
Robust Priority Assignment for
Fixed Priority Real-Time

Systems

Robert Davis and Alan Burns
Real-Time Systems Research Group

University of York, UK

Outline
 Introduction

 Background, Previous Research, Motivation

 Robust Priority Assignment (RPA)
 Definition, Algorithm, Theorems, Examples

 Mixed Systems
 Two classes of tasks, Robust partial ordering, Improving

algorithm efficiency

 Summary of contributions

Background
 Fixed priority scheduling

 Widely used in embedded real-time systems:
 Electronic Control Units (ECUs) & communications networks in

automobiles,
 Industrial process control,
 Digital set-top boxes,
 Medical systems,
 Mobile phones,
 Space systems

 Common problem faced by engineers:
 How to assign priorities, so that the system will meet its

time constraints?
 Previous research: Answers this question for well defined

(restrictive) system models

Definition
 Optimal Priority Assignment

For a given system model, a priority assignment policy P is
referred to as optimal if there are no systems, compliant with the
system model, that are schedulable using another priority
assignment policy that are not also schedulable using policy P.

An optimal priority assignment policy can schedule any system
that can be scheduled using any other priority assignment

Previous Research
 Priority Assignment

 Deadline Monotonic � Leung & Whitehead 1982 [4]
 Optimal for DT, Not optimal for tasks with offsets

 Arbitrary Deadlines (D>T) � Lehoczcky et al. 1990 [5]
 Deadline Monotonic not optimal

 Optimal Priority Assignment algorithm � Audsley 1991 [6]
 Optimal for tasks with offsets, D>T etc.

 Non-pre-emptive scheduling � George et al 1996 [7]
 Deadline Monotonic not optimal, Audsley�s algorithm optimal

 Blocking according to SRP � Audsley & Bletsas 2006 [10]
 Audsley�s algorithm remains optimal

 Tasksets with jitter � Zuhily & Burns 2007 [9]
 �Deadline minus Jitter� Monotonic optimal

 Rate Monotonic � Serlin 1972 [1], Liu & Layland 1973 [2]
 Optimal for D=T

Motivation
 Commercial Real-Time Systems

 Seldom if ever fully compliant with the system models used in
research

 Tasks subject to all manner of additional interference:
 Interrupts, occurring in bursts, at ill-defined rates, using more

execution time than expected
 Ill-defined RTOS overheads
 Tasks overrunning their execution time budgets
 Ill-defined critical sections with interrupts and task switches disabled,

possibly due to the behaviour of the RTOS
 Cycle stealing by peripheral devices (DMA)
 Errors causing recovery mechanisms to execute

 This research
 Considers systems subject to additional interference
 Seek to find the robust priority ordering, that is

able to tolerate the maximum amount of additional interference

System Model
 Single processor

 Static set of n tasks τi
 Fixed Priority Scheduling

 Task scheduling
 Pre-emptive
 Non-pre-emptive
 Co-operative

 Task parameters
 Periodic or sporadic: minimum inter-arrival time T
 Deadline DT, D>T (arbitrary), or before completion
 Worst-case execution time C
 Release jitter, from notional arrival to being ready to execute

System Model
 Blocking

 Access to resources / critical sections according to the
Stack Resource Policy (SRP) - Baker 1991 [11]

 Transactions
 Groups of tasks related by offsets

 No voluntary suspension

Additional Interference
 Very general model of additional interference
 Additional Interference function

 α scaling factor � used to model variability
 w time window � over which interference occurs
 i priority level � at or below which the interference impinges on

task response times

 Require that is a monotonic non-decreasing
function of its parameters
 In practice most sources of interference are

 Greater in longer intervals of time than in shorter ones
 Affect lower priorities if they also affect higher priorities
 Guaranteed to be monotonic in α as this is the scaling factor

),,(iwE α

),,(iwE α

Definition
 Robust Priority Assignment

(with an additional interference function)
For a given system model and additional interference function,
a priority assignment policy P is referred to as robust if there
are no systems, compliant with the system model, that are
schedulable and can tolerate additional interference
characterized by a scaling factor α using another priority
assignment policy Q that are not also schedulable and can
tolerate additional interference characterized by the same or
larger scaling factor using priority assignment policy P.

),,(iwE α

Of all feasible priority assignments, the robust priority
assignment tolerates the most additional interference (largest α)

Robust Priority Assignment
 Robust Priority Assignment Algorithm

 Based on Audsley�s optimal priority assignment algorithm
 Applicable to analysable system models (where schedulability

can be determined) and the following conditions hold:
1. Response time of a task may be dependent on:

the set of higher priority tasks but not their priority order
the set of lower priority tasks but not their priority order

2. If the priorities of two tasks are swapped:
the response time of the task being assigned the higher
priority cannot increase.
the response time of the task being assigned the lower
priority cannot decrease.

 As additional interference is monotonically non-
decreasing in its parameters, the above conditions also hold
when additional interference is considered

),,(iwE α

Robust Priority Assignment
 Robust Priority Assignment (RPA) Algorithm

for each priority level i, lowest first
{

for each unassigned task ττ
{

binary search for the largest value of αα

for
which task ττ

is schedulable at priority i

}
if no tasks are schedulable at priority i

return unschedulable
else

assign the schedulable task that tolerates the
max αα

at priority i to priority i

}
return schedulable

Robust Priority Assignment
 Robust Priority Assignment (RPA) Algorithm

 Computes
 Maximum additional interference tolerated by each task at

its assigned priority level
 Maximum additional interference tolerated by the system

as a whole
 = minimum additional interference tolerated by any task

 Priority ordering generated is:
 Optimal (Theorem 1)

 Proof by equivalence with Audsley�s Optimal Priority
Assignment Algorithm

 Robust (Theorem 2)
 Proof by contradiction�see paper

Robust Priority Assignment
 Example 1: Non-pre-emptive scheduling

 Additional interference from single invocation of an
interrupt handler with unknown execution time

 Additional interference

Task C T D

ττA 125 450 450

ττB 125 550 550

ττC 65 600 600

ττD 125 1000 1000

ττE 125 2000 2000

αα =),,(iwE

Robust Priority Assignment
 Computed values of α

Priority
Task

ττA ττB ττC ττD ττE
5 NS NS NS 120 354
4 NS NS NS 120 -

3 10 110 74 - -

2 135 - 199 - -

1 200 - - - -

 Robust priority ordering
 Tolerates infrequent interrupts of up to 110 time units

 Deadline monotonic: neither optimal nor robust
 Tolerates infrequent interrupts of up to 74 time units

Robust Priority Assignment
 Example 2: Pre-emptive scheduling, D >T

 Schedulable with priority orderings
(τA ,τB) and (τB ,τA) with no additional interference

Task C D T

ττA 42 118 100

ττB 52 154 140

 (τA ,τB) tolerates α = (58, 9)
 (τB ,τA) tolerates α = (51, 10) Robust ordering

 (τA ,τB) tolerates α = (76, 18) Robust ordering
 (τB ,τA) tolerates α = (96, 15)

Robust Priority Assignment

 Case 1:

 Case 2:

 Case 3: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡= LwKwiwE

200100
),,(αα

⎥⎥
⎤

⎢⎢
⎡=
100

),,(wiwE αα

⎥⎥
⎤

⎢⎢
⎡=

200
),,(wiwE αα

 Robust ordering depends on specific values of K and L
 K=1, L=0: equivalent to Case 1: (τB ,τA) is the Robust ordering
 K=0, L=1: equivalent to Case 2: (τA ,τB) is the Robust ordering

Robust Priority Assignment
 Key Result #1 (if somewhat negative)

In general, the Robust priority ordering can only
be found if the form of the additional interference
function is well defined (only αα

unknown).

But more to follow about specific system models�

Mixed Systems
 Mixed systems: two subsets of tasks

 �D-J Monotonic tasks�
 Satisfy the restrictions where �Deadline minus Jitter�

monotonic priority ordering is known to be optimal
 Pre-emptable, DT, jitter, resource access according

to SRP, no transactions / offsets

 �Non D-J Monotonic tasks�
 Don�t satisfy the restrictions where �Deadline minus

Jitter� monotonic priority ordering is known to be
optimal

 Pre-emptable with D>T, non-pre-emptable, co-
operative scheduling with non-pre-emtable final
section, transactions, non-zero offsets

Mixed Systems
 Key Result #2

(Theorems 3, 4 & 5)
For a mixed system, where a feasible priority
ordering exists, there exists a Robust Priority
Ordering with the D-J monotonic tasks in
“Deadline minus Jitter” monotonic partial order

 This is the case irrespective of task execution times, and
irrespective of the form of the additional interference
function*

*provided only that the additional interference function is monotonic in
its parameters

Mixed Systems
 Use previous result to improve efficiency of

 Optimal Priority Assignment Algorithm [Audsley 1991]
 Robust Priority Assignment Algorithm

 Key point:
 Of all the D-J monotonic tasks, the one with the largest

value of �Deadline minus Jitter� is always the one that
can tolerate the most additional interference at a given
priority level

 Therefore, only one D-J monotonic task need be
checked at each priority level � the one with the largest
value of �Deadline minus Jitter� of all unassigned tasks

Improving algorithm efficiency
 Efficiency: RPA and Audsley’s algorithm

 n tasks, m of which are D-J monotonic.
 Algorithm complexity:

 In the worst-case,
 D-J monotonic tasks assigned first

m(n-m+1)
 Non D-J monotonic tasks assigned last

+ (n-m)(n-m+1)/2
 Total

= (n(n+1)-m(m-1))/2
 Reduces to

n(n+1)/2 if m = 0

Improving algorithm efficiency
 Example: 50 tasks:

 n(n+1)/2 = 1275 computations
 4 tasks in a transaction, 46 D-J monotonic tasks

=> 240 computations, factor of 5 improvement

Number of non D-J
Monotonic Tasks

Number of
Computations

Improvement
factor

1 99 12.9

2 147 8.7

3 194 6.6

4 240 5.3
5 285 4.5

10 495 2.6

25 975 1.3

Simple Systems
 Key result #3

(Theorem 6)
For systems where all tasks comply with the D-J
Monotonic system model, “Deadline minus Jitter”
monotonic priority assignment is the Robust
Priority Assignment policy

 This is the case irrespective of task execution times, and
irrespective of the form of the additional interference
function*

*provided that the additional interference function is monotonic in its
parameters

Simple Systems
 Implications of Theorem 6

 For simple commercial real-time systems
 using fixed priority pre-emptive scheduling,
 DT, release jitter, resource access according to

SRP, no transactions / offsets
 BUT subject to ill-defined additional interference

 Interrupts, RTOS overheads, cycle stealing, budget
overruns etc.

“Deadline minus Jitter” monotonic priority
assignment is the most robust priority ordering to
use

Contribution
 Concept of Robust Priority Ordering

 Tolerates the most additional interference of any priority ordering

 Robust Priority Assignment Algorithm
 Finds the Robust Priority Ordering for a wide range of system

models

 Key results
1. General case: Robust Priority Ordering depends upon the

exact form of the additional interference function
2. Mixed systems (Some D-J monotonic tasks): Robust Priority

Ordering always has D-J monotonic tasks in “Deadline
minus Jitter” monotonic partial order*

3. Simple Systems (All D-J monotonic tasks): “Deadline minus
Jitter” monotonic ordering is the Robust Priority Ordering*

*irrespective of the form of the additional interference function or task
execution times

Conclusions
 This research has helped provide a more definitive

answers to the engineer�s questions:

Question:�What priority ordering should I use?�
Answer: �Robust Priority Ordering�

Question: �How do I find that?�
Answer: �For simple system models, its Deadline
minus Jitter� monotonic priority ordering, otherwise
use the Robust Priority Assignment Algorithm.�

 Acknowledgements
 Research partially funded by: EU project

Robust Priority Assignment

Questions?

Robust Priority Assignment

The End

Proof of Robust Ordering
 Proof by contradiction

 Assume an alternative priority ordering Qn exists that tolerates
greater additional interference than priority ordering P
(generated by the RPA algorithm)

 n-1 transformations
 Qn into Qn-1, Qn-2� Q1 = P

 Each transformation will not decrease the additional
interference tolerated => contradiction

Proof of Robust Ordering
 First step:

 Select the task in Qn that is at priority n
in P (The RPA algorithm ordering)

 Shift that task (from priority i) to
priority n

 Qn-1 can tolerate at least as much
additional interference as Qn

 Higher priority than i � same
 The task at priority i in Qn can tolerate

at least as much additional interference
at priority n as the task at priority n
(first iteration of the RPA algorithm)

 Tasks at priorities i+1..n in Qn shifted
up one in priority � so can tolerate at
least as much additional interference

Proof of Robust Ordering
 kth step:
 At each step k = n down to 1:

 Select the task in Qk that is at priority k
in P (The RPA algorithm ordering)

 Shift that task (from priority i) to
priority k

 Qk-1 can tolerate at least as much
additional interference as Qk

 Higher priority than i � same
 Lower priority than k � same
 Task at priority i in Qk can tolerate at

least as much additional interference at
priority k as the task at priority k

 Tasks at priorities i+1..k in Qk shifted
up one in priority � so can tolerate at
least as much additional interference

 n-1 steps to reach robust ordering P
 No decrease in additional interference

tolerated 

	Robust Priority Assignment for Fixed Priority Real-Time� Systems
	Outline
	Background
	Definition
	Previous Research
	Motivation
	System Model
	System Model
	Additional Interference
	Definition
	Robust Priority Assignment
	Robust Priority Assignment
	Robust Priority Assignment
	Robust Priority Assignment
	Robust Priority Assignment
	Robust Priority Assignment
	Robust Priority Assignment
	Robust Priority Assignment
	Mixed Systems
	Mixed Systems
	Mixed Systems
	Improving algorithm efficiency
	Improving algorithm efficiency
	Simple Systems
	Simple Systems
	Contribution
	Conclusions
	Robust Priority Assignment
	Robust Priority Assignment
	Proof of Robust Ordering
	Proof of Robust Ordering
	Proof of Robust Ordering

