time in the interval

[t ,t + xi
* ( t ,q + 1)) is the same when computing both Si

T ( t ,q) and Si
T ( t ,q + 1). As

further idle time may be found in the interval [t + xi
* ( t ,q + 1) ,t + xi

* ( t ,q + 2)), we

have:

∀ q = 0,1,2,3... Si
T ( t ,q + 1) ≥Si

T ( t ,q) (B.1)
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Similarly, assuming that f (q) is the largest integer such that

d i ( t ,q) ≥xi
* ( t ,(q + 1) + f (q)). (In the case of a periodic task, f (q) is a constant:

f (q) =
J
J
Q T i

D ihhh
J
J
P
− 1). The interval over which Si

D ( t ,q) is calculated includes the

interval over which Si
T ( t ,q + f (q)) is calculated. Further, in calculating Si

D ( t ,q), only

computation due to invocations 0,1..q of τ i are included, whilst, invocations q + 1,

q + 2... q + f (q) are are also included when Si
T ( t ,q + f (q)) is calculated. Hence:

∀ q = 0,1,2,3... Si
D ( t ,q) ≥Si

T ( t ,q + f (q)) (B.2)

(Note, in general a similar relationship between Si
D ( t ,q + 1) and Si

D ( t ,q) cannot be

established. This is because, the idle time in the interval [t ,t + d i ( t ,q)) differs

between calculations of Si
D ( t ,q + 1) and Si

D ( t ,q). Computation time due to invocation

q+1 of task τ i is included in the former but not in the latter).

The exact slack is given by:

∀ q =0,1,2,3...
min I

L Si
D ( t ,q) M

O (B.3)

Using inequalities (B.1) and (B.2), we may construct a series of increasing lower

bounds on the exact priority i slack. As

Si
T ( t ,k + f (k)) ≤

∀ q =k ,k +1,k +2...
min I

L Si
D ( t ,q) M

O (B.4)

The kth lower bound is given by:

min
I
J
L
Si

T ( t ,k + f (k)) ,
∀ q =0,1,2...k −1

min I
L Si

D ( t ,q) M
O

M
J
O

(B.5)

Iteration proceeds by calculating values of Si
T ( t ,q) and Si

D ( t ,q) in the order required

to form the lower bounds given by k = 0,1,2,3.... For example, with f (q) = 1, the

order is Si
T ( t ,1), Si

D ( t ,0), Si
T ( t ,2), Si

D ( t ,1), Si
T ( t ,3), forming lower bounds Si

T ( t ,1),

min(Si
T ( t ,2) ,Si

D ( t ,0)), min(Si
T ( t ,3) ,Si

D ( t ,0) ,Si
D ( t ,1)). At any point, iteration may
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be terminated and the largest lower bound found so far returned as the slack available

at priority level i. Further, we may define the kth upper bound on the level i slack

for k = 1,2,3... as:

∀ q =0,1,2,...k −1
min I

L Si
D ( t ,q) M

O (B.6)

When the upper and lower bounds converge, the exact level i slack has been

determined. We note that convergence is guaranteed for task sets with utilisation <

100%. In pathological cases, as utilisation tends towards 100%, convergence may

require an arbitrarily large number of invocations to be examined. However, the

invocation of task τ i with the least slack must be one of the first h i examined,

(where h i is the number of invocations of task τ i in LCM i , the least common

multiple of the subset of tasks with priority i or higher). This can be seen by

considering the slack on the qth and (q + h i )th invocations of task τ i . All the level i

idle time in LCM i lies between these two invocations, hence the slack on the

(q + h i )th invocation exceeds that on the qth by the level i idle time in the level i

LCM. Hence the invocation with the least slack must be one of the first h i .

In practice, the upper and lower bounds generally converge rapidly. Further,

complexity may be reduced by limiting k (and therefore q) to some constant at the

expense of providing a lower bound rather than the exact slack available.

B . 1 . 1 Calculating slack on the qth invocation

In calculating the available slack, we make use of the following information, typically

derived from data stored in the task control block):

c i ( t) - The remaining execution time budget for the current (i.e. oldest ready)

invocation of τ i .

e i ( t) - The number of released but as yet uncompleted invocations of τ i at

time t.
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x i ( t) - The earliest next release of an invocation of τ i (measured relative to t).

Further, we denote computation due to task τ i , but excluding invocations q + 1,

q + 2..., which is ready in the interval [ t ,t + wi
m ( t)) by c i ( t ,q,wi

m ( t)).

c i ( t ,q,wi
m ( t)) =

c i ( t) + min
I
J
L

I
L e i ( t) − 1 M

O
o

,q
M
J
O
C i + min

I
J
J
L

I
L q − e i ( t) + 1 M

O
0

,
R
J
J T i

wi
m ( t) − x i ( t)hhhhhhhhhhhh

H
J
J
0

M
J
J
O

C i (B.7)

The following algorithm calculates the values of Si
D ( t ,q) and Si

T ( t ,q) for invocation

q of task τ i . Note, we use interval to denote the length of the interval over which

slack is determined. Thus when calculating Si
T ( t ,q) and Si

D ( t ,q), interval is set to

xi
* ( t ,q + 1) and d i ( t ,q) respectively.

Algorithm for calculating slack on the qth invocation of task τ i .

S i ( t ,q) = 0

wi
m +1 ( t) = 0

do while wi
m +1 ( t) ≤ interval

wi
m ( t) = wi

m +1 ( t)

wi
m +1 ( t) = S i ( t ,q) + c i ( t ,q,wi

m ( t)) +

∀ j ∈ hp( i)
Σ

I
J
J
J
L

c j ( t) +
I
J
J
L

I
L e j ( t) − 1 M

O
0

+
R
J
J T j

wi
m ( t) − x j ( t)hhhhhhhhhhhh

H
J
J
0

M
J
J
O

C j

M
J
J
J
O

if wi
m ( t) = wi

m +1 ( t)

then gap = v i ( t ,q,wi
m ( t))

S i ( t ,q) = S i ( t ,q) + gap

wi
m +1 ( t) = wi

m +1 ( t) + gap + ε

end if

enddo

return S i ( t ,q) (B.8)
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The function v i ( t ,q,w i ( t)) returns the length of the level i idle period from time

t + w i ( t) excluding invocations q+1,q+2, q+3 etc of task τ i:

v i ( t ,q,w i ( t)) = min

I
J
J
J
J
J
J
J
L n i ( t ,q,w i ( t))

∀ j ∈ hp( i)
min

I
J
J
L

R
J
J T j

w i ( t) − x j ( t)hhhhhhhhhhhh
H
J
J
0

T j + x j ( t) − w i ( t)

M
J
J
O

,

I
L interval − w i ( t) M

O
0

,
M
J
J
J
J
J
J
J
O

(B.9)

The function n i ( t ,q,w i ( t)) returns the next release of an invocation of task τ i up to

and including the qth invocation.

n i ( t ,q,w i ( t)) =

I
J
K
J
L ∞ otherwise

R
J
J T i

w i ( t) − x i ( t)hhhhhhhhhhhh
H
J
J
0

T i + x i ( t) − w i ( t) if
R
J
J T i

w i ( t) − x i ( t)hhhhhhhhhhhh
H
J
J
0

≤ I
L q − e i ( t) + 1 M

O
0 (B.10)

We note that iteration is required for tasks with arbitrary deadlines. For tasks with

D≤T, convergence is guaranteed with k = 1, as Si
T ( t , − 1) ≤Si

D ( t ,0) ≤Si
T ( t ,0). In

practice of course, only Si
D ( t ,0) need be calculated for tasks with D≤T.

B . 1 . 2 Example slack calculation

The example given in figure B.1 illustrates the calculation of slack on a single

invocation of a task with D > T. The timing attributes of the tasks used in the

example are given in the table below. Using this task set, figure B.2 illustrates how

converging upper and lower bounds on the available slack can be calculated.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hard tasksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Priority Period Deadline offset wcetiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 100 5 10 5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

2 5 12 0 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c
c
c

t t+1 t+3 t+6 t+8 t+10 t+15

1

2
q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

Calculation of the slack on invocation q = 1 of task τ 2 at time t
At time t, we have outstanding computation: c 1 ( t) = 0 and c 2 ( t) = 1 (e 2 ( t) = 1).
The next releases of tasks τ 1 and τ 2 (relative to t) are at: x 1 ( t) = 8 and
x 2 ( t) = 3. The end of the interval under examination is at t + d 2 ( t ,1) = t + 15.
Applying the algorithm for calculating slack:
Iteration 1: w2

1 ( t) = c 2 ( t) = 1
Iteration 2: w2

2 ( t) = 1. Identifying the end of a level 2 busy period at t + 1.
v 2 ( t ,1,2) = x 2 ( t) − w2

2 ( t) = 2, corresponding to the idle period [ t + 1,t + 3).
Converting this idle period to slack, we have S 2 ( t ,1) = 2 and w2

2 ( t) = 3 + ε.
Iteration 3: w2

3 ( t) = S 2 ( t ,1) + c 2 ( t) + C 2 = 6
Iteration 4: w2

4 ( t) = 6, again identifying the end of a busy period at t + 6.
v 2 ( t ,1,6) = x 1 ( t) − w2

4 ( t) = 2, corresponding to an idle period of length 2
prior to the release of task τ 1 at t + 8. S 2 ( t ,1) = 4 and w2

4 ( t) = 8 + ε
Iteration 5: w2

5 ( t) = S 2 ( t ,1) + c 2 ( t) + C 2 + C 1 = 13.
Note, computation time due to the q = 2 invocation of τ 2 has not been
included as it is effectively of lower priority than the q = 1 invocation.
Iteration 6: w2

6 ( t) = 13, indicating the end of a busy period at t + 13,
(excluding invocations of task τ 2 with q > 1).
v 2 ( t ,1,13) = d 2 ( t ,1) − w2

6 ( t) = 2 corresponding to the 2 idle ticks prior
to the end of the interval at t + 15. S 2 ( t ,1) = 6 and w2

6 ( t) = 15 + ε> d 2 ( t ,1),
hence iteration is complete.
The slack on invocation q = 1 of task τ 2 at time t is 6.

Figure B.1: Calculation of Slack on a Single Invocation of a Task with D > T.
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t t+1 t+3 t+6 t+8 t+10 t+13t+15 t+18t+20 t+23t+25 t+28

1

2
q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

Calculation of upper and lower bounds on the priority 2 slack at time t

Default: The lower bound on priority 2 slack is 0 and the upper bound is ∞.
Iteration k=0: The lower bound is given by S2

T ( t ,1), i.e. the slack
present in the interval [t ,t + 8). S2

T ( t ,1) = 4 comprising the idle
periods [t + 1,t + 3) and [t + 6,t + 8).
Hence the lower bound is 4 and the upper bound is ∞.
Iteration k=1: The lower bound is given by min(S2

T ( t ,2) ,S2
D ( t ,0)).

S2
T ( t ,2) is the slack in the interval [t ,t + 13) = 4.

S2
D ( t ,0) is the slack in the interval [t ,t + 10) ignoring computation

due to invocations of task τ 2 with q > 0. S2
D ( t ,0) = 7, comprising the

idle period [t + 1,t + 8).
Hence the lower bound is 4 and the upper bound is 7.
Iteration k=2: The lower bound is given by min(S2

T ( t ,3) ,S2
D ( t ,0) ,S2

D ( t ,1)).
S2

T ( t ,3) is the slack in the interval [t ,t + 18) = 4.
S2

D ( t ,1) is the slack in the interval [t ,t + 15) ignoring computation
due to invocations of task τ 2 with q > 1. S2

D ( t ,1) = 6, comprising the
idle periods [t + 1,t + 3), [t + 6,t + 8) and [t + 13,t + 15).
Hence the lower bound is 4 and the upper bound is 6.
Iteration k=3: The lower bound is given by min(S2

T ( t ,4) ,S2
D ( t ,0) ,S2

D ( t ,1),
S2

D ( t ,2)), S2
T ( t ,4) is the slack in the interval [t ,t + 23) = 5.

S2
D ( t ,2) is the slack in the interval [t ,t + 20), ignoring computation

due to invocations of task τ 2 with q > 2. S2
D ( t ,2) = 8, comprising the

idle periods [t + 1,t + 3), [t + 6,t + 8) and [t + 16,t + 20).
Hence the lower bound is 5 and the upper bound is 6.
Iteration k=4: The lower bound is min(S2

T ( t ,5) ,S2
D ( t ,0) ,S2

D ( t ,1) ,S2
D ( t ,2) ,

S2
D ( t ,3)). S2

T ( t ,5) is the slack in the interval [t ,t + 28) = 7.
S2

D ( t ,3) is the slack in the interval [t ,t + 25), ignoring computation
due to invocations of task τ 2 with q > 3. S2

D ( t ,3) = 10, comprising the
idle periods [t + 1,t + 3), [t + 6,t + 8) and [t + 19,t + 25).
Hence both the lower and upper bounds are 6.
As the upper and lower bounds have converged, iteration is terminated.
The exact slack at priority level 2 at time t is 6.

Figure B.2: Iterative Computation of Slack for Tasks with Arbitrary Deadlines.
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The complexity of calculating the exact slack for a task with D > T is

O(kmn2) . Where, k is the number of iterations before convergence, m is the number

of iterations of the ’do while’ loop and n is the number of higher priority tasks.
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Appendix C: Avoiding Priority Inversion in the Kernel

C . 1 Integrated Event Handling and Scheduling

The initial DRTEE kernel implementation has the drawback that the release of a low

priority task impinges upon the schedulability of those with higher priorities. This

problem can be avoided and the priority inversion caused by the kernel substantially

reduced using the mechanisms described below. Note, the pseudo code given applies

only to Background Scheduling with no semaphore access, however a similar

approach can be applied when semaphores are locked according to the Ceiling

Semaphore Protocol or when hard task priorities are promoted due to the operation of

the Dual Priority Scheduling algorithm.

The integrated scheduling model uses a run_table which is implemented as

an array of pointers to Task Control Blocks (TCB), indexed by priority. If a task is

runnable at a given priority level, then the entry in the run_table corresponding to

that priority level is a pointer to the task’s control block. Array entries corresponding

to priority levels at which no task is currently runnable are set to NULL. In

addition, we use a task_table which is an array indexed by base priority. Each

slot in this array contains a pointer to the TCB of the task with the corresponding

base priority. This array is static, the slot contents are unchanged at run-time.

As there can only be at most one timer event outstanding per task, we assume

that this event is stored in the task’s control block.

On entering the scheduler, let cur_task be a pointer to the TCB of the task

which was executing, cur_pri its active priority and cur_event a pointer to the

next timer event of priority higher than or equal to cur_pri. There are two

different ways in which the scheduler can be entered; via the task completion call

gate or via the timer interrupt handler.

Task Completion: At the completion of the current task, there can be no higher

priority tasks runnable. Hence the scheduler need only examine priority levels lower

than cur_pri to determine which is the highest priority runnable task. Similarly, the

scheduler need only inspect these same priority levels to determine if there is an



- 272 -

earlier event (i.e. earlier than cur_event ) which must be set. The pseudo code for

determining which task to dispatch and which event to set is given below.

Pseudo Code for Task Completion

run_table[cur_pri] = NULL: /* task completed */
old_pri = cur_pri;
exit = FALSE
/* find the highest priority runnable task */
for(pri = cur_pri; exit != TRUE; pri = next_lower(pri)) {

task = run_table[pri];
if(task!= NULL) {

cur_task = task;
cur_pri = pri;
exit = TRUE;

}
}
/* find the next event to set */
for(pri = old_pri; higher_or_equal(pri, cur_pri);

next_lower(pri)){
task = task_table[pri];
if(task!= NULL &&

task->next_event->time < cur_event->time) {
cur_event = task->next_event;

}
}
set_timer_event(cur_event);
dispatch(cur_task);

Note, the first for loop always terminates as the idle task has the lowest priority and

is always runnable. (The function next_lower(pri) returns the priority level

immediately below pri. The function higher_or_equal(pri,cur_pri)

returns TRUE whilst pri is an equal or higher priority level than cur_pri ).

Timer Event: At the expiry of a timer event, of type RELEASE, the scheduler needs

to make the task corresponding to that event runnable at the appropriate priority level

and set up the next timer event of an equal or higher priority.
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Pseudo Code for Timer Expiry

task = cur_event->task
run_table[task->base_priority] = task;
cur_pri = task->base_priority;
cur_task = task;
set_next_event(task);
cur_event = cur_task->next_event;
exit = FALSE
/* find the next event to set */
for(pri = high_pri; higher(pri, cur_pri); next_lower(pri)) {

task = task_table[pri];
if(task!= NULL &&

task->next_event->time < cur_event->time) {
cur_event = task->next_event;

}
}
set_timer_event(cur_event);
dispatch(cur_task);

(Note, high_pri is the highest base priority of a task, the function

higher(pri,cur_pri) returns TRUE while pri is a higher priority level than

cur_pri and set_next_event(task) sets up the task’s next timer event).

The above pseudo-code ensures that whenever, the scheduler is entered, the

only processing which takes place is on behalf of tasks with a priority higher than or

equal to that of the highest priority runnable task. As the TCB’s are examined in

priority order, this continues to be the case, as tasks are made runnable.

By comparison with the more conventional run-queue / delay-queue model, the

above approach has the advantage that the execution of high priority tasks is not

interrupted by the release of lower priority tasks. Such tasks would not in any case

be executed until the higher priority task has completed.

A scheduler using the traditional run-queue / delay-queue model typically has

worst case overheads of O( i), where i is the priority of the task, at each task release,

due to insertion of the released task into the run-queue and O(n) overheads at each

task completion, due to inserting the completed task into the delay-queue. Further, the

overheads of releasing low priority tasks impinges upon the schedulability of higher

priority tasks. This is particularly undesirable when the lower priority tasks are

optional / soft tasks whose timing characteristics may be unknown a priori.
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By comparison, the integrated scheduling / event handling approach advocated

above also has O( i) overheads at each task release, due to finding the next timer

event to set, and O( j) overheads at task completion, where j is the priority of the

next runnable task. However, this approach ensures that the release of lower priority

tasks is postponed until any higher priority tasks have finished executing. This

removes the priority inversion and improves the feasibility of high priority hard tasks.

Stated otherwise, the interference which high priority tasks are subject to is

significantly reduced under the integrated approach.
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