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Background
 Fixed priority scheduling

 Widely used in embedded real-time systems:
 Electronic Control Units (ECUs) & communications networks in 

automobiles,
 Industrial process control,
 Digital set-top boxes,
 Medical systems,
 Mobile phones,
 Space systems

 Common problem faced by engineers:
 How to assign priorities, so that the system will meet its 

time constraints?
 Previous research: Answers this question for well defined 

(restrictive) system models



Definition
 Optimal Priority Assignment

For a given system model, a priority assignment policy P is 
referred to as optimal if there are no systems, compliant with the 
system model, that are schedulable using another priority 
assignment policy that are not also schedulable using policy P.

An optimal priority assignment policy can schedule any system 
that can be scheduled using any other priority assignment



Previous Research
 Priority Assignment

 Deadline Monotonic � Leung & Whitehead 1982 [4]
 Optimal for DT, Not optimal for tasks with offsets

 Arbitrary Deadlines (D>T) � Lehoczcky et al. 1990 [5]
 Deadline Monotonic not optimal

 Optimal Priority Assignment algorithm � Audsley 1991 [6]
 Optimal for tasks with offsets, D>T etc.

 Non-pre-emptive scheduling  � George et al 1996 [7]
 Deadline Monotonic not optimal, Audsley�s algorithm optimal

 Blocking according to SRP � Audsley & Bletsas 2006 [10]
 Audsley�s algorithm remains optimal

 Tasksets with jitter � Zuhily & Burns 2007 [9]
 �Deadline minus Jitter� Monotonic optimal

 Rate Monotonic � Serlin 1972 [1], Liu & Layland 1973 [2]
 Optimal for D=T



Motivation
 Commercial Real-Time Systems

 Seldom if ever fully compliant with the system models used in 
research

 Tasks subject to all manner of additional interference:
 Interrupts, occurring in bursts, at ill-defined rates, using more 

execution time than expected
 Ill-defined RTOS overheads
 Tasks overrunning their execution time budgets 
 Ill-defined critical sections with interrupts and task switches disabled, 

possibly due to the behaviour of the RTOS
 Cycle stealing by peripheral devices (DMA)
 Errors causing recovery mechanisms to execute

 This research
 Considers systems subject to additional interference
 Seek to find the robust priority ordering, that is

able to tolerate the maximum amount of additional interference



System Model
 Single processor

 Static set of n tasks τi
 Fixed Priority Scheduling 

 Task scheduling
 Pre-emptive
 Non-pre-emptive
 Co-operative

 Task parameters
 Periodic or sporadic: minimum inter-arrival time T
 Deadline DT, D>T (arbitrary), or before completion
 Worst-case execution time C
 Release jitter, from notional arrival to being ready to execute



System Model
 Blocking

 Access to resources / critical sections according to the 
Stack Resource Policy (SRP) - Baker 1991 [11]

 Transactions
 Groups of tasks related by offsets

 No voluntary suspension



Additional Interference
 Very general model of additional interference
 Additional Interference function

 α scaling factor � used to model variability
 w  time window � over which interference occurs
 i  priority level � at or below which the interference impinges on 

task response times

 Require that is a monotonic non-decreasing 
function of its parameters
 In practice most sources of interference are

 Greater in longer intervals of time than in shorter ones
 Affect lower priorities if they also affect higher priorities
 Guaranteed to be monotonic in α as this is the scaling factor

),,( iwE α

),,( iwE α



Definition
 Robust Priority Assignment

(with an additional interference function               )
For a given system model and additional interference function, 
a priority assignment policy P is referred to as robust if there 
are no systems, compliant with the system model, that are 
schedulable and can tolerate additional interference 
characterized by a scaling factor α using another priority 
assignment policy Q that are not also schedulable and can 
tolerate additional interference characterized by the same or 
larger scaling factor using priority assignment policy P.

),,( iwE α

Of all feasible priority assignments, the robust priority 
assignment tolerates the most additional interference (largest α)



Robust Priority Assignment
 Robust Priority Assignment Algorithm

 Based on Audsley�s optimal priority assignment algorithm
 Applicable to analysable system models (where schedulability 

can be determined) and the following conditions hold:
1. Response time of a task may be dependent on:

the set of higher priority tasks but not their priority order
the set of lower priority tasks but not their priority order

2. If the priorities of two tasks are swapped:
the response time of the task being assigned the higher 
priority cannot increase.
the response time of the task being assigned the lower 
priority cannot decrease.

 As additional interference is monotonically non-
decreasing in its parameters, the above conditions also hold 
when additional interference is considered

),,( iwE α



Robust Priority Assignment
 Robust Priority Assignment (RPA) Algorithm

for each priority level i, lowest first
{

for each unassigned task ττ
{

binary search for the largest value of αα
 

for 
which task ττ

 
is schedulable at priority i

}
if no tasks are schedulable at priority i

return unschedulable
else

assign the schedulable task that tolerates the 
max αα

 
at priority i to priority i

}
return schedulable 



Robust Priority Assignment
 Robust Priority Assignment (RPA) Algorithm

 Computes
 Maximum additional interference tolerated by each task at 

its assigned priority level 
 Maximum additional interference tolerated by the system 

as a whole
 = minimum additional interference tolerated by any task

 Priority ordering generated is:
 Optimal (Theorem 1)

 Proof by equivalence with Audsley�s Optimal Priority 
Assignment Algorithm

 Robust (Theorem 2)
 Proof by contradiction�see paper



Robust Priority Assignment
 Example 1: Non-pre-emptive scheduling

 Additional interference from single invocation of an 
interrupt handler with unknown execution time

 Additional interference

Task C T D

ττA 125 450 450

ττB 125 550 550

ττC 65 600 600

ττD 125 1000 1000

ττE 125 2000 2000

αα =),,( iwE



Robust Priority Assignment
 Computed values of α

Priority
Task

ττA ττB ττC ττD ττE
5 NS NS NS 120 354
4 NS NS NS 120 -

3 10 110 74 - -

2 135 - 199 - -

1 200 - - - -

 Robust priority ordering
 Tolerates infrequent interrupts of up to 110 time units

 Deadline monotonic: neither optimal nor robust
 Tolerates infrequent interrupts of up to 74 time units



Robust Priority Assignment
 Example 2: Pre-emptive scheduling, D >T

 Schedulable with priority orderings
(τA ,τB ) and (τB ,τA ) with no additional interference

Task C D T

ττA 42 118 100

ττB 52 154 140



 (τA ,τB ) tolerates α = (58, 9)
 (τB ,τA) tolerates α = (51, 10) Robust ordering

 (τA ,τB ) tolerates α = (76, 18) Robust ordering
 (τB ,τA) tolerates α = (96, 15)

Robust Priority Assignment

 Case 1:

 Case 2:
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 Robust ordering depends on specific values of K and L
 K=1, L=0: equivalent to Case 1: (τB ,τA) is the Robust ordering
 K=0, L=1: equivalent to Case 2: (τA ,τB) is the Robust ordering



Robust Priority Assignment
 Key Result #1 (if somewhat negative)

In general, the Robust priority ordering can only 
be found if the form of the additional interference 
function is well defined (only αα

 
unknown).

But more to follow about specific system models�



Mixed Systems
 Mixed systems: two subsets of tasks

 �D-J Monotonic tasks�
 Satisfy the restrictions where �Deadline minus Jitter�

monotonic priority ordering is known to be optimal
 Pre-emptable, DT, jitter, resource access according 

to SRP, no transactions / offsets 

 �Non D-J Monotonic tasks�
 Don�t satisfy the restrictions where �Deadline minus 

Jitter� monotonic priority ordering is known to be 
optimal

 Pre-emptable with D>T, non-pre-emptable, co-
operative scheduling with non-pre-emtable final 
section, transactions, non-zero offsets



Mixed Systems
 Key Result #2

(Theorems 3, 4 & 5)
For a mixed system, where a feasible priority 
ordering exists, there exists a Robust Priority 
Ordering with the D-J monotonic tasks in 
“Deadline minus Jitter” monotonic partial order

 This is the case irrespective of task execution times, and 
irrespective of the form of the additional interference 
function*

*provided only that the additional interference function is monotonic in 
its parameters



Mixed Systems
 Use previous result to improve efficiency of

 Optimal Priority Assignment Algorithm [Audsley 1991]
 Robust Priority Assignment Algorithm

 Key point:
 Of all the D-J monotonic tasks, the one with the largest 

value of �Deadline minus Jitter� is always the one that 
can tolerate the most additional interference at a given 
priority level

 Therefore, only one D-J monotonic task need be 
checked at each priority level � the one with the largest 
value of �Deadline minus Jitter� of all unassigned tasks



Improving algorithm efficiency
 Efficiency: RPA and Audsley’s algorithm

 n tasks, m of which are D-J monotonic.
 Algorithm complexity:

 In the worst-case,
 D-J monotonic tasks assigned first

m(n-m+1)
 Non D-J monotonic tasks assigned last

+ (n-m)(n-m+1)/2
 Total

= (n(n+1)-m(m-1))/2
 Reduces to

n(n+1)/2  if m = 0



Improving algorithm efficiency
 Example: 50 tasks: 

 n(n+1)/2 = 1275 computations
 4 tasks in a transaction, 46 D-J monotonic tasks

=>  240 computations, factor of 5 improvement

Number of non D-J 
Monotonic Tasks

Number of 
Computations

Improvement 
factor

1 99 12.9

2 147 8.7

3 194 6.6

4 240 5.3
5 285 4.5

10 495 2.6

25 975 1.3



Simple Systems
 Key result #3

(Theorem 6)
For systems where all tasks comply with the D-J 
Monotonic system model, “Deadline minus Jitter” 
monotonic priority assignment is the Robust 
Priority Assignment policy

 This is the case irrespective of task execution times, and 
irrespective of the form of the additional interference 
function*

*provided that the additional interference function is monotonic in its 
parameters



Simple Systems
 Implications of Theorem 6

 For simple commercial real-time systems
 using fixed priority pre-emptive scheduling,
 DT, release jitter, resource access according to 

SRP, no transactions / offsets
 BUT subject to ill-defined additional interference

 Interrupts, RTOS overheads, cycle stealing, budget 
overruns etc.

“Deadline minus Jitter” monotonic priority 
assignment is the most robust priority ordering to 
use



Contribution
 Concept of Robust Priority Ordering

 Tolerates the most additional interference of any priority ordering

 Robust Priority Assignment Algorithm
 Finds the Robust Priority Ordering for a wide range of system 

models

 Key results
1. General case: Robust Priority Ordering depends upon the 

exact form of the additional interference function
2. Mixed systems (Some D-J monotonic tasks): Robust Priority 

Ordering always has D-J monotonic tasks in “Deadline 
minus Jitter” monotonic partial order*

3. Simple Systems (All D-J monotonic tasks): “Deadline minus 
Jitter” monotonic ordering is the Robust Priority Ordering*

*irrespective of the form of the additional interference function or task 
execution times



Conclusions
 This research has helped provide a more definitive 

answers to the engineer�s questions:

Question:�What priority ordering should I use?�
Answer: �Robust Priority Ordering�

Question: �How do I find that?�
Answer: �For simple system models, its Deadline 
minus Jitter� monotonic priority ordering, otherwise 
use the Robust Priority Assignment Algorithm.�
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Robust Priority Assignment

Questions?



Robust Priority Assignment

The End



Proof of Robust Ordering
 Proof by contradiction

 Assume an alternative priority ordering Qn exists that tolerates 
greater additional interference than priority ordering P 
(generated by the RPA algorithm)

 n-1 transformations
 Qn into Qn-1, Qn-2� Q1 = P

 Each transformation will not decrease the additional 
interference tolerated => contradiction



Proof of Robust Ordering
 First step:

 Select the task in Qn that is at priority n 
in P (The RPA algorithm ordering)

 Shift that task (from priority i) to 
priority n 

 Qn-1 can tolerate at least as much 
additional interference as Qn

 Higher priority than i � same
 The task at priority i in Qn can tolerate 

at least as much additional interference 
at priority n as the task at priority n 
(first iteration of the RPA algorithm)

 Tasks at  priorities i+1..n in Qn shifted 
up one in priority � so can tolerate at 
least as much additional interference 



Proof of Robust Ordering
 kth step:
 At each step k = n down to 1:

 Select the task in Qk that is at priority k 
in P (The RPA algorithm ordering)

 Shift that task (from priority i) to 
priority k 

 Qk-1 can tolerate at least as much 
additional interference as Qk

 Higher priority than i � same
 Lower priority than k � same 
 Task at priority i in Qk can tolerate at 

least as much additional interference at 
priority k as the task at priority k

 Tasks at  priorities i+1..k in Qk shifted 
up one in priority � so can tolerate at 
least as much additional interference 

 n-1 steps to reach robust ordering P
 No decrease in additional interference 

tolerated 
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