
Quantifying the sub-optimality
of uniprocessor fixed priority

pre-emptive scheduling

Robert Davis1, Thomas Rothvoß2,
Sanjoy Baruah3, Alan Burns4

1Real-Time Systems Research Group, University of York
2Institute of Mathematics, Ecole

Polytechnique

Federale

de Lausanne

3Dept. of Computer Science, University of North Carolina
4Real-Time Systems Research Group, University of York

Speedup factor
QUESTION:

What is the speedup factor

by which the processing speed
of a single processor would need to be increased, so that any
taskset that was previously schedulable according to an
optimal scheduling algorithm (i.e. any feasible taskset), can
be scheduled using fixed priority pre-emptive scheduling,
assuming optimal priority assignment?

Problem scope
Single processor systems

Pre-emptive scheduling
Execution time of all tasks scales linearly with processor
speed

Sporadic task model

Static set of n tasks τi with priorities 1..n
Bounded worst-case execution time Ci

Sporadic/periodic arrivals: minimum inter-arrival time Ti

Relative deadline Di

Utilisation Ui=Ci /Ti

Independent execution

Outline of presentation
Different speedup factors for different classes of
taskset

Implicit-deadline tasksets (Di=Ti) [1]
Constrained-deadline tasksets (Di≤Ti) [1]
Arbitrary-deadline tasksets (Di≤Ti , Di>Ti) [2]

[1] R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns “Exact Quantification of the
Sub-optimality of Uniprocessor Fixed Priority Pre-emptive Scheduling”. Real-

 Time Systems, Volume 43, Number 3, pages 211-258, November 2009.
(Published online 17th July 2009).

[2]

R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns “Quantifying the Sub-

 optimality of Uniprocessor Fixed Priority Pre-emptive Scheduling for Sporadic
Tasksets with Arbitrary Deadlines”. RTNS’09, October 26-27th, 2009.

Background
Feasibility and Optimality

A taskset is said to be feasible if there exists some
scheduling algorithm that can schedule the taskset
without missing a deadline
A scheduling algorithm is said to be optimal if it can
schedule all feasible tasksets

EDF is optimal
Dertouzos (1974), proved that EDF is an optimal
uniprocessor pre-emptive scheduling algorithm for
arbitrary-deadline tasksets that comply with the sporadic
task model
EDF can schedule all feasible tasksets that comply with
our model
So we can use a comparison with EDF to determine the
speedup factor for fixed priority pre-emptive scheduling

Background
FP scheduling: Optimal Priority Assignment

A priority assignment policy Q is said to be optimal if there
are no tasksets that are schedulable using some other
priority assignment policy P which are not also schedulable
using policy Q.

Optimal priority assignment policies
Implicit-deadline tasksets – Rate-Monotonic (Liu & Layland,
1973)
Constrained-deadline tasksets – Deadline Monotonic (Leung
& Whitehead, 1982)
Arbitrary-deadline tasksets – Optimal Priority Assignment
algorithm, (Audsley, 1993)

Speedup factor
Two perspectives and definitions

#1 Speedup factor is the maximum factor by which it is
necessary to increase the processor speed so that any
taskset that was schedulable under EDF becomes
schedule under FP.
#2 Speedup factor is the maximum factor by which the
execution times of a set of tasks, that are only just
schedulable under FP can be increased and the taskset
remain schedulable under EDF.
A taskset is said to be speedup-optimal if it exhibits the
(maximum) speedup factor.

Speedup-optimal tasksets
Speedup optimal tasksets are key to finding speedup
factors
Properties of speedup-optimal tasksets for implicit-
deadline and constrained-deadline cases [1]

[1] R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns “Exact Quantification
of the Sub-optimality of Uniprocessor Fixed Priority Pre-emptive
Scheduling”. Real-Time Systems, Volume 43, Number 3, pages 211-258,
November 2009. (Published online 17th July 2009).

Lemma 1: τn must be a constraining task, with the
longest deadline and the lowest priority.
Lemma 2: τn must have the longest possible period
(infinite in the constrained-deadline case).
Lemma 3: Dn must be the start of an idle period.
Lemma 4: All tasks τi ≠ τn must have Di <Tn
Lemma 5: All tasks τi ≠ τn must have Di =Ti

Speedup-optimal tasksets
Properties of speedup-optimal tasksets for implicit-
deadline and constrained-deadline cases

Lemma 6: All tasks τi ≠ τn must have Ti >Dn/2
Lemma 7: Following a critical instant, τn executes
continuously from when it first starts execution until it
completes.
Lemma 8: The task parameters must comply with the
following equation

Lemma 9: High priority task execution time is divided into
an infinite number of tasks each with an infinitesimal
execution time.

∑∑
∈∀∀

+==≠∀
)(ihpj

j
j

jii CCTDni

Normalised speedup-optimal
taskset

Speedup-optimal taskset V
Limit as n→∞ of:

X is as yet an unknown value
Implicit-deadline case:
Constrained-deadline case:

ε X

D1
FP schedule (only just schedulable) Dn

T1

ε ε ε ε ε

D2

T2

ε ε ε ε ε

D3

T3

D4

T4

ε ε

)1/()1(1 −−++==≠∀ niXTDni ii
)1/(1 −= nCi

XCn = XDn += 2

∞=nT
nn DT =

1

Normalised speedup-optimal
taskset

Utilisation of high priority tasks:

Substituting k=n-1

This is a left Riemann sum of y=1/z over the partition
[(1+X), (2+X)]
Limit as k→∞ is given by the integral:

Utilisation of lowest priority task:
Constrained-deadline case: Un=0
Implicit-deadline case:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−++−

= ∑
−

=
∞→−

1

11))1/()1(1(
1

)1(
1lim

n

in

V

niXn
U

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

= ∑
=

∞→

k

ik

V

kiXk
U

1)/)1(1(
11lim

∫
+

+

⎟
⎠
⎞

⎜
⎝
⎛

+
+

==
X

X

V

X
Xdz

z
U

2

1 1
2ln1

X
XUn +

=
2

Speedup factor: Implicit-deadline tasksets
Total utilisation of speedup-optimal taskset

Exact EDF schedulability test for implicit-deadline
tasksets:

U ≤

1
(Maximum) speedup factor as a function of X

f(X) is a monotonic non-increasing function of X

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟
⎠
⎞

⎜
⎝
⎛

+
+

=
X

X
X
XU

21
2ln

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟
⎠
⎞

⎜
⎝
⎛

+
+

=

X
X

X
X

Xf

21
2ln

1)(

Exact speedup factor
for FP scheduling of
implicit deadline
tasksets is 1/ln(2) ≈
1.44270
As EDF can schedule any
taskset with U ≤ 1
Speedup factor implies FP
can schedule any taskset
with U ≤ 1/ln(2)
In agreement with and
diverse proof of Liu &
Layland’s seminal result
from 1973

f(X)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 1 2 3 4 5 6 7 8 9
X

Sp
ee

du
p

fa
ct

or
 f

f(X)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 1 2 3 4 5 6 7 8 9
X

Sp
ee

du
p

fa
ct

or
 f

f(X)

Speedup factor: Implicit-deadline tasksets

Maximum value at X=0,
f(0) = 1/ln(2)

Speedup factor: Constrained-deadline tasksets

Constraints on EDF schedulability when scaled by a
factor of f
(i)

Lowest priority task τn

and one invocation of each higher
priority task i.e. f(1+X)

must complete by 2+X:

(ii) The total utilisation must not exceed 1:

Dn

ε X

D1FP schedule (only just schedulable)

T1

ε ε ε ε ε

D2

T2

ε ε ε ε ε

D3

T3

D4

T4

ε ε
1 2+X

⎟
⎠
⎞

⎜
⎝
⎛

+
+

≤

X
X

Xf

1
2ln

1)(2

X
XXf

+
+

≤
1
2)(1 f1(X)

Monotonically non-

 increasing with f1(0) = 2

f2(X)

Monotonically non-
 decreasing with f1(0) = √2 ≈

1.4142

2+X

EDF schedule (only just schedulable)

T1

ε

D2

T2

D3

T3

D4

T41
Xεεεεε

D1

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X

Sp
ee

du
p

fa
ct

or
 f

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X

Sp
ee

du
p

fa
ct

or
 f

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X

Sp
ee

du
p

fa
ct

or
 f

f1(X)
f2(X)

Speedup factor: Constrained-deadline tasksets
Intersection of the lines

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=⎟
⎠
⎞

⎜
⎝
⎛

+
+

X
XX

X

1
2ln

1
1
2

Maximum value where
 f1(X) = f2(X)

Speedup factor: Constrained-deadline tasksets
Maximum speedup factor

Can be written as:

Similar to the transcendental equation: ln(1/Ω) = Ω
defining the mathematical constant Ω ≈ 0.567143

Upper bound on speedup factor is 1/ Ω ≈ 1.76322
Note upper bound as constraints used are necessary for
EDF schedulability, but not sufficient

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=⎟
⎠
⎞

⎜
⎝
⎛

+
+

=

X
XX

Xf

1
2ln

1
1
2

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=
X
X

X
Xf 2

1

2
1

1ln1

Speedup factor: Constrained-deadline tasksets
Exact speedup factor
Need to prove that the speedup-optimal taskset scaled
by a factor of 1/ Ω ≈ 1.76322 is schedulable under EDF

Rather elegant, but lengthy proof in the RTS paper
Uses Exact schedulability analysis for EDF (Baruah 1990)

Processor demand bound

Processor LOAD =

i

n

i i

i C
T

Dt
th ∑

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −
=

1
1)(

1)(max ≤⎟
⎠
⎞

⎜
⎝
⎛

∀ t
th

t

Proof:
Represents h(t) by an
infinite series of piecewise
linear functions
Shows that maxima in
processor load occur at one
end of these functions
t = k(2+X) and minima at the
other end t = j(1+X)
Shows that maxima are
non-decreasing for k ≥ 6,
tend to 1 as k→∞, and are
≤ 1 for k ≤ 6 => h(t)/t ≤ 1

Exact speedup factor is
1/ Ω ≈ 1.76322 for
constrained-deadline
tasksets

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10
t/(2+X)

h(t)/t

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10
t/(2+X)

h(t)/t

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10
t/(2+X)

h(t)/t

Speedup factor: Constrained-deadline tasksets

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10
t/(2+X)

h(t)/t

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10
t/(2+X)

h(t)/t

h(t)/t
k(2+X)
 j(1+X)

Conclusions
Liu & Layland (1973):

Characterised the maximum performance penalty (or
sub-optimality) of using FP scheduling rather than an
optimal algorithm for implicit-deadline tasksets

This research
Characterises a similar maximum performance penalty (or
sub-optimality) based on processor LOAD for the
constrained-deadline case
Also provides a disparate proof of the Liu and Layland
result

Other work
Upper and lower bounds on the speedup factor for

Arbitrary-deadline tasksets

Non-pre-emptive scheduling

Speedup factor: Summary
Speedup factor: increase in processing speed required so that
any feasible taskset (schedulable by an optimal algorithm)
can be scheduled using Fixed Priority scheduling

Taskset
Constraints
[Priority ordering]

FP-P
Speedup factor

Lower bound Upper bound

Implicit-deadline
[RM] [OPA]

1/ln(2)
≈

1.44269

Constrained-deadline
[DM] [OPA]

1/Ω
 ≈

1.76322

Arbitrary-deadline
[OPA] [OPA]

1/Ω
 ≈

1.76322

2

FP-NP
Speedup factor

Lower bound Upper bound

1/Ω
 ≈

1.76322

2

1/Ω
 ≈

1.76322

2

1/Ω
 ≈

1.76322

2

Future work / open questions
Determining exact speedup factors for FP-NP,
and for FP-P with arbitrary deadline tasksets

These are where optimal priority assignment requires
Audsley’s OPA algorithm – complicates proof of speedup
optimal taskset attributes

Determining the exact speedup factor as a function of
the number of tasks
Empirical investigation

Try to find tasksets that require a speedup factor > 1/Ω
Is 1/Ω ultimately the limit ???

Questions
[1] R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns “Exact Quantification of the
Sub-optimality of Uniprocessor Fixed Priority Pre-emptive Scheduling”. Real-

 Time Systems, Volume 43, Number 3, pages 211-258, November 2009.
(Published online 17th July 2009).
Gives the Exact speedup factor for implicit-

and constrained-deadline
tasksets (pre-emptive scheduling)

[2]

R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns “Quantifying the Sub-

 optimality of Uniprocessor Fixed Priority Pre-emptive Scheduling for Sporadic
Tasksets with Arbitrary Deadlines”. RTNS’09, October 26-27th, 2009.
Gives upper and lower bounds for arbitrary-deadline tasksets (pre-emptive
scheduling)

[3]

R.I. Davis, L. George, P. Courbin “Quantifying the Sub-optimality of
Uniprocessor Fixed Priority Non-pre-emptive Scheduling”. RTNS’10,
November 4-5th, 2010.
Gives upper and lower bounds for implicit, constrained, and arbitrary-

 deadline tasksets (non-pre-emptive scheduling)

Speedup factor: As a function of cardinality
For constrained-deadline
tasksets
Upper bound
Based on proof using
Hyperbolic Bound (Bini et al.
2003)
Lower bound
Based on generation of
tasksets requiring these
speedup factors

Note improvement over
value for arbitrary n of
1/ Ω ≈ 1.76322

1.619

1.683
1.708

1.721 1.729 1.735 1.739 1.742

1.414

1.587

1.656
1.684

1.704
1.718 1.723 1.730

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

2 3 4 5 6 7 8 9

Number of Tasks

Pr
oc

es
so

r S
pe

ed
up

 F
ac

to
r

Upper Bound
Lower Bound

Also proved to be exact

	 Quantifying the sub-optimality of uniprocessor fixed priority pre-emptive scheduling
	Speedup factor
	Problem scope
	Outline of presentation
	Background
	Background
	Speedup factor
	Speedup-optimal tasksets
	Speedup-optimal tasksets
	Normalised speedup-optimal taskset
	Normalised speedup-optimal taskset
	Speedup factor:�Implicit-deadline tasksets
	Speedup factor:�Implicit-deadline tasksets
	Speedup factor:�Constrained-deadline tasksets
	Speedup factor:�Constrained-deadline tasksets
	Speedup factor:�Constrained-deadline tasksets
	Speedup factor:�Constrained-deadline tasksets
	Speedup factor:�Constrained-deadline tasksets
	Conclusions
	Speedup factor: Summary
	Future work / open questions
	Questions
	Speedup factor:�As a function of cardinality

