

Quantifying the Exact Sub-optimality of Non-preemptive Scheduling

Robert I. Davis¹, Abhilash Thekkilakattil², Oliver Gettings¹, Radu Dobrin², Sasikumar Punnekkat²

¹Real-Time Systems Research Group, University of York, UK ²Malärdalen Real-Time Research Center, Malärdalen University, Sweden.

Outline

Intro

- How do we compare scheduling algorithms
- Speedup factors and sub-optimality
- Previous results in this area

Exact Speedup factors

- EDF-NP v EDF-P
- FP-NP v EDF-P
- FP-NP v FP-P
- Reverse case
 - FP-P v FP-NP
- Summary and open problems

Comparison of scheduling algorithms

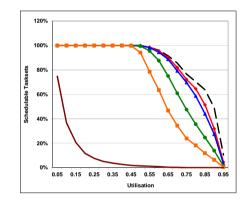
Empirical methods

- Generate lots of task sets
- Success ratio plots
- Weighted schedulability graphs explore performance w.r.t. certain parameters

Give an average case comparison

Theoretical methods

 Prove resource augmentation bounds or speedup factors
 Give a worst-case comparison
 Focus of this talk



1/Ω

Speedup factors and sub-optimality

Speedup factor (of scheduling algorithm A versus scheduling algorithm B) is the factor by which the speed of the processor needs to be increased, to ensure that any task set that is feasible under algorithm B is guaranteed to be feasible under algorithm A

Sub-optimality: where B is an optimal algorithm, then the speedup factor provides a measure of the sub-optimality of algorithm A

[Note by **feasible**, for fixed priority scheduling, we mean there is some priority asignment with which the task set is schedulable]

Finding exact speedup factors

Lower bound on speedup factor

 Find a task set that is schedulable under algorithm B and is not schedulable under algorithm A unless the processor speed is increased by at least a factor of X

X is a lower bound on the speedup factor

Upper bound on speedup factor

Prove that any task set that is schedulable under algorithm
 B is also schedulable under algorithm A on a processor
 whose speed has been increased by a factor of Y

Y is an upper bound on the speedup factor

Exact speedup factor

When upper and lower bounds are equal

Problem scope

Single processor systems

 Execution time of all tasks scales linearly with processor clock speed

Sporadic task model

- Static set of *n* tasks τ_i with priorities 1..*n*
- Bounded worst-case execution time C_i
- Sporadic/periodic arrivals: minimum inter-arrival time T_i
- Relative deadline D_i
- Independent execution (no resource sharing)
- Independent arrivals (unknown a priori)

Interested in comparing pre-emptive and non-preemptive scheduling (both EDF and Fixed Priority)

Background: Scheduling algorithms & optimality

- Pre-emptive
 - EDF-P is an optimal uniprocessor scheduling algorithm for arbitrary-deadline sporadic tasks

EDF-P dominates FP-P, EDF-NP, and FP-NP

Non-pre-emptive

- No work-conserving non-preemptive algorithm is optimal
- Inserted idle time is necessary for optimality
- EDF-NP is optimal in a weak sense that it can schedule any task set for which a feasible work-conserving non-preemptive schedule exists

EDF-NP dominates **FP-NP**

Background: Scheduling algorithm optimality

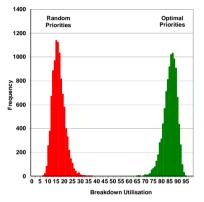
- Fixed Priority Scheduling
 - Priority assignment important

Optimal priority assignment (FP-P)

- Implicit-deadlines Rate-Monotonic
- Constrained-deadlines Deadline Monotonic
- Arbitrary-deadlines Audsley's Optimal Priority Assignment algorithm

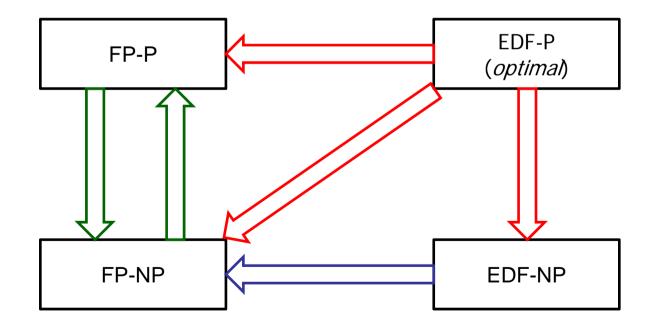
Optimal priority assignment (FP-NP)

All 3 cases – Audsley's algorithm



Landscape of scheduling algorithms and speedup factors

Interested in comparing EDF and Fixed Priority (FP) scheduling preemptive and non-preemptive cases



Previous results: Speedup factors for FP-P v. EDF-P and FP-NP v. EDF-NP

As of Jan 2015

Taskset	FP-P v. EDF-P		FP-NP v. EDF-NP	
Constraints	Speedup factor		Speedup factor	
[Priority ordering]	Lower bound Upper bound		Lower bound Upper bound	
Implicit-deadline	1/ln(2)		1/Ω	2
[RM] [OPA]	≈ 1.44269		≈ 1.76322	
Constrained-deadline	1/Ω		1/Ω	2
[DM] [OPA]	≈ 1.76322		≈ 1.76322	
Arbitrary-deadline [OPA] [OPA]	1/Ω ≈ 1.76322	2	1/Ω ≈ 1.76322	2
	Open Problems			

Recent results: Speedup factors for FP-P v. EDF-P and FP-NP v. EDF-NP

ECRTS 2015: [van der Bruggen et al.]

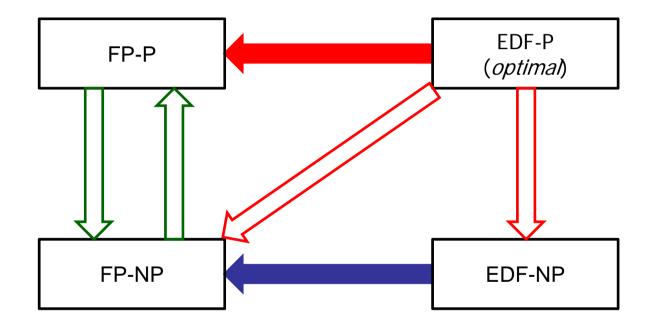
Taskset	FP-P v. EDF-P		FP-NP v. EDF-NP	
Constraints	Speedup factor		Speedup factor	
[Priority ordering]	Lower bound Upper bound		Lower bound Upper bound	
Implicit-deadline	1/ln(2)		1/Ω	
[RM] [OPA]	≈ 1.44269		≈ 1.76322	
Constrained-deadline	1/Ω		1/Ω	
[DM] [OPA]	≈ 1.76322		≈ 1.76322	
Arbitrary-deadline [OPA] [OPA]	1/Ω ≈ 1.76322	2	1/Ω ≈ 1.76322	2

Recent results: Speedup factors for FP-P v. EDF-P and FP-NP v. EDF-NP

Real-Time Systems Sept 2015: [Davis et al.]

Taskset	FP-P v. EDF-P	FP-NP v. EDF-NP
Constraints	Speedup factor	Speedup factor
[Priority ordering]	Lower bound Upper bound	Lower bound Upper bound
Implicit-deadline	1/ln(2)	1/Ω
[RM] [OPA]	≈ 1.44269	≈ 1.76322
Constrained-deadline	1/Ω	1/Ω
[DM] [OPA]	≈ 1.76322	≈ 1.76322
Arbitrary-deadline [OPA] [OPA]	2	2

Focus of this work: Sub-optimality of non-preemptive scheduling



Sub-optimality of EDF-NP and FP-NP

Speedup factors for FP-NP v. FP-P and vice-versa since they are incomparable

Long task problem

- Non-preemptive scheduling suffers from the long task problem
 - If $C_{\text{max}} > D_{\text{min}}$ task set is not schedulable
 - Without accounting for this, speedup factor is arbitrarily large
- Express speedup factor in a way that is parametric in $C_{\text{max}}/D_{\text{min}}$
 - Simplest form that gives a finite speedup factor

Recap: Schedulability analysis

EDF-P Exact test (arbitrary deadlines)

$$\sum_{\forall \tau_i \in \Gamma} DBF_i(t) \le t$$
$$DBF_i(t) = \max\left(0, \left\lfloor \frac{t - D_i}{T_i} \right\rfloor + 1\right)C_i$$

FP-P Exact test (constrained deadlines)

$$R_i^P = C_i + \sum_{\forall \tau_j \in hp(i)} \left[\frac{R_i^P}{T_j} \right] C_j$$

Recap: Schedulability analysis

FP-NP Sufficient test (arbitrary deadlines)

$$B_i + \sum_{\forall \tau_j \in hep(i)} \left[\frac{D_i}{T_j} \right] C_j \le D_i \text{ where } B_i = \begin{cases} \max_{\forall \tau_k \in lp(i)} (C_k - \Delta) & i < n \\ 0 & i = n \end{cases}$$

FP-NP Sufficient test (constrained deadlines)

$$W_i^{NP} = C_{\max} + \sum_{\forall \tau_j \in hp(i)} \left[\frac{W_i^{NP} + \Delta}{T_j} \right] C_j$$

 $R_i^{NP} = W_i^{NP} + C_i$

Exact sub-optimality of EDF-NP

Lower bound on speedup factor for non-preemptive v. preemptive

- Proof sketch (Lemma IV.3)
 - Find a task set that requires at least this increase in speed
- Example task set

$$\tau_l: C_l = k - 1, D_l = k, T_l = k$$

$$\tau_2: C_2 = k^2 + 1, D_2 = \infty, T_2 = \infty$$

- Trivially schedulable with preemptive algorithms (EDF-P or FP-P)
- FP-NP and EDF-NP need to accommodate jobs of both tasks within shorter deadline $S \ge (k^2 + k)/k = k + 1$ since $\frac{C_{\text{max}}}{D_{\text{min}}} = k + \frac{1}{k}$ then $S \ge 1 + \frac{C_{\text{max}}}{D_{\text{min}}} - \frac{1}{k}$
- Lower bound $S = 1 + \frac{C_{\text{max}}}{D_{\text{min}}}$

Holds for implicit, constrained, or arbitrary deadlines FP-NP or EDF-NP v. FP-P or EDF-P

Exact sub-optimality of EDF-NP

Upper bound

• Abugchem et al. [1] (Embedded Systems Letters 2015)

$$S = 1 + \frac{C_{\max}}{D_{\min}}$$

- Holds for arbitrary deadlines
- Exact sub-optimality of EDF-NP (speedup factor v. EDF-P)
 - Upper bound and lower bound are equal (for implicit, constrained, and arbitrary deadlines)

$$S = 1 + \frac{C_{\max}}{D_{\min}}$$

Exact sub-optimality of FP-NP

Upper bound on speedup factor for FP-NP v. EDF-P

- Proof sketch (Lemma IV.1)
 - Show speedup factor which is enough for to ensure schedulability under FP-NP using sufficient test and DMPO
- From definition of *DBF*(*t*)

$$\sum_{\forall \tau_j \in \Gamma} DBF_j(2D_i) \ge \sum_{\forall \tau_j : D_j \le D_i} \left[\frac{D_i}{T_j} \right] C_j \ge \sum_{\forall \tau_j \in hep(i)} \left[\frac{D_i}{T_j} \right] C_j$$

FP-NP Sufficient test (arbitrary deadlines)

$$\frac{C_{\max} + \sum_{\forall \tau_j \in \Gamma} DBF_j(2D_i) \le D_i}{S}$$

Upper bound on speedup factor for FP-NP v. EDF-P

Schedulable under EDF-P on processor of speed 1

$$\begin{split} &\sum_{\forall \tau_j \in \Gamma} DBF_j(2D_i) \leq 2D_i \\ &\text{Substituting:} \quad \frac{C_{\max} + 2D_i}{S} \leq D_i \\ &\text{FP-NP} \quad \frac{D_{\max} + 2D_i}{S} \leq D_i \end{split} \text{ assures schedulability under}$$

Upper bound

$$S = 2 + \frac{C_{\max}}{D_{\min}}$$

Holds for arbitrary deadlines

Also holds for FP-NP v. FP-P (since EDF-P dominates FP-P)

Lower bound on speedup factor for FP-NP v. FP-P

- Proof sketch (Lemma IV.3)
 - Find a task set that requires at least this increase in speed
- Example task set

 $\tau_i: i = 1..k - 1, C_1 = 1, D_1 = k+1, T_1 = k$ (arbitrary deadlines) $\tau_k: C_k = 1, D_k = k+1, T_k = k+1$ $\tau_{k+1}: C_{k+1} = k^2, D_{k+1} = \infty, T_{k+1} = \infty$ Schedulability under FP-P

- Trivially schedulable on a processor of speed 1
- Each task τ_j : j = 1..k has a response time of j
- Task τ_{k+1} executes for 1 unit in the LCM of the higher priority tasks and has a response time of $k^3(k+1)$

Lower bound on speedup factor for FP-NP v. FP-P

- Schedulability under FP-NP (Lemma IV.5)
 - Audsley's algorithm for optimal priority assignment
 - Task τ_{k+1} schedulable at the lowest priority (on a processor of speed 1 or higher) so placed at the lowest priority
 - Two distinct cases to consider depending on whether task τ_k or one of the other tasks is assigned the next higher priority
 - Each case has two possibilities to ensure schedulability see paper
 - Weakest constraint necessary for schedulability under FP-NP
 - First jobs of all tasks and second jobs of tasks τ_1 to τ_{k-2} must complete by the deadline at k+1 so $S \ge (k^2 + 2k 2)/(k+1)$

• As
$$C_{\text{max}} / D_{\text{min}} = k^2 / (k+1)$$

 $S \ge \frac{2k-2}{k+1} + \frac{C_{\max}}{D_{\min}}$ and hence **lower bound is** $S = 2 + \frac{C_{\max}}{D_{\min}}$ Also holds for FP-NP v. EDF-P as EDF-P dominates FP-P Note arbitrary deadlines only

Exact sub-optimality FP-NP v. EDF-P

- Exact sub-optimality of FP-NP (v. EDF-P)
 - Upper bound and lower bound are equal (for arbitrary deadlines)

$$S = 2 + \frac{C_{\max}}{D_{\min}}$$

- Upper and lower bounds on sub-optimality of FP-NP (v. EDF-P)
 - Implicit and constrained deadlines

Lower bound $S = 1 + \frac{C_{\text{max}}}{D_{\text{min}}}$ Upper bound $S = 2 + \frac{C_{\text{max}}}{D_{\text{min}}}$

Currently an open problem to close the gap and find an exact value

Exact speedup factor for FP-NP v. FP-P

Upper bound speedup factor FP-NP v. FP-P (constrained deadlines)

Proof sketch (Lemma IV.4)

 Consider any task set that is schedulable on a processor of speed 1 under FP-P with (optimal) DMPO show that it is also schedulable on a processor of speed S under FP-NP with DMPO (not optimal, but suffices to show feasibility)

$$E_i^P(t) = C_i + \sum_{\forall \tau_j \in hp(i)} \left[\frac{t}{T_j} \right] C_j$$
$$E_i^{NP}(t) = \sum_{\forall \tau_j \in hp(i)} \left[\frac{t + \Delta}{T_j} \right] C_j$$

 $E_i^P(W_i^P) = W_i^P$ Response time with FP-P

$$E_{i}^{NP}(W_{i}^{NP}) + C_{\max} + C_{i} = W_{i}^{NP} + C_{i}$$

Start time
with FP-NP

Observe

$$E_i^{NP}(t-x) + C_i \le E_i^P(t)$$
$$\forall x \ge \Delta \quad \forall t \ge x$$

Upper bound speedup factor FP-NP v. FP-P (constrained deadlines)

- Ensure FP-NP schedulability on a processor of speed S
 - **Case 1**: $W_i^P \ge D_{\min}$
 - Make completion under FP-NP at speed S no later than for FP-P at speed 1, so start time no later than $W_i^P C_i / S$
 - Sufficient test for FP-NP will give a response time $\leq W_i^P$ if

$$\frac{C_{\max} + E_i^{NP}(W_i^P - C_i / S) + C_i}{S} \leq W_i^P \qquad \begin{array}{c} \text{Blocking + interference} \\ \text{before starting + execution} \end{array}$$

• Since
$$E_i^{NP}(W_i^P - C_i/S) + C_i \le E_i^P(W_i^P) = W_i^P$$
 substitution gives
following condition on schedulability
 $S \ge 1 + \frac{C_{\max}}{W_i^P}$
Upper bound $S = 1 + \frac{C_{\max}}{D_{\min}}$

Upper bound speedup factor FP-NP v. FP-P (constrained deadlines)

- Ensure FP-NP schedulability on a processor of speed S Case 2: $W_i^P < D_{min}$
 - Assume completion under FP-NP at speed S is no later than D_{\min}
 - Sufficient test for FP-NP will give a response time $\leq D_{\min}$ if

$$\frac{C_{\max} + E_i^{NP}(D_{\min} - C_i / S) + C_i}{S} \le D_{\min}$$

• Since $E_i^{NP}(W_i^P - C_i/S) + C_i \le E_i^P(W_i^P) = W_i^P < D_{\min}$ substitution gives following condition on schedulability $S \ge 1 + \frac{C_{\max}}{S}$

$$S \ge 1 + \frac{C_{\max}}{D_{\min}}$$

Upper bound $S = 1 + \frac{C_{\text{max}}}{D_{\text{min}}}$

Holds for implicit and constrained deadlines, but not arbitrary deadlines due to schedulability test used in proof

Exact speedup factor FP-NP v. FP-P

 Arbitrary Deadlines: Lower bound and upper bound are equal => exact speedup factor

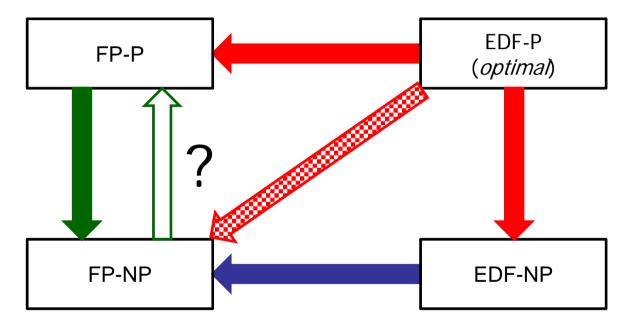
$$S = 2 + \frac{C_{\max}}{D_{\min}}$$

Implicit and Constrained Deadlines: Lower bound and upper bound are equal => exact speedup factor

$$S = 1 + \frac{C_{\max}}{D_{\min}}$$

Interesting that relaxing the task model to arbitrary deadlines adds 1 to the speedup factor needed

Sub-optimality and speedup factors



- Closed speedup factors for FP-NP v. FP-P and EDF-NP v. EDF-P
- Main result for FP-NP v. EDF-P proved (arbitrary deadlines)
 - Remains to close the gap between upper and lower bounds for implicit and constrained deadline cases
- Speedup factor for FP-P v. FP-NP since they are incomparable?

Speedup factor for FP-P v. FP-NP

Lower bounds on speedup factor for FP-P v. FP-NP

FP-NP schedule(only just schedulable) D_A D_B D_C $2D_A$ $2-\sqrt{2}$ $\sqrt{2-1}$ $\sqrt{2-1}$ $2-\sqrt{2}$ $\sqrt{2-1}$ $2-\sqrt{2}$ T_A T_A $2T_A$

Task set

$$\tau_A: C_A = \sqrt{2-1}, D_A = 1, T_A = 1$$

 $\tau_B: C_B = (2 - \sqrt{2})/2, D_B = \sqrt{2}, T_B = \infty$
 $\tau_C: C_C = (2 - \sqrt{2})/2, D_C = \sqrt{2}, T_C = \infty$
Constrained deadlines, DM optimal for FP-P

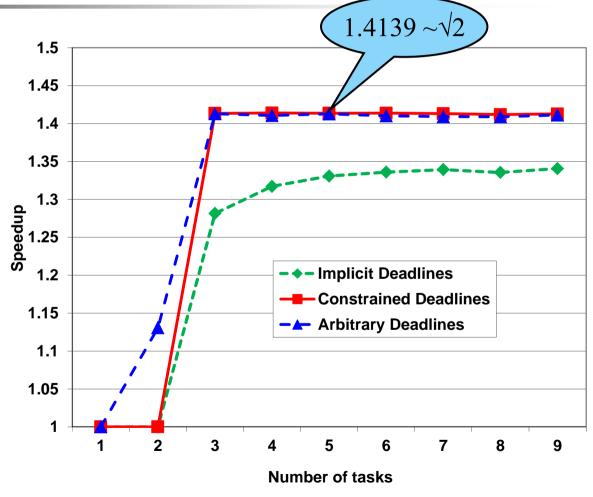
Scale by a factor of $\sqrt{2}$ just schedulable with FP-NP Lower bound on speedup factor is $\sqrt{2}$

Empirical investigation

Genetic algorithm used to search for task sets requiring a high speedup factor

Highest value found (1.4139) Very close to $\sqrt{2}$ for three or more tasks with constrained or arbitrary deadlines

Fairly compelling result since with 3 tasks there are few parameters, so search using GA is very effective



Open problem

- What is the exact speedup factor for FP-P v. FP-NP?
 - Upper bounds are:
 - 2 for arbitrary deadlines
 - $1/\Omega \approx 1.76322$ for constrained deadlines
 - $1/\ln(2) \approx$ **1.44269** for implicit deadlines

As EDF-P can schedule any task set that is schedulable by FP-NP and those are the speedup factors for FP-P v. EDF-P

- Lower bound is √2 for three or more tasks and constrained/arbitrary deadlines
- Empirically it appears this lower bound may be tight
 Proof needed...

Summary: Speedup factors for non-preemptive scheduling

Taskset Constraints [Priority ordering]	FP-NP v. EDF-P Sub-optimality Lower bound Upper bound		FP-NP v. FP-P Speedup factor	EDF-NP v. EDF-P Sub- optimality
Implicit-deadline [RM] [OPA] Constrained-deadline [DM] [OPA]	Open P $1 + \frac{C_{\max}}{D_{\min}}$	roblem $2 + \frac{C_{\text{max}}}{D_{\text{min}}}$	$1 + \frac{C_{\max}}{D_{\min}}$	
Arbitrary-deadline [OPA] [OPA]	$2 + \frac{C_{\max}}{D_{\min}}$		$2 + \frac{C_{\max}}{D_{\min}}$	$1 + \frac{C_{\max}}{D_{\min}}$
	Contribution			

Summary: FP-P v. FP-NP

Taskset Constraints [Priority ordering]	FP-P v. FP-NP Speedup factor Lower bound Upper bound	
Implicit-deadline [RM] [OPA]	1.34 (expt)	1/ln(2) ≈ 1.44269
Constrained-deadline [DM] [OPA]	$\sqrt{2}$	1/Ω ≈ 1.76322
Arbitrary-deadline [OPA] [OPA]	Open P	2 roblem
	Contribution	

