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Abstract—This paper introduces an effective Static Probabilis-
tic Timing Analysis (SPTA) for multi-path programs. The analysis
estimates the temporal contribution of an evict-on-miss, random
replacement cache to the probabilistic Worst-Case Execution
Time (pWCET) distribution of multi-path programs. The analysis
uses a conservative join function that provides a proper over-
approximation of the possible cache contents and the pWCET
distribution on path convergence, irrespective of the actual path
followed during execution. Simple program transformations are
introduced that reduce the impact of path indeterminism while
ensuring sound pWCET estimates. Evaluation shows that the
proposed method is efficient at capturing locality in the cache,
and substantially outperforms the only prior approach to SPTA
for multi-path programs based on path merging. The evaluation
results show incomparability with analysis for an equivalent
deterministic system using an LRU cache.

I. INTRODUCTION

Real-time systems such as those deployed in space,
aerospace, automotive and railway applications require guar-
antees that the probability of the system failing to meet its
timing constraints is below an acceptable threshold (e.g. a
failure rate of less than 109 per hour for some aerospace and
automotive applications). Advances in hardware technology
and the large gap between processor and memory speeds,
bridged by the use of cache, make it difficult to provide
such guarantees without significant over-provision of hardware
resources. One promising approach is to use a cache with
a random replacement policy combined with probabilistic
analysis. With this approach the probability of pathological
worst-cases behaviours can be upper bounded at quantifiably
extremely low levels, for example well below the maximum
permissible failure rate (e.g. 10~9 per hour) for the system.

The timing behaviour of programs running on a processor
with a cache using a random replacement policy can be
determined using Static Probabilistic Timing Analysis (SPTA).
SPTA computes an upper bound on the probabilistic Worst-
Case Execution Time (pWCET) in terms of an exceedance
function. This exceedance function gives the probability, as a
function of all possible values for an execution time budget =,
that the execution time of the program will exceed that budget
on any single run. The reader is referred to [1] for examples
of pWCET distributions, and to [2] for a detailed discussion
of what is meant by a pWCET distribution.

This paper introduces an effective SPTA for multi-path
programs running on hardware that uses an evict-on-miss,
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random replacement cache. Prior work on SPTA for multi-
path programs by Davis et al. [1] in 2013 used a simple path
merging approach to compute cache hit probabilities based on
reuse distances. The analysis derived in this paper builds upon
more sophisticated SPTA techniques for the analysis of single
path programs given by Altmeyer and Davis [3] in 2014 (see
also [4]). This new analysis provides substantially improved
results compared to the path merging approach.

A. Related Work

Probabilistic timing analyses can be categorised into three
different classes: (i) measurement-based [5], (ii) hybrid [6],
and (iii) static. In this paper, we focus on static techniques.

Static probabilistic timing analyses derive the pWCET
distribution for a program by analysing the structure of
the program and modeling the behaviour of the hardware
it runs on. Existing work on SPTA has primarily focussed
on randomized architectures containing caches with random
replacement policies. Initial results for the evict-on-miss [7]
and evict-on-access [5], [8] policies were derived for single-
path programs. These methods use the reuse distance of each
access to determine its probability of being a cache hit. These
results were superseded by later work by Davis et al. [1] who
derived an optimal lower bound on the probability of a cache
hit under the evict-on-miss policy, and showed that evict-
on-miss dominates evict-on-access. Altmeyer and Davis [3]
proved the correctness of the lower bound derived in [1],
and its optimality with regards to the limited information
that it uses (i.e. the reuse distance). They also showed that
the probability functions previously given in [9] and [7] are
unsound (optimistic) for use in SPTA.

In 2013, a simple SPTA for multipath programs was in-
troduced by Davis et al. [1], based on path merging. With
this method, accesses are represented by their reuse distances.
The program is then virtually reduced to a single sequence
which upper-bounds all possible paths with regards to the reuse
distance of their accesses.

In 2014, more sophisticated SPTA methods for single path
programs were derived by Altmeyer and Davis [3]. They
introduced the notion of cache contention, which combined
with reuse distance enables the computation of a more precise
bound on the probability that a given access is a cache hit.
Altmeyer and Davis [3] also introduced a significantly more



effective method based on combining exhaustive evaluation of
the cache behaviour with cache contention. Exhaustive state
enumeration is only performed on a limited number of pre-
selected focused accesses. This method provides an effective
trade-off between analysis precision and tractability. In this
paper, we build upon this state-of-the-art approach, extending
it to multi-path programs.

Recently, Reineke [10] observed that SPTA based on reuse
distances [1] results, by construction, in less precise bounds
than existing analyses based on stack distance for an equivalent
system with an LRU cache [11]. However, this does not
necessarily hold for the more sophisticated SPTA based on
cache contention and collecting semantics given by Altmeyer
and Davis [3] in 2014. Deterministic analyses for LRU are
incomparable with these analyses for random replacement
caches. This is illustrated by our evaluation results. It can also
be seen by considering simple examples such as a repeated se-
quence of accesses to five memory blocks (a,b,c,d, e, a,b,c,d, €)
with a four-way associative cache. With LRU, no hits can be
predicted. By contrast, with a random replacement cache, and
SPTA based on cache contention, four out of the last five
accesses can be assumed to have a non-zero probability of
being a cache hit (as shown in table 1 of [3]), hence SPTA
for a random replacement cache outperforms analysis of LRU
in this case. We note that in spite of recent efforts [12] the
stateless random replacement policies have lower silicon costs
than LRU, and so can potentially provide improved real-time
performance at lower hardware cost.

Early work [13], [14] in the domain of SPTA for deter-
ministic architectures relied for its correctness on knowledge
of the probability that a specific path would be taken or that
specific input data would be encountered; however, in general
such information may not be available. As an example, a car
is very unlikely to spend much of its operating life at both
maximum rpm and maximum speed, yet it can potentially
do so for protracted periods of time, during which failure of
the engine management system is unacceptable. The analysis
given in this paper does not require any assumption about the
probability distribution of different paths or inputs. It relies
only on the random selection of cache lines for replacement.

B. Organisation

In this paper, we introduce a set of methods that are required
for the application of SPTA to multi-path programs. Section II
recaps the assumptions and methods which we build upon.
These were used in previous work [3] to upper-bound the
pWCET distribution of a trace of a single path program. We
address the issue of multi-path programs in the context of
SPTA in Section III. This includes the definition of conserva-
tive (over-approximate) join functions to collect information
regarding cache contention, possible cache contents, and the
pWCET distribution at each program point, irrespective of the
path followed during execution. Section IV introduces simple
program transformations which improve the precision of the
analysis while ensuing that the pWCET distribution of the
transformed program remains sound (i.e. upper-bounds that

of the original). Multi-path SPTA is applied to a selection
of benchmarks in Section V and the precision and run-time
of the different approaches compared. Section VI concludes
with a summary of the main contributions of the paper and a
discussion of future work.

II. STATIC PROBABILISTIC TIMING ANALYSIS

In this section, we recap on state-of-the-art SPTA techniques
for single path programs [3]. We first give an overview of the
system model assumed throughout the paper. The pertinence
of the model is discussed at the end of this section.

We assume a time-composable architecture, without timing
anomalies [15], i.e. that local worst-cases (a miss in the context
of the cache) add up to the global worst-case. This enables
analysis of the impact of the cache in isolation from other
architectural features.

A. Cache model

We assume a single level, private, N-way fully associative
cache with an evict-on-miss random replacement policy. On an
access, should the requested memory block be absent from the
cache then the contents of a randomly selected cache line are
evicted. The requested memory block is then loaded into the
selected location. Given that there are N ways, the probability
of any given cache line being selected by the replacement
policy is 4. We assume a fixed upper-bound on the hit and
miss latencies, denoted by H and M respectively. (We note
that the restriction to a fully associative cache can be easily
lifted for a set-associative cache through the analysis of each
cache set as an independent fully-associative cache).

B. Traces and pWCET

We now recap on the existing SPTA method [3] for evaluat-
ing the pWCET of a trace using the notion of cache contention.
A trace T is defined as an ordered sequence of n memory
blocks [eq,...,en], such that e; = e; if access i and j target
the same memory block. Each element in a sequence has a
probability of being a cache hit P(e/"), and of being a cache
miss P(e"¥5%) = 1 — P(elit).

The reuse distance rd(e,T) of element e in trace T is the
maximum number of possible evictions since the last access
to the same block. Should there be no such prior access to
the same block, the reuse distance is defined as co. Given the
set of all traces T and of all elements E, the reuse distance is

defined as: o
i—j—1

if 3ej:e;=ey,
Vk:j<k<ie #e, (1)
[e%S) otherwise

The probability of e; being a hit is set to O if there are more
blocks since the last access to the same block that contend for
cache space than the N available lines. This is captured by
the cache contention con(e;, T) [3] of element e; in trace 7.
The definition of P(e/**) which denotes a lower bound on the
actual probability P(ef?) of a cache hit is as follows:

Td(ei7 [617 L) ei—l]) =

p(eélit) —

0 con(e;, T) > N
otherwise

<M>rd(ei7T) 2



The cache contention con(e;,T) includes all potential hits
since the last access to the same block as e;, since we assume
each access that is a hit may occupy a separate location in the
cache. Contention depends on and contributes to the potential
hits captured by P(e}*), j < i, and is computed from the first
accesses, where rd(e;, T) = oo, to the last. The contention also
accounts for the first access e, which follows the previous
access to the same memory block as e; and hence contends
with ;. The replacement policy means that e, always contends
for space. The cache contention is formally defined as:

con(e;, T) = S if rd(e;, T) = oo 3)
|conS(e;, T)| otherwise

conS(e;, T) = {jlej €T Ni—rd(e;,T)<j<iA If’(e;?it) # 0}

U{r|r=1i—rd(e;,T)}
The execution time of an element e; can be approximated by

the discrete random variable £; which has a probability mass
function (PMF) defined as:

P(elit if z =%
i(e) = Q1 P(elit) if =M “4)
0 otherwise

The probabilistic worst-case execution time (pWCET) [2]
distribution D of a trace, is an upper-bound on the execution
time distribution D, that would be obtained by executing the
trace an infinite number of times, such that Vo, P(D > v) >
P(D > v). In other words, the distribution D is greater than
D [16], denoted D > D.

The probability mass functions &; are independent upper-
bounds on the behaviour of corresponding accesses e;. An
estimate for trace T can be derived by combining the prob-
ability mass function &; for each of its composing memory
accesses e;: D™(T) = @,,eri Where ® represents the
convolution [2] of PMFs:

~ +OO ~ ~
&&= > &ik)-&x—k) )

k=—oc0
C. Collecting semantics

We now recap on the collecting semantics introduced
in [3] as a more precise but more complex alternative to
the contention-based method of computing pWCET estimates.
This approach performs exhaustive cache state enumeration for
a selection of focused accesses, hence providing tight analysis
results for those accesses. To prevent state explosion, at each
point in the program no more than R memory blocks are
in focus at the same time. The focused accesses are ones
heuristically identified as benefiting the most from a precise
analysis. If access e; is focused, the block it accesses will be
considered focused until the next non-focused access, if any,
to the same block. Cache state enumeration is only applied to
focused accesses while the contention-based method is used
for the others, identified as L in the trace. Thus the set of
elements becomes EL =E U {1}.

The abstract domain of the analysis is a set of cache
states. A cache state is a triplet CS = (E, P,D) with cache
contents E, a corresponding probability P € R,0 < P < 1,

and a miss distribution D: N — R when the cache is in state
E. E is a multiset of N elements picked from EL. Only
1 may occur multiple times to represent, without further
discrimination, partial knowledge about the cache contents or
the presence of non-focused blocks. The set of all cache states
is denoted by CS. The analysis starts from the empty cache
state {({L,...,L},1,(Az.1 if = =0,0 otherwise))}.

The update function u describes the update for a single
cache state upon access to element e ¢ E+. Upon accessing
a focused element e # 1, if e is present in the cache, its
contents are left unchanged. Otherwise new cache states need
to be generated considering that each element may be evicted
with the same probability 4 (in the evict function). A miss is
accounted for in the resulting distributions D’ only upon misses
on a focused access; cache contention is used to predict misses
on other accesses. Formally:

{(E, P, D)}
evict((E, P,D),e)

u((E,P,D),e):{ ifee EAne# L ©

otherwise

cvict((B, P, D), ) {(E \{/}U{e}, P- % D¢ e E}

D(z) if e=_1
D'(z)=<0 if t=0Ae# L
D(z —1) otherwise

The evict(s,e) function creates N different cache states, one
per possible evicted element, some of which might represent
the same cache contents. To reduce the state space, a merge
operation w combines two cache states if they contain exactly
the same memory blocks. If merging occurs, each distribution
is weighted by its probability:

(E1, P1,D1) W (Eg, P2, D2) = (7

{{(El,Pl + Py, (% 'D1> ® (% 'Dg)} ifE] = Eq

{(E1, P1,D1), (E2, P2,D2)} otherwise

where p-D is the multiplication of the elements of distribution
D, (p-D)(z) = p-D(x), and Dy @ Do is the summation of
distributions, (Dy ® Ds)(z) = Dy (z) + Da(z).

The update function can be defined for a set of cache states
using the update function « for a single cache state and the w
merge operator as follows: U(S,e) = W{u(CS,e) | CS € S}.

Given Sr.s the set of cache states at the end of the execution
of a trace T, the miss distribution D, ;s of T is the sum of the
individual distributions of each cache state weighted by their
probability of occurrence:

ﬁmiss = @{D - P | (E,P,D) € S”’ES} (8)

The definition of the cache contention given by (3) needs to
be updated. The R focused blocks need to always be taken into
account in the contention as they may be cached. Conversely,
they do not need to be counted in conS(e;,T) since their
contribution is included in R:

0o
con(e;, T) = {

|conS(e;, T)\ {i | focused(e;)}| + R otherwise

(©))

if rd(e;, T) = o0



The pWCET of a trace can then be derived by convolving
the execution time distributions produced by the contention,
Deon and collecting approaches, D<ol The latter is derived
from the final miss distribution D,,;ss, for a trace with f
focused accesses, as follows:

Diniss(x) = DO (@ x M+ (f —2) x H) (10)

We note that this description of the collecting semantics
is necessarily concise. For a more detailed explanation, with
examples, see [3].

D. Discussion: Relevance of the model

The SPTA techniques described apply irrespective of
whether the contents of the memory block are instruction(s),
data or both. While address computation [17] may not be
able to pinpoint the exact target of an access, e.g. for data-
dependent requests, relational analysis [18], introduced in the
context of deterministic systems, can be used to identify
accesses which map to the same or different sets, and access
the same or different block. Two accesses which obey the same
block relation can then be replaced by accesses to the same
unique element, hence improving the precision of the analysis.

The methods further assume that there are no inter-task
cache conflicts due to preemption, i.e. a run-to-completion
semantics with non-preemptable program execution. Analyses
of probabilistic cache-related preemption delays have been
described in [1]. Concurrent cache accesses are also precluded,
i.e. we assume a private cache or appropriate isolation [19].

In practice, detailed analysis could potentially distinguish
between different latencies for each access, beyond M and #,
but such precise estimation of the miss latency requires addi-
tional analysis steps, e.g. analysis of the main memory [20].
Further, to reduce the pessimism inherent in using a simple
bound, events such as memory refresh can be accounted for
as part of higher level schedulability analysis [21].

III. APPLICATION OF SPTA TO MULTI-PATH

In this section, we improve upon the state-of-the-art SPTA
techniques for traces [3] recapitulated in Section II and present
methods for multi-path programs, that is complete control-flow
graphs. A naive approach would be to compute all possible
traces 7 of a task, analyse each independently and combine
their distributions. However, there are two significant problems
with such an approach.

Firstly, while the merge operation (7) could be used to
provide a weighted combination given the probability of each
path being taken at runtime, such assumptions about path
probability do not hold in general. This issue can, however, be
resolved by taking the maximum distribution of the resulting
execution-time distributions for each trace:

O (11)
teT
Do ® Dy := DI (12)

D (2) = max (g0 Pa®) = Lyso DT W), Lyza Do) = Lyse P (9),0)

where the © operator computes a convex hull of the comple-
mentary cumulative distribution (1-CDF) of all its operands

(similar to the bound in Fig. 1), a maximum of distributions
which is valid irrespective of the path executed at runtime.

Secondly, the number of distinct traces is exponential in the
number of control flow divergences, branches and loop itera-
tions, which means that this naive approach is computationally
infeasible. A standard data-flow analysis is also problematic,
since it is not possible to assign to each instruction a corre-
sponding contribution to the execution time distribution.

Our analysis on control-flow graphs resolves these prob-
lems. It relies on the collecting and the contention approaches
for focused and non-focused blocks respectively, as per the
cache collecting approach on traces given in [3]. First, the
loops in the control-flow graph are unrolled. This allows the
implementation of the following steps, the computation of
cache contention, the identification of focused blocks and
the collecting semantics, to be performed as simple forward
traversals of the control flow graph. Approximation of the pos-
sible incoming states on path convergence keeps the analysis
tractable. Finally, the contention and collecting distributions
are combined using convolution.

A. Program representation

We represent the possible paths in a program using a
control-flow graph (CFG), that is a directed graph G =
(V, L,vs,ve) With a finite set V of nodes, a set L C V x V
of edges, a start node vs € V and an end node ve € V.
Each node v corresponds to an element in E accessed at v.
A path 7 from node v»; to node v, is a sequence of nodes
7= [v1,v9,...,v5_1,v] Where Vi: (v;,v;11) € L. By extension,
[=,n'] denotes the path composed of path = followed by path
«/. Given a set of nodes V', the symbol T1(V’) denotes the set of
all paths with nodes that are included in V’, and 1I(G) C II(V)
the set of all paths of CFG G from vs to ve. Similarly to
traces, the pWCET D(G) of a program is a tight upper-bound
on the execution time distribution of all possible paths. Hence,
vr € TI(G),D(G) > D(x). Fig. 1 illustrates this relation using
the 1-CDF (F(z) = P(D > z)) of different execution time
distributions and a valid pWCET.

We say that a node v; dominates v, in the control-flow
graph G if every path from the start node vs to v, goes through
vy Vs =¥ vp = vs =F vg =F up, where vs —* vg = vn is the
set of paths from vs to v, through v,;. Similarly, a node v
post-dominates v, if every path from v, to the end node ve
goes through vp, vp —=* ve = vp —=* vp =* ve. We refer to the
set of dominators of node vy, as dom(vn).

1-CDF
D T L LI — 1 | |
Program
Path
08
2 o6l
=
[
a
e o4}
[=8
02
0 | | | ;\;x’”‘-—|
Execution time
Fig. 1. Relation between paths and program pWCET.



We assume that there is no dead code, and that the program
always terminates. These are reasonable assumptions for the
software in critical real-time systems. Bounded recursion and
loop iterations are requirements to ensure this termination
property of the analysed application. The additional restric-
tions described below are for the most part tied to the WCET
analysis framework [11] and not exclusive to the new method.

Any cycle in the CFG must be part of a natural loop. We
define a natural loop I = (v}, V}) in G with a header v;, € V and
a finite set of nodes V; C V. The header is the single entry-point
of the loop, Vv, € V},v;, € dom(v,). Conversely, a natural loop
may exhibit multiple exits as a result of break constructs. Loop
! contains at least one back edge to v;, an edge whose end
is a dominator of its source 3v, € Vj, (vy,v,) € L. All nodes
in the loop can reach one of its back edges without going
through the header v,. The transition from the header v, of
loop I to one of its nodes v, € V; begins an iteration of the
loop. The maximum number of consecutive iterations of each
loop, i.e. not separated by the traversal of a node outside V;,
is assumed to be upper-bounded by maz-iter(l, ctz). The value
of max-iter(l, ctz) might change depending on the context ctx,
call stack and loop iteration, of loop I, e.g. to capture triangular
loops. This guarantees a finite number of paths in the program.

Calls are also subject to a minimal set of restrictions to guar-
antee the termination of the program. Recursion is assumed
to be bounded, that is cycles or repetitions in the call graph
of the analysed application must have a maximum number
of iterations, similarly for loops in the control flow. Function
pointers can be represented as multiple targets attached to a
single call. Here, the set of targets must be exact or an over-
estimate of the actual ones, so as to avoid unsound estimates
which omit to take some valid paths into account.

B. Complete loop unrolling and call inlining

In the first analysis step, we conceptually transform the
control-flow graph into a directed acyclic graph by loop
unrolling and function inlining [22]. Loop unrolling and
function inlining are well-known techniques to improve the
performance of data-flow analyses.

A complete physical unrolling that removes all back-edges
significantly increases the size of the control-flow graph and
thus of the size of the analysis problem. A virtual unrolling and
inlining is instead performed during analysis and distinguishes
the different call and iteration contexts of a vertex. In either
case, the size of the graph explored during analysis scales with
the length of the program under consideration, similarly to
fixpoint-based LRU analyses. Unrolling simplifies the analysis
and significantly improves the precision. Successive iterations
increase the probability of blocks in the loop working set being
in the cache. In contrast to the naive approach of enumerating
all possible traces, complete loop unrolling has linear rather
than exponential complexity.

C. Reuse Distance/Cache Contention on CFG

To extend the concept of reuse distance (contention) to
control-flow graphs, we lift the definition from a single trace

to all traces and take the maximal reuse distance (contention)
of all possible traces ending in the node wv:

rdG(v) = W:[I’LIjla),(,_ . (rd(v,)) (13)
con® (v) = _[max (con(v, 7)) (14)

An upper-bound of both metrics for each access can be
computed through a simple forward data flow analysis, using
the maximum of the possible values on path convergence.

We then traverse the unrolled control-flow graph in reverse
post-order, compute the distributions with the contention-
based approach, and use the maximum distribution on path
convergence, with the convex hull ® as the join operator.

D. Selection of focused blocks

The selection of focused blocks is also modified to accom-
modate for a control-flow graph. Cache state enumeration is
only performed for focused accesses, ensuring more precise
analysis results for the selected accesses. Earlier work [3]
relied on an absolute set of R focused blocks, for the whole
trace. Instead, we only restrict ourselves to at most R focused
blocks at any point in the program. Given a position in the
control-flow, the heuristic tracks the R blocks with the smallest
lifespan, i.e. the smallest distance between their last and next
access. Such accesses are among the most likely to be kept
in the cache and benefit from a precise estimate of their hit
probability through state enumeration. Note that this heuristic
relies on a lower bound on the lifespan of blocks instead of
an upper bound.

E. Ordering of cache state sets

We assume no information about the probability of taking
one path or another, hence the join operator must combine
cache states in such a way that the resulting state is an over-
approximation of both, i.e. it contains the same or degraded
information. To capture this property, we introduce the partial
ordering C between sets of cache states such that S, C S,
implies that S, holds more precise information than S,
resulting in less pessimistic estimates.

Consider a simple cache state s = ({a,b},0.5, D). (We further
omit unknown value L in cache contents.) The information
represented by s, = ({a},0.3,D) is less precise than that
captured by s, s C sq. Indeed, there is no information on
the presence of b in sq. Conversely, sc = ({a,c}, 0.1, D) holds
more precise information regarding ¢, so s Z sc. The set
S = {({a},0.25,D), ({b},0.25,D)} also approximates s, s C S;
the knowledge that « and b are both present in the cache (in
s) is reduced to guarantees only about the presence of either
a or b (in S). As a consequence, the sequence of accesses abab
will trigger more misses starting from states in S, than from
state s. Assuming D < D/, then s’ = ({a,b},0.5,D’) holds more
pessimistic information than s, s C s'.

The intuition behind the approximation of a cache state is
that the information it captures is further diluted into a single
cache state or a set of cache states. By extension, the over-
approximation of a set of cache states is the composition of



approximations F(s) € 2°5 of each element s in the set. We
formally define the C partial ordering between sets of cache
states Sq € 2C5 and 5, € 2C5 as follows:

Sy CSy= 3F:CS— 265, (15)
(Vs € Sa,s CF(s)) NSy =Wgeg, F(s)
where the relation s T S holds if the set of cache states S
approximates cache state s = (E, P,D). In other words, 1) S is
as likely to occur, 2) all blocks known to be in states of S are
present in s, and 3) the contribution D’ of S to the pWCET is
greater than or equal to the contribution D of s. Formally:

(B,PD)CS = (P> (S prones P')) A

Y(E',P',D') €S, ED(E NE)A (16)
D<D )

Recall that unknown information in the cache contents E’
is represented using L, hence E/ NE only keeps the elements
guaranteed to be present in the cache.

A join function U is valid if given any set of cache states
Sq and S, then S, C (Sq U S,) and Sy C (Sa U Sp).

F. Join operation for cache collecting

We traverse the (directed acyclic) graph in reverse post-
order and compute the set of cache states at each program
point. The join operator | | describes the combination of two
data-flow states from two different sub paths.

Let S, and S, be the sets of cache states from the two
merging paths. We first define the set of common blocks
MSaN5, and then restrict S, and S, to this set. For brevity,
we focus on 7, the transposition to S; is straightforward:

M5 = ( U E“) N U Eb | (17)
(B, P* Da)eS, (Eb,Pb DbYes,
o ={ENM%"% P D)(E,P,D) e Sy (18)

Sy and S; are safe over-approximations of S, and S,
respectively. They only contain memory blocks common to
both sets of cache states, which can therefore be included in
the joined set of cache states.

The set C contains all cache states common to both sets
Sy, and S;, with the minimum probability of P, and Py, and
a miss distribution given by the maximum of the individual
distributions D, and Dy:

C = {(BE,min(Py, Py),Da ® Dp)|(E, Pa,Da) € SHA
(E, Py, Dy) € Sy ANE # 0}
We need to collect the remaining cache states that are
i) contained in S/, but not in Sl’), or ii) are common to both
sets, but have a higher probability in S7, than in S;:

Ca = {(0, P,D)|(0, P,D) € S,,} (19)

w{(0, Pa, Da)|(E, Pa,Da) € S4 A (E, Py, Dy) & Sp A E # 0}
W{(0, Pa — Py, Da)
(E,Pa,Da) € Sy A(E, Py, Dy) € S, AE # O A Po > Py}
Cq and ¢, contain one element with the same probability.
C = {(0, P,Da ® Dy)|(, P,Da) € Ca A (B, P,Dy) € Cp,}  (20)
Cw C is a safe over-approximation of both s, and S
with regards to the ordering defined in (15). We can define

a function F,, which gives an over-approximation of each
element of S/ such that (Cw ) = We,es, Fa(sa), as follows:
{(0, Pa,Da)} ifE=10

{(0, Pa, Da)} ifB(B, P, D) € 5}

{(E, By, Da © D) }U
{(0, Pa — P, Da)}
{(B, Pa,Dq ® Dy)}

Fo(E, Pa,Da) =
if3(E, Py, Dy) € Sj A Pa > Py
if3(E, Py, Dy) € Sy APa < Py

The join operation is defined as: Sq| |S, = CwC.
Example: As an illustration, let us consider the state of a
4-way associative cache upon the convergence of two paths
ma = [a,b,¢] and 7, = [c,a]. The resulting set of cache states
are denoted by S, and S, respectively.
Sq Sy
({a,b,c},6/16, D)
({a,c},3/16,D)
({b,¢},6/16, D)

({a,c},12/16, D)

({a},4/16,D)

({c},1/16,D)
The cache states in S, and S, can be reduced to only keep
their common blocks {a,c}. Common states are merged:
% s
({a,c},9/16,D) | ({a,c},12/16,D)
({a},4/16,D)

({c},7/16,D)

The set of common cache states C, with their minimal,
guaranteed probability, is defined as C = {({a,c},9/16,D)}.
There is no guarantee about the remaining states in S;, and S}
or their occurrence probability, they need to be approximated
with the empty cache state: Cq = C, = {(0,7/16, D)}.

Hence, the result of the join operation on the convergence
of paths 7, and = is given by:

Sa| | Sy = {({a,c},9/16,D), (0,7/16, D)}
IV. WORST-CASE EXECUTION PATH EXPANSION

Approximations of the cache contention or the contents
of abstract cache states occur on control flow convergence,
when two paths in the control flow graph meet. This ensures
the validity of the bounds computed by SPTA whatever the
exercised path at runtime, while keeping the complexity of
the analyses under control. The complete set of possible paths
need not be made explicit; however, the loss of information
that may occur on flow convergence decreases the tightness
of the computed pWCET.

In most applications, there exists some redundancy among
paths with regards to their contribution to the pWCET. If a
path can be guaranteed to always perform worse than another
(D(mp) > D(ma)), the contribution of the former to the pWCET
dominates that of the latter, D(m}) = D(7m,) ® D(7a). In which
case, the latter path can be removed from the set of paths
considered by the analysis, hence reducing the complexity
of the control flow, while preserving the soundness of the
computed upper-bound.

In this section, we define the notion of inclusion between
paths and prove that path inclusion is a sub-case of path re-
dundancy; the execution time distribution of an including path



dominates that of any paths it includes. Based on this principle,
we introduce program transformations to safely identify and
remove from the control flow paths that are included in others,
hence improving the precision of the analysis.

A. Path inclusion

A path is said to include another if it contains at least the
same sequence of ordered accesses, possibly interleaved with
additional ones. As an example, consider paths 7, = [a,b, ¢, €]
and 7w, = [a,b,c,d, a,e] Where 7, is included in m;,. The former
path can be split into subpaths g = [a,b,c] and 75 = [e], such
that m = [rg,7g]. m, can then be expressed as the interleaving
of rg and 7 with 7y = [d,q], i.e. m, = [1g, 7y, 7g]. Similarly,
m, includes [a, ¢, d, €], but not [b, a, a].

Definition 1 (Including path). Let 7, and =, be two paths,
such that =, is the concatenation of two sub-paths ©g and
g’ ma = |ng,mg|. The inclusion of nq in m, denoted mq <
my, Is recursively defined as either m, = [rg, 7y, 7] of m, =
[rs, 7y, 7] where ng Q= and wg # 7.

Lemma 1 (Prefix ordering). The execution time distribution
of mq is smaller than or equal to that of o prefixed by any
access vn, D(ma) < D([[vn], 7al).

Proof. We use 7, as shorthand for ([[vn], 7a]). If vp hits in the
cache, then the execution of 7, starts with an equivalent cache
state in both cases, and so D(rq) < D(ny) trivially holds, since
D(mn) = D(mq) + H (one additional cache hit).

If vy, is a miss, then we prove that D(rq) < D(7y) by showing
that there is another distribution that both upper bounds D(n4)
and lower bounds D(7p,).

Assume for purposes of the proof, a hypothetical, special
cache with the following behaviour. The special cache is
identical to the normal random replacement cache, except that
it has an additional special cache line (not subject to eviction).
This special line is used to hold vy, thus loading vy, in =, does
not cause an eviction in the rest of the cache. v, remains in this
special cache line until the next access v}, (if any in =) to the
same block. At that point there is an eviction in the normal
part of the cache and contents of the special cache line are
transferred to that location. v}, is thus a cache hit. After v/,
the special cache line is no longer used and behaviour reverts
to that of a normal random replacement cache.

Let D*(m,) be the execution time distribution of path
with the special cache. It is evident that the execution time
distribution for path =, assuming the special cache lower
bounds that for the normal cache (i.e. D*(wy) < D(7wy)), since
at all times, the special cache contains all of the elements in
the normal cache.

Next we consider a comparison of the execution time
distribution of path =, with the special cache, and that of
path =, with the normal cache. The behaviour of the normal
cache for 7, and the special cache for =, after v, is identical
up until v},. This is the case because the special cache contains
exactly those elements in the normal cache plus block v, in
the special line, which is first accessed again at v/,. At v/,

both caches evict a normal cache line and load },; however
in the case of the special cache, this is at a cost of a hit H,
whereas in the normal cache the cost is a miss M. After that
point, the behaviour of both caches is identical, as they have
the same contents and the special cache line is no longer used.
Since the special cache incurs an additional cost of a miss M
to initially load vy, then it follows that D*(n,) upper bounds
D(mq). (Note this is also trivially the case if there is no v/, in
ma, Since then D*(mp) = D(ng) + M.)

Since D*(my,) upper bounds D(rn,) and lower bounds D(xy),
it follows that D(rq) < D(7mn). O

The relation in Lemma 1 holds for prefixes of arbitrary
lengths. From Lemma 1, we know that D(rq) < D([[vn], 7a])
which can be extended to D(nq) < D([[v1,v3, ..., vn], ma]) SiNCE
D([[va, -y vn],7a]) < D([[v1,v2,.-,vn],7a]) and so on. Hence,
V7s, Ta, D(ma) < D([7s, ma))-

Theorem 1 (Included path ordering). If no is included in ,
then the execution time distribution of m, is greater than or
equal to that of na, 7a A = D(ma) < D(mp)

Proof. Base case: We need to prove that if n, <, such that
ma = |75, 7] and m, = [rg, 7y, 7], then D(re) < D(mp). From
Lemma 1, we know that D(rg) < D([ry,7Eg]).

The execution of wg cannot be impacted by accesses in
either = or =y . It is therefore the same on both paths =, and
m,. Whatever cache state is left by the execution of ng, the
execution time distribution of [y, 7] is either greater than or
equal to that of 75 (Lemma 1). Therefore, D(nq) < D(mp).

Inductive step: Let us assume = = [rg,7g] and =« such
that 7 <%, and D(rg) < D(n];). We need to prove that for
m, = [rg, 7y, 7], D(ma) < D(mp). From Lemma 1, we know
that D([ry,, 7};]) > D(r’;), and as a consequence D([ry,, 7)) >
D(n). Further, the execution time distribution of =g is not
impacted by accesses in either my,, 7p, or 7/ and is the same
in 7, and mp, hence D(rq) < D(7p). O

We now extend the notion of path inclusion to sets of paths.
A set of paths I is a path-included set of 11° if each path in IT is
included in a corresponding path in I1°, II<TI® = Vr € I1,37° €
1°, 7 < 7°. The pWCET of a path is an upper-bound on its
execution time distribution, D(x) < D(x). As a consequence,
for each path = € II, there is a path in II° the pWCET of
which also upper-bounds the execution time distribution of .
The pWCET of II° is an upper-bound on the execution time
distributions of all paths in II, vV € IT, D(II°) > D(r). Hence, it
is sufficient to perform the pWCET analysis of a CFG G on
a reduced set of paths which path-includes the set TI(G).

B. Empty conditions removal

Simple conditional constructs may induce paths that are
included in others. In particular, any path that goes through
an empty branch or case is included in any alternative branch
which triggers memory accesses. The edges in a CFG which
represent such cases can be safely removed to reduce path in-
determinism during pWCET analysis, improving the precision
of the results.



N

> if —— then —— fi >
Fig. 2. Simple if-then conditional structure. The edge from i f to fi, through
the empty else case, can be removed for pWCET estimation.

Fig. 2 gives an example of this for an if-then construct with
an empty else branch. At point fi, the analysis accounts for the
eviction by accesses in then of blocks present at the end of if.
But if the empty edge is kept, any cache block loaded by the
then branch cannot be considered as present by the analysis
at fi. This reduces the knowledge of the cache contents, and
the precision of the resulting pWCET distribution.

An edge from vertex vp to v; corresponds to an empty path
if there is an alternative exit from vy through v; which later
reaches v;, as captured using the notion of post-dominators.
In Fig. 2, any path to the program exit through if or then will
traverse fi, which post-dominates both if and then.

C. Loop unrolling

Natural loop constructs are a source of path redundancy.
In particular, paths which do not exercise the maximum
number of iterations of a loop they traverse have an including
counterpart. An iteration of loop | = (vp,,V]) starts with a
transition from its header v; to any of its nodes v, € Vj.
Conversely, any iteration, with the exception of the last, ends
with a transition back to the header v, through a back-edge.
The set of paths I, = [[I(V} \ {v},[vs]] captures the paths
followed during a complete iteration through loop 1.

A valid path which captures = iterations can be expressed as
[op)s 71y oo T—1, Tgst] With Vi, 1 < i < n,m; € e, and mgq
is the last iteration of the loop. m;,.; is a path in TI(V; \ {v,})
followed by a node outside the loop. We denote by II,, the
set of paths which iterate n times through the loop i. A path
in II,,41 can be expressed as [[vp], 71, ..., Tp—1,Tn, Tqs¢] With
7n € 4¢3 €ach path in II,, is included in a path of I1,, . By
extension, the set of paths I1,,,, ;;..;) Path-includes all other
sets of paths which iterate over I at least once.

As an example, consider the loop ! = (b,{b,c,d,e}) in
Fig. 3. The path 71 = [a,b,d, e, f] iterates a single time through
I. The valid iteration sequences, Il;;.,, in this example are
[d,e,b] and [c,e,b]. By inserting one iteration before the last
in 7, we obtain the valid paths [[a,b],[d,e,b],[d, e, f] and
([, 8], [c,e,b], [d, e, f]] respectively. Both paths include =; and
belong to TI,.

Fig. 3. Simple do-while loop structure. The set of paths which iterates x + 1
times through [ includes all paths with less iterations.

In our model, we only restrict the maximum number of
iterations of a loop. Every iteration may be the last; there is
no guarantee that a loop goes always through the same number
of iteration when it is executed. The loop unrolling algorithm
hence operates without knowledge of the exact number of
iterations of the loop. Every unrolled iteration is connected to
the successors of the loop. As per Theorem 1 and the inclusion
property for consecutive loop iterations, it is sufficient for
pWCET estimation to only consider paths where each loop,

when executed, goes through its current maximum number of
iterations. The unrolling of loop | assumes maz-iter(l, ctz) as
the exact iteration count of loop !. In effect, when unrolling
any iteration of loop ! besides the last, edges from nodes in
the loop to nodes outside  are discarded. Conversely, unrolling
the last iteration implies conserving only the nodes and edges
of 1 which lead to a loop exit.

The same principles hold for call inlining. Recursion is
also a source of path redundancy. Recursive calls manifest
as repetitions in the call stack of an application. Here, a
single source node is attached to the CFG of each procedure,
which identifies its start. The source node therefore behaves
similarly to the head of a loop, and is a guaranteed entry to
each call. The same logic applies to both natural loops and
recursive calls. When performing virtual or physical inlining,
the analysis forces recursion up to the defined bound.

V. EVALUATION

In this section, we examine the precision and runtime
behaviour of the multi-path analysis introduced in this paper.
In order to study the behaviour of the analysis with respect
to different flow constructs, we provide results for a subset of
the Milardalen, Papabench and debie benchmarks (from the
TACLeBench suite!). The CFG and address extraction were
performed using the Heptane [23] analyser, from the compiled
MIPS R2000/R3000 executable obtained using GCC v4.5.2
without optimisations. We used different methods to evaluate
the contribution of a 16-way fully associative instruction cache
with 32B lines, with # =1 and M = 10.

A. Relative precision of the multipath analysis

The miss distribution for different benchmarks was com-
puted using either the contention-based approach, the collect-
ing one, using different numbers of focused blocks R, or the
reuse distance-based path merging method outlined in [1]. For
reference purposes, a state-of-the-art analysis [24] was used
to determine the number of misses predicted for a LRU cache
using the same parameters. As opposed to SPTA results, the
deterministic estimate is a single value upper-bound without
any variation. We also performed a set of 108 simulations of
the random cache behaviour to use as a baseline, effectively
providing a lower bound on the pWCET. Here, the successor to
each vertex in the simulated path was picked randomly among
all of its valid successors, thus exploring the possible paths.

Worst-Case Execution Path (WCEP) expansion was used
for analysis and simulation of the random replacement cache.
(Theorem 1 does not apply to LRU caches.) The pWCET
estimates obtained for each configuration of the analysis,
estimation method and number of focused blocks, were always
tighter with WCEP expansion. Regarding simulation, WCEP
expansion reduces the set of paths to one more representative
of the worst-case scenarios. In some cases this results in a
single worst possible execution path. Yet there is no guarantee
that these transformations are sufficient, here the simulation

Thttp://www.tacle knossosnet.gr/activities/taclebench



results are only an indicative means of assessing the pessimism
in our approach.

The figures show the complementary cumulative miss distri-
butions (1-CDF) for a representative subset of benchmarks and
configurations. The contention and path merging approaches
are identified by red crosses and purple squares respectively.
The number of focused blocks R for the collecting approach
is restricted to values of either 4 or 8 (identified by orange
triangles and blue diamonds respectively) which is sufficient to
capture most of the locality in the considered applications. The
distribution obtained through simulation (identified by green
circles) is also presented. The number of misses predicted by
deterministic analyses for the LRU configuration is identified
by a dark blue vertical line.

In general, the use of the cache collecting method improves
the precision of the analysis over the merging or purely
contention-based approaches even on complex control flows,
as illustrated by compress in Fig. 4. Complex flows challenge
the precision of the path merging approach, for the compress
benchmark our approach predicts less than one third as many
misses as the merging approach. The merged path is as long
as the longest path in the application but keeps the worst
behaving accesses from shorter paths. On simple control flows,
the two approaches behave similarly but the contention method
still dominates the path merging method (see Fig. 5). When
WCEP expansion can extract the worst-case execution path,
as with ud, the main difference between the two approaches
comes from the more precise estimation of the hit probability
of individual accesses using contention methods.

The precision of the collecting methods and the relative
performance of LRU and random caches mostly depends on
the size of the working set of tasks w.r.t. to the cache size or the
number of focused blocks. Similar behaviours were observed
whether WCEP expansion successfully resulted in a single
path or not. As the number of focused blocks increases from
4 to 8, the estimates computed by the analysis improve. The
gain is important on benchmarks like ud (see Fig. 5) where
some nested loops fit in the number of focused blocks (8).
However, precision is lost w.r.t the simulation results when
the loops all fit inside the cache but not within the number
of focused blocks. This also results in decreased performance
w.r.t. LRU. The latter is in this case only subject to cold misses.

Another general observation is that as expected none of
the distributions derived by analysis underestimates simula-
tion. However, the simulation-based distributions cannot be
guaranteed to be precise pWCET estimates. The simulations,
lacking representative input data, may not exercise the worst-
case paths. At best they provide lower bounds on the pWCET.
We note that provision of representative input data is a key
problem for measurement-based methods. There is no such
general conclusion regarding the dominance of the analysis
of a LRU cache over the simulation or analysis results for
a randomised cache. When all iterative structures fit in the
cache (see Fig. 5), the deterministic LRU analysis outperforms
analysis of the random cache. As intra-loop conflicts grow, the
benefits of the random replacement policy emerge (see Fig. 4)
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Fig. 4. Results for compress, 86 distinct blocks, 31K accesses on the longest
path. For clarity, results for the path merging approach, 31K misses, were
omitted.
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Fig. 6. Results for fft, 141 distinct blocks, 18K accesses on the longest path.
and the new methods can capture such locality, resulting in
tighter estimates than deterministic analyses for LRU (see
Fig. 6). Note that simulation results for fft were omitted for
the sake of clarity, the projection predicts 12000 misses or
more with probability 106,

The analysis results for the fft benchmark (see Fig. 6) indi-
cate that the cache collecting approach may sometimes com-
pute more pessimistic estimates than the contention method.
This behaviour stems from the combination of flow divergence
and large loop constructs in the control flow. Path indetermin-
ism hinders the focused block heuristic, as different blocks
may be deemed as focused on parallel paths. In such cases,
upon flow convergence, the join function cannot keep blocks
of either alternative. Further, the R focused blocks are still
considered as occupying cache space from the point of view
of the non-focused ones, effectively reducing the cache size.
This illustrates the need for more effective heuristics which
take into account the behaviour of the analysis on alternative



paths, or vary the number of focused blocks depending on the
expected benefits, and the computational cost.

In summary, our evaluation results show that the approaches
to multi-path SPTA derived in this paper dominate and
significantly improve upon the state-of-the-art path merging
approach, determining less than one third as many misses in
some instances. They were also shown to be incomparable
with LRU analysis.

B. Execution time

The runtime of the analysis, using a C++ prototype imple-
mentation, is presented in Fig. 7 using the WCEP expansion
method and O to 12 focused blocks on a subset of the
considered benchmarks. Measurements were made on an §-
core 64-bit 3.4Ghz CPU using the Ubuntu 12.04 operating
system, with 2 instances of the analyser running in parallel.
WCEP expansion was used as it increases the precision of
the estimated cache states, and therefore the analysis runtime.
We observe a growth in runtime as the number of focused
blocks increases. The runtime of the analysis is also signifi-
cantly higher for larger benchmarks. Table I covers additional
applications and includes details of the maximum number
of accesses, the distinct number of cache blocks, and the
cyclomatic complexity Y of the CFG (without and with WCEP
expansion) which lower bounds the number of paths. Also
given are the analysis runtimes with 4 and 8 focused blocks.

The abstract cache state representation is partially respon-
sible for the high runtime on the largest benchmark. The
complexity of the update and join operations is tied to both
the number of focused blocks R and the number of potential
misses on the longest path. The number of focused blocks
affects the number of different cache contents which are
tracked by the analysis at each step. As the number of analysed
accesses increases, so does the size of the distributions held in
the cache states and therefore the cost of operations such as
the merge. The complexity of the analysis is of the order of
O(]S| x m x log(m)), where m is the number of accesses in the
program and |S| upper-bounds the number of possible cache
states. |S| is the number of combinations of N or less elements
picked among the R focused blocks, when R < N, |S| = 2%,

Fig. 7 combines the impact of both the program length and
number of focused blocks whereas Fig. 8 shows the variation
with the number of instructions m only. Fig. 8 presents the
runtime of the analysis of a repeated sequence of n accesses
while assuming the same 16-way cache as in our previous
experiments. The number of blocks in the repeated sequence
n, the number of focused blocks R and the cache associativity
N = 16 impact the possible number of cache states |S| and
therefore the initial growth of the complexity. Once the set of
cache states to consider stabilises, the runtime for the different
configurations follows a similar m x log(m) growth curve.

As demonstrated in the previous set of experiments, a
limited number of focused blocks is effective for typical
cache associativities. We recognise that the trade off be-
tween complexity is an important one in the use of these
techniques on industrial programs. As explored in the next
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section, leverage can be gained from the use of parameters
introduced in the context of deterministic analyses, e.g. partial
unrolling [24], distribution re-sampling [25], or control flow
graph partitioning [26].

C. Control flow partitioning

In this section, we examine an example of additional
leverage to reduce the complexity of our approach. This
method, based on control flow graph partitioning, improves the
conscious trade off between complexity and precision induced
by the selection of a limited set of focused blocks. A loss of
precision, can be balanced by focusing on more blocks while
resulting in a decrease of analysis runtimes.

We defined a simple algorithm to split a program into
consecutive single-entry single-exit regions with M potential
misses on their longest path. Segments can then be analysed
independently [26], assuming an empty input cache, and their
pWCET computed as per (8). The pWCET of the application
is then convolved from that of all segments. This approach
effectively reduces the set of cache states on region boundaries
to the empty state, a safe over-approximation as defined in
Section III-E. Fig. 9 presents the resulting analysis runtime for
the largest benchmarks assuming a segment size M = 1000.

Program partitioning reduces the runtime of our method
over the analysis of the program as a single segment (see
Fig. 7). As the analysis is applied to same-sized regions in all
cases, the runtime of all benchmarks follow a similar growth
with the number of focused blocks. The differences in runtime
come from several factors. First, the length of the program
impacts the complexity of the final convolution. Second, the
consecutive segments on a multi-path program may hold more
than M misses. Splits can only occur on a reduced set of
vertices, namely those which dominates the exit of the CFG.
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using analysis segments of 1000 potential misses.
Further, as shown in Fig. 8, misses and the working set of
each segment impact the number of cache states kept during
analysis. Finally, flow complexity also increases analysis time
as more paths need to be considered in a single segment.

Fig. 10 to 12 presents the distributions computed by the
analyses for a relevant subset of the considered configurations.
They present the analyses results for R = 8 focused blocks
using a single or multiple segments (blue squares and red
hollow triangles respectively). They also include the results
for 12 focused blocks under partitioning (filled red triangles),
as the runtime of this configuration is below that of the R =8
single segment one. Simulations and LRU analyses results are
also included (resp. with green circles and a dark blue line).
WCEP expansion is active in all cases, except LRU.

The approximation of the cache contents on segment bound-
aries has adverse effects on the precision of the analysis.
Indeed, the first few access in a segment may be classified as
misses while the contents of the cache are being reloaded. This
is illustrated for the matmult and edn benchmark respectively
in Fig. 10 and 11. matmult exhibits an important locality at
runtime, the impact of segment boundaries is such that it
overshadows the increase in the number of focused blocks.
Yet, the segmented analysis with 12 focused blocks only takes
285 seconds, against more than 7000 for the single segment
with R = 8. The precision gain from the increase in the number
of focused blocks is much more important for edn, while the
runtime of the high R segmented analysis remains lower than
that of the low R full program one (2000s versus 13000s).

The fft benchmark (Fig. 12) exhibits an interesting excep-
tion. We previously observed that it does not benefit from an
increase in the number of focused blocks. As a consequence,
the approximations on segment boundaries have almost no
impact on the precision of the computed estimates given a
fixed number of focused blocks. Increasing that number again
further degrades the precision of the resulting distribution.

Here, we have investigated changes to the number of
focused blocks and the size of analysed segments, in order
to decrease the complexity of the analysis. Lossy analysis
state compression [27] also applies in our context as those
contributions are orthogonal. Additional techniques, developed
for deterministic analyses, could also be used. Partial un-
rolling [24] can be used to unroll the first few iterations of
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loops to fast-track the analysis of the remaining iterations
using a safe approximation of their input state. Similarly,

control flow graph partitioning [26] can reduce the size of
the analysed segments while limiting the impact of the seg-
mentation. Re-sampling the distributions allows for a decrease
in the size of the convolved distributions, trading an improved
runtime for a small loss in precision [25]. The introduction of
more leverage using existing methods comes with additional
analysis parameters the combinations of which need to be
tuned to balance precision and complexity.

VI. CONCLUSIONS

The main contribution of this paper is the introduction of
a first effective and non-trivial approach to multipath SPTA
for systems that use a cache with an evict-on-miss random
replacement policy. The methods presented in this paper build
upon existing approaches for analysing single-path programs.
While deterministic analyses have benefited from years of
refinements, this work is necessarily a relatively simple first



TABLE I
PROPERTIES OF THE ANALYSED BENCHMARKS AND ANALYSIS RUNTIME
WITH DIFFERENT NUMBER OF FOCUSED BLOCKS R.

Longest path  |Blocks| Runtime (s) Y with expansion
(accesses) R=4 R=8 Off On
MALARDALEN
adpcm 35010 240 90 2549 6281 3069
bsort100 108718 20 683 22819 9902 101
cnt 1576 27 <1 1 201 101
compress 31382 86 64 988 3976 493
cre 27752 44 72 1759 4173 4169
edn 67631 166 618 12257 5 1
expint 11314 31 7 102 404 104
fft 18409 141 13 250 609 587
fir 992 22 <1 1 31 11
jfdctint 1059 96 <1 2 65 1
Icdnum 233 20 <1 <1 171 61
ludemp 3950 98 <1 23 70 8
matmult 63839 28 332 7240 801 1
minver 726 167 <1 <1 7 1
ndes 21377 121 6 154 4219 1273
nsichneu 2944 1377 9 10 1249 1
ns 4349 20 1 28 2 2
prime 5768 17 1 47 725 5
qurt 1526 71 <1 3 187 67
select 1721 60 <1 <1 177 17
sqrt 430 26 <1 <1 59 20
statemate 1844 275 <1 <1 1841 1132
st 67538 163 51 769 971 221
ud 2984 75 <1 11 82 1
PAPABENCH
tl 150 135 <1 <1 41 17
4 215 13 <1 <1 47 24
5 62 55 <1 <1 19 13
6 286 272 <1 <1 103 27
9 472 324 <1 <1 89 11
t10 39658 1073 158 1624 16602 10513
t13 581 675 <1 <1 204 26
fly_by_wire 18723 229 6 39 4355 1930
DEBIE
acquisition_task 18664 205 10 450 3829 1273
hit_trigger_handler 3367 83 <1 6 671 471
tc_execution_task 3131 417 <1 8 368 251
tc_interrupt_handler 77 91 <1 <1 39 27
tm_interrupt_handler 24 30 <1 <1 9 7

step, nevertheless, we have pointed out where existing tech-
niques from deterministic analysis could be applied to make
improvements [26], [25], [18], [24].

We introduced conditions for the computation of valid
upper-bounds on the possible cache states on control flow
convergence and presented a compliant join function. We
defined path redundancy, identifying path inclusion as a sub-
case of redundancy. Based on these results, we presented
worst-case execution path (WCEP) expansion to reduce the
set of paths explored by the analysis, improving the tightness
of the resulting pWCET estimates.

Our evaluations show that the analysis derived is efficient at
capturing the cache locality exhibited by different applications.
The new methods significantly outperform the existing path
merging approach, predicting less than a third as many misses
in one of the benchmarks. Precise results can be attained at
the cost of an increased, user-controlled, complexity. They are
incomparable to deterministic estimates for LRU caches. Fur-
ther, the program transformations introduced proved effective
at improving the precision of all SPTA configurations.
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