
Response Time Upper Bounds
for Fixed Priority Real-Time

Systems

Robert Davis and Alan Burns
Real-Time Systems Research Group

University of York

Outline
 Background and motivation

 Why are we interested in response time upper bounds?
 Recap on standard analysis

 System model and Response Time Analysis
 Response time upper bound

 Derivation
 Application to pre-emptive, co-operative, and non pre-

emptive scheduling problems
 Empirical investigations

 Comparison with other simple schedulability tests
 Summary and conclusions

Background
 Fixed priority scheduling

 Widely used in real-time embedded systems:
 electronic control units and communications networks in

automobiles, digital set-top boxes, medical systems, space
systems, and mobile phones.

 Supported by nearly all commercial RTOS
 Supported by schedulability analysis

 Response Time Analysis exists for system models with
broad scope

 blocking, release jitter, arbitrary deadlines etc.
 co-operative and non-pre-emptive scheduling

 Exact analysis has pseudo-polynomial complexity
 Can almost always be used to determine schedulability of

industrial scale systems in reasonable time, despite
theoretical complexity results

Motivation
 Why are we interested in Response Time Upper

Bounds?
 Improve practical efficiency of exact schedulability test

 Check on a task-by-task basis if schedulable according to
upper bound

 Only compute exact response time for a task when upper
bound > deadline

 Typical tasksets, majority of tasks are easily schedulable, so
using an upper bound can result in significant
improvements in efficiency
[R.I. Davis, A. Zabos, and A. Burns, �Efficient Exact
Schedulability Tests for Fixed Priority Pre-emptive Systems�
IEEE Transactions on Computers September 2008 (Vol. 57,
No. 9) pp. 1261-1276]

Motivation
 Other uses of Response Time Upper Bounds?

 Can be used when complexity / execution time of exact
response time analysis is a limitation

 Interactive system design tools
 Sensitivity analysis requires results of large numbers of

schedulability test be available in HCI timescales

 System optimisation via search
 Using simulated annealing / GAs with schedulability as a

cost function

 Dynamic systems
 Online admission of new tasks / applications with stringent

start-up constraints

System Model
 Single processor

 Static set of n tasks τi
 Fixed Priority Scheduling

 Task parameters
 Worst-case execution time Ci
 Sporadic/periodic arrivals: minimum inter-arrival time Ti
 Arbitrary Deadlines Di≤Ti, Di>Ti
 Blocking factor Bi
 Release jitter Ji, from arrival to release
 Worst-case response time Ri, from release to completion

 Independent arrival times
 Potential for simultaneous release

System Model
 Task scheduling

 Pre-emptive
 Co-operative / Non-pre-emptive

 Final non-pre-emptive section Fi ≤Ci

 Blocking
 Access to mutually exclusive shared resources according

to the Stack Resource Policy (SRP) � [Baker 1991]
 Blocking factor Bi

 Longest time a lower priority task can execute at priority i
or higher due to SRP or non-pre-emptive sections

Terminology
 Priority i busy period

 Time interval during which the processor is busy executing at priority
i or higher until it completes some computation C at priority i

 Priority i occupied period
 Time interval during which the processor is busy executing at priority

i or higher until it has completed some computation C at priority i
and is available to continue executing computation at priority i

1 2 1 3 1

1,2,3 1 1 1

1

Priority level-2 busy period

Priority level-2 occupied period

Response time analysis: recap
 Pre-emptive scheduling

 General model, arbitrary deadlines, release jitter, blocking etc.
 Determine length of multiple busy periods starting at a critical

instant, extending to completion of qth invocation of task τi

 Response time given by
 Start with
 Iterate until or
 Worst-case response time

 Check values of q until an invocation completes before the next release

 Schedulable if

∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
+++=

)(

1)(
)1()(

ihpj
j

j

j
n
i

ii
n
i C

T
Jqw

CqBqw

iii CqBqw)1()(0 ++=
)()(1 qwqw n

i
n
i =+

iii
n
i JDqTqw −>−+)(1

i
n
ii qTqwqR −= +)()(1

))((max iiqi qTqwR −= ∀

iii JDR −≤

Response time analysis: recap
 Non-pre-emptive scheduling

 Determine length of multiple occupied periods starting at
critical instant, extending to time at which the qth invocation can
start its final non-pre-emptable section

 Response time given by
 Start with

 Iterate until or

 Worst-case response time
 Number of invocations to check related to number of invocations Q in

the busy period for pre-emptive scheduling

 Schedulable if iii JDR −≤

j
ihpj j

j
n
i

iii
n
i C

T
Jqv

FCqBqv ∑
∈∀

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ +
+−++=

)(

1 1
)(

)1()(

iiii FCqBqv −++=)1()(0

)()(1 qvqv n
i

n
i =+

iiii
n
i JDqTFqv −>−++)(1

ii
n
ii qTFqvqR −+= +)()(1

))((max 1..1,0 iiiQqi qTFqvR
i

−+= −=

Derivation of the Upper Bound
 Approach

 Method introduced by Bini & Baruah 2007
 Idea is to derive an upper bound on interference

from each high priority task assuming that it is the only
task in the system

 Use these upper bounds on interference to determine an
upper bound on task response time

 Extended here to
 Account for blocking and release jitter
 Cater for co-operative and non-pre-emptive scheduling

(as well as the pre-emptive case)

Interference Upper Bound

hCj

Interference

time

hCj

Time the processor spends
executing a high priority
task when it is the only
task in the system

P(t,y)

Linear upper bound
on interference

Interference Upper Bound
 Determine number of invocations h that execute

consecutively from time t = 0
 Number of invocations released at t = 0 is
 Subsequent releases at times

for k = 1,2,3…
 Number of subsequent releases within the interval of

consecutive execution is given by the largest k :

 Hence:

⎣ ⎦ 1/ +jj TJ

⎣ ⎦() jjjjj TkJTTJ)1(1/ −+−+

⎣ ⎦() ≥−++ jjjj CkCTJ)1(1/ ⎣ ⎦() jjjjj TkJTTJ)1(1/ −+−+

⎣ ⎦ ⎣ ⎦jjjjj TJCTJk /)/(−−=

⎣ ⎦ 1)/(+−= jjj CTJh

Interference Upper Bound
 Point P(t,y)

 Interference upper bound:

 For all higher priority tasks:

)1()(jjjjj
UB
j UCJUtUtI −++=

))1(()(
)()()(

jj
ihpj

jj
ihpj

j
ihpj

UB
j UCJUUttI −++= ∑∑∑

∈∀∈∀∈∀

⎣ ⎦() jjjjjjj CCCTJChCy ++−=+= 1)/(

⎣ ⎦() jjjjjjjjj CJTCTJCJhTt +−+−=+−= 1)/(

Busy Period Upper Bound
 Busy Period Upper Bound on time for processor to

complete C execution at priority i
 Intersection of the lines:

 Theorem 1: is also an upper bound on the
occupied period for computation C at priority i

))1((
)()(

jj
ihpj

jj
ihpj

j UCJUUtCy −+++= ∑∑
∈∀∈∀

ty =

∑

∑

∈∀

∈∀

−

−++

=

)(

)(

1

))1((
)(

ihpj
j

jj
ihpj

jj
UB
i U

UCJUC
CO

)(COUB
i

Occupied Period Upper Bound
Interference

time

Bound = max interference
No further hp execution for
some non-zero time interval,
so processor can start further
execution at priority i at the
end of the interval OUB

Bound strictly > max
interference
Processor can start
further execution at
priority i before the
end of the interval OUB

Proof of Theorem 1:
Show that the processor is available to
execute further computation at priority i
at or before the end of the interval OUB

Response Time Upper Bound
 Pre-emptive case

 Occupied period upper bounds the pre-emptive busy
period

 Response time bound for each invocation
 Comparing response time bounds for different invocations

 Worst-case response time upper bound (first invocation)

∑

∑

∈∀

∈∀

−

−++++

=

)(

)(

1

))1(()1(
)(

ihpj
j

jj
ihpj

jjii
UB
i U

UCJUCqB
qW

0
1

)1()(

)(

≥
−

−=+−
∑
∈∀ ihpj

j

i
i

UB
i

UB
i U

CTqRqR

∑

∑

∈∀

∈∀

−

−+++

=

)(

)(

1

))1((

ihpj
j

jj
ihpj

jjii
UB
i U

UCJUCB
R

i
UB
i

UB
i qTqWqR −=)()(

Response Time Upper Bound
 Co-operative (and non-pre-emptive) case

 Upper bound on occupied time

 Bound for each invocation
 Comparing response times for different invocations:

 Worst-case response time upper bound (first invocation)

∑

∑

∈∀

∈∀

−

−++−++

=

)(

)(

1

))1(()1(
)(

ihpj
j

jj
ihpj

jjiii
UB
i U

UCJUFCqB
qV

0
1

)1()(

)(

≥
−

−=+−
∑
∈∀ ihpj

j

i
i

UB
i

UB
i U

CTqRqR

i

ihpj
j

jj
ihpj

jjiii
UB
i F

U

UCJUFCB
R +

−

−++−+

=
∑

∑

∈∀

∈∀

)(

)(

1

))1((

ii
UB
i

UB
i qTFqVqR −+=)()(

Linear time sufficient test
 Closed form Response Time Upper bound

 Widely applicable to processor and network scheduling
 Arbitrary deadlines, blocking, release jitter
 Task scheduling

 Pre-emptive: Fi = 0,
 Co-operative: 0 < Fi < Ci
 Non-pre-emptive Fi = Ci

 Via incremental summation, highest priority first, can
determine schedulability of n tasks in O(n) time

i

ihpj
j

jj
ihpj

jjiii
UB
i F

U

UCJUFCB
R +

−

−++−+

=
∑

∑

∈∀

∈∀

)(

)(

1

))1((

ii
UB
i JDRi −≤∀

Response Time Upper Bound
 Example taskset

Empirical investigation
 Compares Response Time Upper bound with

 Exact response time analysis
 Sufficient tests

 Utilisation based test (Liu & Layland 1973)
 RBound (Lauzac et al. & Buttazzo 2003)
 Hyperbolic bound (Bini et al. 2003)

 Sufficient tests adapted to cater for arbitrary deadlines,
blocking, and release jitter

∑
−=

−≤
−

+
−
+

1..1

/1)12(
ij

i

jj

j

ii

ii i
JD

C
JD
BC

Experiments
 Varied:

 Number M of orders of magnitude ranges used for task
period selection (1-5, default = 2)

 E.g. for M=3 task periods chosen from 3 ranges [100-1000,
1000-10,000, 10,000-100,000]

 Utilisation (5% � 95%, default 60%)
 Deadlines (0.05 � 0.95 of period, default = period,)
 Blocking factors (0.5 � 9.5 of execution time, default =0)
 Release jitter (0.05 � 0.95 of period, default =0)

 10,000 tasksets for each x-axis point on graphs
 Taskset cardinality = 24

Expt 1: Range of task periods

0%

20%

40%

60%

80%

100%

120%

0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950

Utilisation

A
cc

ep
ta

nc
e

ra
tio

 (%
) M=1

M=2

M=3

M=4

M=5

Liu and
Layland

(Fixed parameters: D = T, B = 0, J = 0)

Expt 2: Deadline : period ratio

0%

20%

40%

60%

80%

100%

120%

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Deadline / Period Ratio

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s
sc

he
du

la
bl

e

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

(Fixed parameters: M = 2, U = 60%, B = 0, J = 0)

Expt 3: Jitter : period ratio

0%

20%

40%

60%

80%

100%

120%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Jitter / Period Ratio

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s
sc

he
du

la
bl

e

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

(Fixed parameters: M = 2, U = 60%, D = T, B = 0)

Expt 4: Blocking : ET ratio

0%

20%

40%

60%

80%

100%

120%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

Blocking / Execution Time Ratio

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s
sc

he
du

la
bl

e Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

(Fixed parameters: M = 2, U = 60%, D = T, J = 0)

Expt 5: All parameters varied

0%

20%

40%

60%

80%

100%

120%

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Utilisation

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s
sc

he
du

la
bl

e

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

(Fixed parameters: M = 2, Varied parameters: D = 0.5T to 1.0T, J = 0.5D to 1.0D, B = 0 to 1.0C)

Expt 6: Tasks schedulable

0%

20%

40%

60%

80%

100%

120%

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Utilisation

Pe
rc

en
ta

ge
 o

f T
as

ks
 s

ch
ed

ul
ab

le

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

(Parameters as Expt. 1)

Majority of tasks deemed
schedulable by the upper
bound even at v. high
utilisation

Summary and conclusions
 Derived a response time upper bound

 Based on the idea of a linear bound on interference
 Extended scope to a general system model supporting

 Blocking, release jitter (and arbitrary deadlines)

 Shown that the bound can be applied to pre-emptive, co-
operative, and non-pre-emptive scheduling

 Single closed form upper bound applicable to a wide
range of real-time systems and networks
 Forms a linear time sufficient schedulability test

 O(n) time for n tasks

 Can be used to significantly improve the efficiency of
exact response time analysis in practical applications
 Used on a task-by-task basis; only perform exact

calculation when sufficient test fails

Summary and conclusions
 Other uses of the Response Time Upper Bound

 Online admission tests
 With stringent time constraints on start-up

 Interactive system design tools
 Response Time Upper Bound is continuous and

differentiable w.r.t. parameters
 No nasty surprises: small increase / decrease in a

parameter cannot cause a sudden large increase in the
response time upper bound

 System optimisation via search (future research)
 Early stage of search; find region of interest in search

space using continuous upper bounds
 Use exact analysis to find solution

Questions?

i

ihpj
j

jj
ihpj

jjiii
UB
i F

U

UCJUFCB
R +

−

−++−+

=
∑

∑

∈∀

∈∀

)(

)(

1

))1((

The End

	Response Time Upper Bounds for Fixed Priority Real-Time Systems
	Outline
	Background
	Motivation
	Motivation
	System Model
	System Model
	Terminology
	Response time analysis: recap
	Response time analysis: recap
	Derivation of the Upper Bound
	Interference Upper Bound
	Interference Upper Bound
	Interference Upper Bound
	Busy Period Upper Bound
	Occupied Period Upper Bound
	Response Time Upper Bound
	Response Time Upper Bound
	Linear time sufficient test
	Response Time Upper Bound
	Empirical investigation
	Experiments
	Expt 1: Range of task periods
	Expt 2: Deadline : period ratio
	Expt 3: Jitter : period ratio
	Expt 4: Blocking : ET ratio
	Expt 5: All parameters varied
	Expt 6: Tasks schedulable
	Summary and conclusions
	Summary and conclusions
	Questions?
	The End

