
Investigation of Scratchpad Memory
for Preemptive Multitasking

Jack Whitham, Robert I. Davis and Neil Audsley*

Sebastian Altmeyer**
Claire Maiza***

* RTS Group, University of York (UK)
** Compiler Design Lab, Saarland University (Germany)
*** Verimag, INP Grenoble (France)

Part 1

In this paper...

 We compare two varieties of local memory,
for a preemptive multitasking real-time system,
using schedulability tests for the comparison

Schedulability Test

 Given a task set:
 n tasks: τ1, τ2, …, τn

 Deadline, period, etc. defined for each τ

 and given a system:
 CPU, memory, RTOS, resource policies

 are the tasks guaranteed to meet their
deadlines?
 Are they schedulable?

Schedulability Comparison

 Two schedulability tests together

 Same task set:
 n tasks: τ1, τ2, …, τn

 Deadline, period, etc. defined for each τ

 Two different systems:
 CPU, memory, RTOS, resource policy 1
 CPU, memory, RTOS, resource policy 2

 Interesting case: when the task set is
schedulable with one system and not the other

Local Memory

 External memory accesses are slow (latency)

 Tasks store frequently-used code/data in local
memory

 Two alternative ways to manage local memory:
 Cache
 Scratchpad Memory (SPM)

Local Memory: Cache

 Cache holds a copy of recently-accessed
code/data from external memory
 Cache is filled as a side-effect of execution

Local Memory: Cache

 Easy to write tasks that use cache

 Quite difficult to analyse tasks that use cache

 Determining a precise bound on the execution
time:

 Not possible for all types of cache
(pessimism, tool support)

 Not possible for all types of task

Local Memory: SPM

 SPM is used explicitly by the task
 Code/data moved to/from SPM as required

Local Memory: SPM

 Easy timing analysis

 But, it is harder to write tasks that use SPM

 Tricky memory management issues
 Limited tool support

 Cache vs. SPM may be regarded as a tradeoff
between difficulty of programming and difficulty
of timing analysis

Preemptive Multitasking

 At all times, the highest priority
runnable task is executed by the CPU

Time

ta
sk

 p
rio

rit
y

τ1 τ1 τ1 τ1

τ2
τ
2

τ2

τ1 and τ2 are runnable; τ2 experiences interference as τ1 has a higher priority

τ2 preempted
τ2 resumes

τ1 released
τ1 completes

Multitasking and Cache

 If local memory is cache:

 Cache hardware is not aware of task switches
 Different tasks compete for cache space

and can evict each other's cache blocks
(e.g. due to preemption)

 Schedulability test considers the time cost of
reloading evicted cache blocks

Multitasking and SPM

 If local memory is SPM:

 SPM is not aware of task switches
 RTOS must manage SPM as part of the task

context
 To do this, we apply a “multitasking SPM

reuse scheme” (MSRS) at run-time*
 MSRS pages SPM space in/out as required
 Schedulability test considers the time cost of

paging

* see [10] and section I in the paper

Part 2

Preemption-related delays
and response time analysis

Response Time Analysis (RTA)

 Worst-Case Response Time, Ri – the maximum
interval between release and completion of τi

Time

ta
sk

 p
rio

rit
y

τ1 τ1 τ1 τ1

τ2
τ
2

τ2

τ1 released
τ1 completes τ2 released τ2 completes

R2

R1

Response Time Analysis (RTA)

 The famous RTA equation determines Ri:

 Used as a schedulability test: Ri ≤ Di

τ1

Idealism 1

 Eqn ignores context switching time

Time

ta
sk

 p
rio

rit
y

τ1 τ1

τ2 τ2

Incorporated by adding CSto, CSfrom to RTA equation

CSto CSfrom

Idealism 2

 Eqn ignores blocking time

Time

ta
sk

 p
rio

rit
y

τ1 τ1

τ2 τ2

Incorporated by adding Bi to RTA equation (blocking due to task τi)

Critical section in low priority task
High priority task blocked

Idealism 3

 Eqn ignores preemption related delay
 Distinct from blocking, context switching

 Preemption related delay is additional
execution time imposed upon low-priority
tasks as a result of preemption

Preemption Related Delay

 X is a resource used by both tasks:

Preemption related
delay incurred τ1

Time

ta
sk

 p
rio

rit
y

τ1

τ2 τ2

τ1 uses X, replacing τ2

τ2 uses X

τ2 uses X,
replacing τ1

Interference

Non-ideal RTA Equation

Execution and
interference only

Execution and
interference, context-
switching, blocking, and
preemption-related delay

 Preemption-related delay caused by
eviction of cache blocks

 Consider a small cache containing two
blocks A, B

 Cache states represented as:

Cache-Related Preemption Delay

Cache-Related Preemption Delay

 Example of CRPD:

τ1

Time

ta
sk

 p
rio

rit
y

τ1

τ2 τ2

τ2 uses cache
blocks A, B

τ2

τ2

A
B

Cache
state

Cache-Related Preemption Delay

 Example of CRPD:

τ1

Time

ta
sk

 p
rio

rit
y

τ1

τ2 τ2

τ1 uses cache block B
τ2 uses cache
blocks A, B

τ2

τ2

τ2

τ1

A
B

Cache
state

Cache-Related Preemption Delay

 Example of CRPD:

τ1

Time

ta
sk

 p
rio

rit
y

τ1

τ2 τ2

τ1 uses cache block B
τ2 uses cache
blocks A, B

τ2 uses B again

τ2

τ2

τ2

τ1

A

Cache miss due
to preemption

B
τ2

τ2

Cache
state

CRPD Modeling

 CRPD may be bounded by considering the
size of set unions and intersections:
 The set of cache blocks used by a task

(evicting cache blocks, ECBs)
 The set of cache blocks reused by a task

(useful cache blocks, UCBs)

 Various investigations in previous work*

* see section II in the paper

Scratchpad-Related
Preemption Delay (SRPD)

 Preemption-related delay is caused by
“multitasking SPM reuse scheme” (MSRS)

 RTOS pages SPM space in/out at each context
switch as required by each task

 The time cost of paging is SRPD

MSRS

 Multitasking SPM Reuse Scheme

 Example: τ1 uses 1 SPM block, τ2 uses 2

τ1

Time

τ2

“Save” - RTOS unloads τ2 from 1
SPM block and loads τ1 instead

τ2

τ2 τ2

A
B

τ2

τ2

SPM
state

τ2

τ1

τ1

“Restore” - RTOS restores
τ2 usage of SPM

Part 3

Experiments and Results

Experimental Implementation

 Working model built on FPGA:

 Has both SPM and Cache (use one or the other)

 DMA unit for fast copies to/from SPM

Experimental Method

Task S
et

CRPD
analysis

SRPD
analysis

CRPD-RTA
analysis

SRPD-RTA
analysis

Schedulable
with cache?

Schedulable
with MSRS?

Comparison results

assume cache hardware

assume SPM hardwarewith MSRS policy

Task S
et

CRPD
analysis

SRPD
analysis

CRPD-RTA
analysis

SRPD-RTA
analysis

Schedulable
with cache?

Schedulable
with MSRS?

Comparison results

assume cache hardware

assume SPM hardwarewith MSRS policy

Experimental Method

Generated task sets
 Tasks are benchmark programs
 WCET analysis using aiT software
 System timings (“Save” / “Restore” etc.) from FPGA

implementation
 Tasks partitioned into regions for SPM

Task S
et

CRPD
analysis

SRPD
analysis

CRPD-RTA
analysis

SRPD-RTA
analysis

Schedulable
with cache?

Schedulable
with MSRS?

Comparison results

assume cache hardware

assume SPM hardwarewith MSRS policy

Experimental Method

 Upper bound on preemption-related delay
computed by either CRPD or SRPD for each
pair of tasks

Task S
et

CRPD
analysis

SRPD
analysis

CRPD-RTA
analysis

SRPD-RTA
analysis

Schedulable
with cache?

Schedulable
with MSRS?

Comparison results

assume cache hardware

assume SPM hardwarewith MSRS policy

Experimental Method

 Response-time analysis using CRPD/SRPD
 Task periods are the same for both systems
 Other parameters (e.g. C, B) are somewhat

implementation-dependent

Task S
et

CRPD
analysis

SRPD
analysis

CRPD-RTA
analysis

SRPD-RTA
analysis

Schedulable
with cache?

Schedulable
with MSRS?

Comparison results

assume cache hardware

assume SPM hardwarewith MSRS policy

Experimental Method

 Schedulability test repeated for 100,000 task
sets for each utilization
 U = {0.01, 0.02, …, 0.99}
and for both types of system

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

po
rti

on
 o

f T
as

k
S

et
s

fo
un

d
to

 b
e

S
ch

ed
ul

ab
le

Utilization

Schedulable with MSRS,
according to SRPD-RTA
Schedulable with cache,
according to CRPD-RTA

Results

Fig 5, simplified, SRPD-RTA (real) and CRPD only

100,000 task sets of
size 15 generated

0%

1%

2%

3%

4%

5%

6%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

po
rti

on
 o

f T
as

k
S

et
s

fo
un

d
to

 b
e

S
ch

ed
ul

ab
le

Utilization

Schedulable with MSRS but not
cache
Schedulable with cache but not
MSRS

Results

Fig 4 (modified) based on SRPD (real) results

1
3

5
7

9
11

13
15
17

19
21

23
25
27

29
31

33
35
37

39
41

43
45

47
49
51

53
55

57
59
61

63
65

67
69
71

0%

20%

40%

60%

80%

100%

MSRS and Cache Comparison

 Incomparable
 Some task sets are schedulable with one and

not the other – neither dominates

 When is each preferable?
 A weighted measure of schedulability

allows us to compare across many
different utilisations
 Approximately, the

area under the curve

utilisation

N
um

be
r

sc
he

du
la

bl
e

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 5 10 15 20 25 30

W
ei

gh
te

d
M

ea
su

re
 o

f S
ch

ed
ul

ab
ili

ty

Task Set Size

MSRS
Cache

Effect of Task Set Size

Contention for local memory

 MSRS is most successful when there is a
great deal of contention for local memory
space
 e.g. many tasks
 e.g. small local memory

Contention for local memory

 Contention for cache blocks occurs
whenever a preempting task evicts a
block being reused by a preempted task
 More likely with more tasks
 More likely with smaller memory

 Contention for SPM blocks always occurs
 Cost is independent of the number of tasks
(Cost depends only on the preempting task)

Observations

 MSRS is similar to cache for schedulability
 Results are (generally) close
 Some task sets are better suited to

cache or MSRS, due to contention

 MSRS may be improved
 We assumed a naïve implementation
 Subsequent work considers improvements

Conclusions

 Compared two approaches for sharing
local memory between tasks in a real-
time system (cache/MSRS)

 MSRS is better than cache for some task
sets – in most cases, it is similar

 Both local memory types are valid
choices for real-time systems

Thank you!

LSI's question

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SPM count
Cache count

Highest priority task that missed a deadline

Pr
op

or
tio

n
of

 d
ea

dl
in

e
m

is
se

s

Is the highest priority task more likely to miss a deadline with MSRS? According to our
experiments, this isn't significant. We performed SRPD-RTA and CRPD-RTA for task sets
randomly picked with U in [0.3, 0.8] and n = 15, and if a task set was schedulable with only
one, we found the highest-priority task that missed its deadline and added it to this chart.
→ Whether you use cache or MSRS, there is a similar distribution.
→ The usual cause for higher priorities is blocking, not MSRS

0.00

0.10

0.20

0.30

0.40

0.50

0.60

5.0 6.0 7.0 8.0 9.0 10.0 11.0

W
ei

gh
te

d
M

ea
su

re
 o

f S
ch

ed
ul

ab
ili

ty

log2 of Local Memory Size

Cache
MSRS

Effect of Local Memory Size

The set of available benchmarks depends on the memory size –
which is why the graph has this strange step shape. The SPM
approach cannot make use of more than about 2Kb – but the cache
can, which is why it does really well with large local memory

Baseline was 128
blocks (27)

Simulator Trace (MSRS)

Simulator trace of an RTOS with four tasks (plus idle) running with
MSRS. Black line = execution. Coloured marks = MSRS operations.

Simulator Trace (Cache)

Previous slide, replotted for cache. Coloured marks represent cache
misses. Some of these are due to preemption.

	Slide Number 1
	Slide Number 2
	Schedulability Test
	Schedulability Comparison
	Local Memory
	Local Memory: Cache
	Local Memory: Cache
	Local Memory: SPM
	Local Memory: SPM
	Preemptive Multitasking
	Multitasking and Cache
	Multitasking and SPM
	Slide Number 13
	Response Time Analysis (RTA)
	Response Time Analysis (RTA)
	Idealism 1
	Idealism 2
	Idealism 3
	Preemption Related Delay
	Non-ideal RTA Equation
	Cache-Related Preemption Delay
	Cache-Related Preemption Delay
	Cache-Related Preemption Delay
	Cache-Related Preemption Delay
	CRPD Modeling
	Scratchpad-Related�Preemption Delay (SRPD)
	MSRS
	Slide Number 28
	Experimental Implementation
	Experimental Method
	Experimental Method
	Experimental Method
	Experimental Method
	Experimental Method
	Results
	Results
	MSRS and Cache Comparison
	Effect of Task Set Size
	Contention for local memory
	Contention for local memory
	Observations
	Conclusions
	Slide Number 43
	LSI's question
	Effect of Local Memory Size
	Simulator Trace (MSRS)
	Simulator Trace (Cache)

