

Response Time Upper Bounds for Fixed Priority Real-Time Systems

Robert Davis and Alan Burns

Real-Time Systems Research Group University of York

Outline

Background and motivation

• Why are we interested in response time upper bounds?

Recap on standard analysis

System model and Response Time Analysis

Response time upper bound

- Derivation
- Application to pre-emptive, co-operative, and non preemptive scheduling problems
- Empirical investigations
 - Comparison with other simple schedulability tests
- Summary and conclusions

Background

Fixed priority scheduling

- Widely used in real-time embedded systems:
 - electronic control units and communications networks in automobiles, digital set-top boxes, medical systems, space systems, and mobile phones.
- Supported by nearly all commercial RTOS
- Supported by schedulability analysis
 - Response Time Analysis exists for system models with broad scope
 - blocking, release jitter, arbitrary deadlines etc.
 - co-operative and non-pre-emptive scheduling
 - Exact analysis has pseudo-polynomial complexity
 - Can almost always be used to determine schedulability of industrial scale systems in reasonable time, despite theoretical complexity results

Motivation

- Why are we interested in Response Time Upper Bounds?
 - Improve practical efficiency of exact schedulability test
 - Check on a task-by-task basis if schedulable according to upper bound
 - Only compute exact response time for a task when upper bound > deadline
 - Typical tasksets, majority of tasks are easily schedulable, so using an upper bound can result in significant improvements in efficiency

[R.I. Davis, A. Zabos, and A. Burns, "Efficient Exact Schedulability Tests for Fixed Priority Pre-emptive Systems" *IEEE Transactions on Computers* September 2008 (Vol. 57, No. 9) pp. 1261-1276]

Motivation

Other uses of Response Time Upper Bounds?

- Can be used when complexity / execution time of exact response time analysis is a limitation
- Interactive system design tools
 - Sensitivity analysis requires results of large numbers of schedulability test be available in HCI timescales
- System optimisation via search
 - Using simulated annealing / GAs with schedulability as a cost function
- Dynamic systems
 - Online admission of new tasks / applications with stringent start-up constraints

System Model

Single processor

- Static set of *n* tasks τ_i
- Fixed Priority Scheduling

Task parameters

- Worst-case execution time C_i
- Sporadic/periodic arrivals: minimum inter-arrival time T_i
- Arbitrary Deadlines $D_i \leq T_i, D_i > T_i$
- Blocking factor B_i
- Release jitter J_i , from arrival to release
- Worst-case response time *R_i*, from release to completion

Independent arrival times

Potential for simultaneous release

System Model

Task scheduling

- Pre-emptive
- Co-operative / Non-pre-emptive
 - Final non-pre-emptive section $F_i \leq C_i$

Blocking

- Access to mutually exclusive shared resources according to the Stack Resource Policy (SRP) – [Baker 1991]
- Blocking factor B_i
 - Longest time a lower priority task can execute at priority *i* or higher due to SRP or non-pre-emptive sections

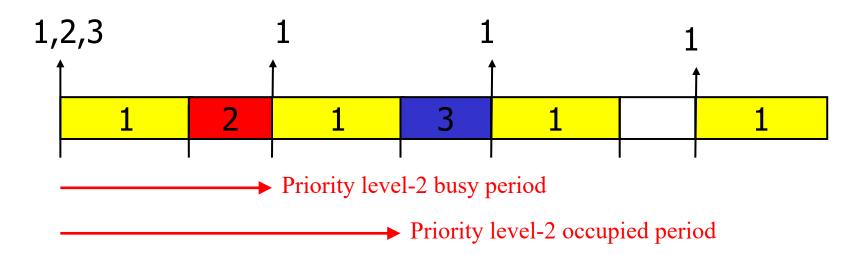
Terminology

Priority i busy period

• Time interval during which the processor is busy executing at priority *i* or higher until it completes some computation *C* at priority *i*

Priority i occupied period

Time interval during which the processor is busy executing at priority *i* or higher until it has completed some computation *C* at priority *i* and is available to continue executing computation at priority *i*



Response time analysis: recap

Pre-emptive scheduling

- General model, arbitrary deadlines, release jitter, blocking etc.
- Determine length of multiple busy periods starting at a critical instant, extending to completion of *q*th invocation of task τ_i

$$w_i^{n+1}(q) = B_i + (q+1)C_i + \sum_{\forall j \in hp(i)} \left[\frac{w_i^n(q) + J_j}{T_j} \right] C_j$$

- Response time given by $R_i(q) = w_i^{n+1}(q) qT_i$
- Start with $w_i^0(q) = B_i + (q+1)C_i$
- Iterate until $w_i^{n+1}(q) = w_i^n(q)$ or $w_i^{n+1}(q) qT_i > D_i J_i$
- Worst-case response time $R_i = \max_{\forall q} (w_i(q) qT_i)$
 - Check values of q until an invocation completes before the next release

• Schedulable if
$$R_i \leq D_i - J_i$$

Response time analysis: recap

Non-pre-emptive scheduling

 Determine length of multiple occupied periods starting at critical instant, extending to time at which the *q*th invocation can start its final non-pre-emptable section

$$V_i^{n+1}(q) = B_i + (q+1)C_i - F_i + \sum_{\forall j \in hp(i)} \left(\left\lfloor \frac{v_i^n(q) + J_j}{T_j} \right\rfloor + 1 \right) C_j$$

• Response time given by $R_i(q) = v_i^{n+1}(q) + F_i - qT_i$

- Start with $v_i^0(q) = B_i + (q+1)C_i F_i$
- Iterate until $v_i^{n+1}(q) = v_i^n(q)$ or $v_i^{n+1}(q) + F_i qT_i > D_i J_i$
- Worst-case response time $R_i = \max_{q=0,1..Q_i-1}(v_i(q) + F_i qT_i)$
 - Number of invocations to check related to number of invocations Q in the busy period for pre-emptive scheduling
- Schedulable if $R_i \leq D_i J_i$

Derivation of the Upper Bound

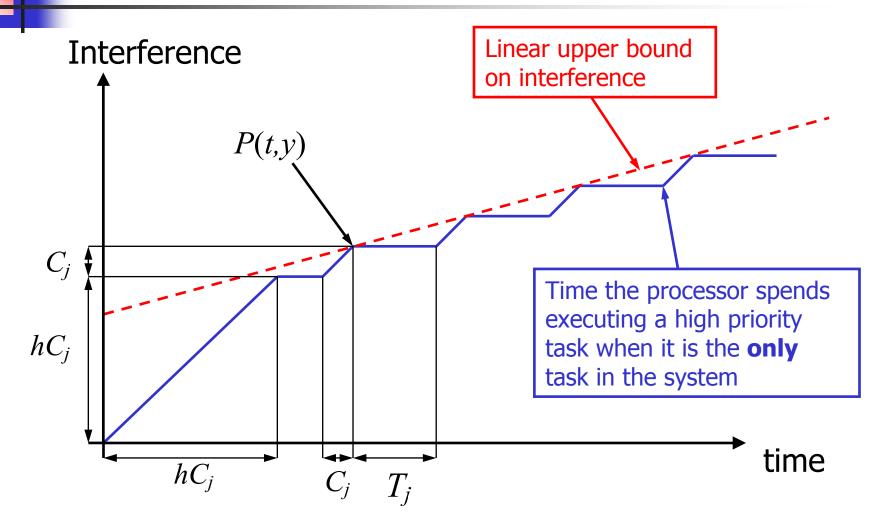
Approach

- Method introduced by Bini & Baruah 2007
- Idea is to derive an upper bound on interference from each high priority task assuming that it is the only task in the system
- Use these upper bounds on interference to determine an upper bound on task response time

Extended here to

- Account for blocking and release jitter
- Cater for co-operative and non-pre-emptive scheduling (as well as the pre-emptive case)

Interference Upper Bound



Interference Upper Bound

- Determine number of invocations h that execute consecutively from time t = 0
 - Number of invocations released at t = 0 is $\lfloor J_j / T_j \rfloor + 1$
 - Subsequent releases at times

$$(J_j / T_j] + 1) T_j - J_j + (k-1) T_j$$

for k = 1, 2, 3...

 Number of subsequent releases within the interval of consecutive execution is given by the largest k :

 $\left(\left| J_j / T_j \right| + 1 \right) C_j + (k-1)C_j \ge \left(\left| J_j / T_j \right| + 1 \right) T_j - J_j + (k-1)T_j$ $k = \left| J_j / (T_j - C_j) \right| - \left| J_j / T_j \right|$

• Hence: $h = \lfloor J_j / (T_j - C_j) \rfloor + 1$

Interference Upper Bound

Point *P(t,y)*

$$y = hC_{j} + C_{j} = \left(\left[J_{j} / (T_{j} - C_{j}) \right] + 1 \right) C_{j} + C_{j}$$
$$t = hT_{j} - J_{j} + C_{j} = \left(\left[J_{j} / (T_{j} - C_{j}) \right] + 1 \right) T_{j} - J_{j} + C_{j}$$

Interference upper bound:

$$I_{j}^{UB}(t) = U_{j}t + U_{j}J_{j} + C_{j}(1 - U_{j})$$

For all higher priority tasks:

$$\sum_{\forall j \in hp(i)} I_j^{UB}(t) = t \sum_{\forall j \in hp(i)} U_j + \sum_{\forall j \in hp(i)} (U_j J_j + C_j (1 - U_j))$$

Busy Period Upper Bound

- Busy Period Upper Bound on time for processor to complete C execution at priority i
 - Intersection of the lines:

$$y = t$$

$$y = C + t \sum_{\forall j \in hp(i)} U_j + \sum_{\forall j \in hp(i)} (U_j J_j + C_j (1 - U_j))$$

$$C_i^{UB}(C) = \frac{C + \sum_{\forall j \in hp(i)} (U_j J_j + C_j (1 - U_j))}{1 - \sum_{\forall j \in hp(i)} U_j}$$

Theorem 1: O_i^{UB}(C) is also an upper bound on the occupied period for computation C at priority i

Occupied Period Upper Bound

Proof of Theorem 1:

Interference

Show that the processor is available to execute further computation at priority i at or before the end of the interval O^{UB}

Bound strictly > max interference

Processor can start further execution at priority *i* **before** the end of the interval O^{UB}

Bound = max interference

No further hp execution for some non-zero time interval, so processor can start further execution at priority *i* **at** the end of the interval O^{UB}

Response Time Upper Bound

Pre-emptive case

- Occupied period upper bounds the pre-emptive busy period $W_i^{UB}(q) = \frac{B_i + (q+1)C_i}{1 - \sum U_j} + \sum_{\substack{\forall j \in hp(i) \\ 1 - \sum U_j}} (U_j J_j + C_j (1 - U_j))$
- Response time bound for each invocation $R_i^{UB}(q) = W_i^{UB}(q) qT_i$

 $\forall j \in hp(i)$

Comparing response time bounds for different invocations

$$R_{i}^{UB}(q) - R_{i}^{UB}(q+1) = T_{i} - \frac{C_{i}}{1 - \sum_{\forall i \in hp(i)} U_{j}} \ge 0$$

Worst-case response time upper bound (first invocation)

$$R_i^{UB} = \frac{B_i + C_i + \sum_{\forall j \in hp(i)} (U_j J_j + C_j (1 - U_j))}{1 - \sum_{\forall j \in hp(i)} U_j}$$

Response Time Upper Bound

- Co-operative (and non-pre-emptive) case
 - Upper bound on occupied time

 $V_{i}^{UB}(q) = \frac{B_{i} + (q+1)C_{i} - F_{i}}{1 - \sum_{\forall j \in hp(i)} (U_{j}J_{j} + C_{j}(1 - U_{j}))} \frac{1 - \sum_{\forall j \in hp(i)} (U_{j}J_{j} + C_{j}(1 - U_{j}))}{1 - \sum_{\forall j \in hp(i)} (U_{j}J_{j} + C_{j}(1 - U_{j}))}$

- Bound for each invocation $R_i^{UB}(q) = V_i^{UB}(q) + F_i qT_i$
- Comparing response times for different invocations:

$$R_{i}^{UB}(q) - R_{i}^{UB}(q+1) = T_{i} - \frac{C_{i}}{1 - \sum_{\forall j \in hp(i)} U_{j}} \ge 0$$

Worst-case response time upper bound (first invocation)

$$R_i^{UB} = \frac{B_i + C_i - F_i + \sum_{\forall j \in hp(i)} (U_j J_j + C_j (1 - U_j))}{1 - \sum_{\forall j \in hp(i)} U_j} + F_i$$

Linear time sufficient test

Closed form Response Time Upper bound

$$\begin{split} B_i + C_i - F_i + \sum_{\substack{\forall j \in hp(i) \\ \forall j \in hp(i) \\ i \quad R_i^{UB} \leq D_i - J_i \\ \end{split}} (U_j J_j + C_j (1 - U_j)) \\ + F_i \\ \frac{1 - \sum_{\substack{\forall j \in hp(i) \\ \forall j \in hp(i) \\ \end{array}}} + F_i \\ \end{bmatrix}$$

Widely applicable to processor and network scheduling

- Arbitrary deadlines, blocking, release jitter
- Task scheduling

 \forall

- Pre-emptive: $F_i = 0$,
- Co-operative: $0 < F_i < C_i$
- Non-pre-emptive $F_i = C_i$
- Via incremental summation, highest priority first, can determine schedulability of n tasks in O(n) time

Response Time Upper Bound

Example taskset

	C_i	T_i	D_i	J_i	B_i	$D_i - J_i$	R _i	R_i^{UB}
τ_1	3	10	10	2	0	8	3	3
τ_2	15	100	50	5	10	45	37	40
τ_3	15	200	200	5	10	195	58	75
τ_4	40	400	400	50	20	350	153	191
τ_5	30	1000	500	50	50	450	282	404
τ_6	200	1000	1000	100	0	900	682	876

Empirical investigation

Compares Response Time Upper bound with

- Exact response time analysis
- Sufficient tests
 - Utilisation based test (Liu & Layland 1973)
 - RBound (Lauzac et al. & Buttazzo 2003)
 - Hyperbolic bound (Bini et al. 2003)
- Sufficient tests adapted to cater for arbitrary deadlines, blocking, and release jitter

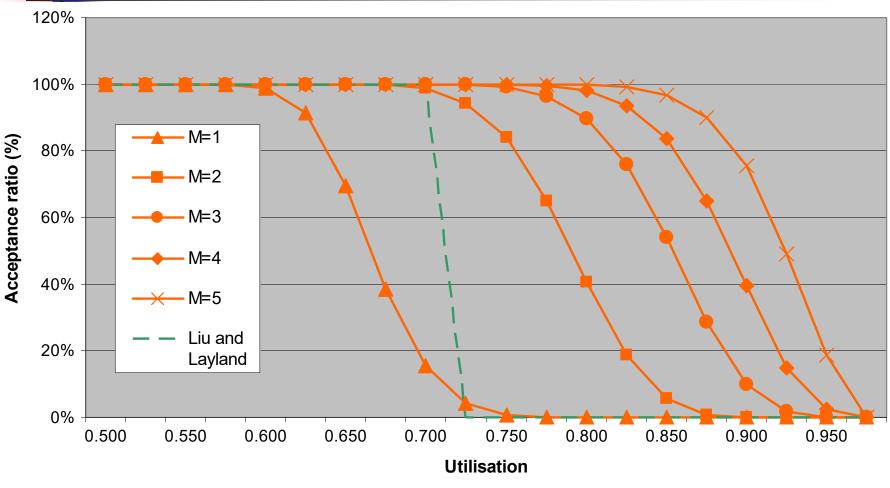
$$\frac{C_i + B_i}{D_i - J_i} + \sum_{j=1..i-1} \frac{C_j}{D_j - J_j} \le i(2^{1/i} - 1)$$

Experiments

Varied:

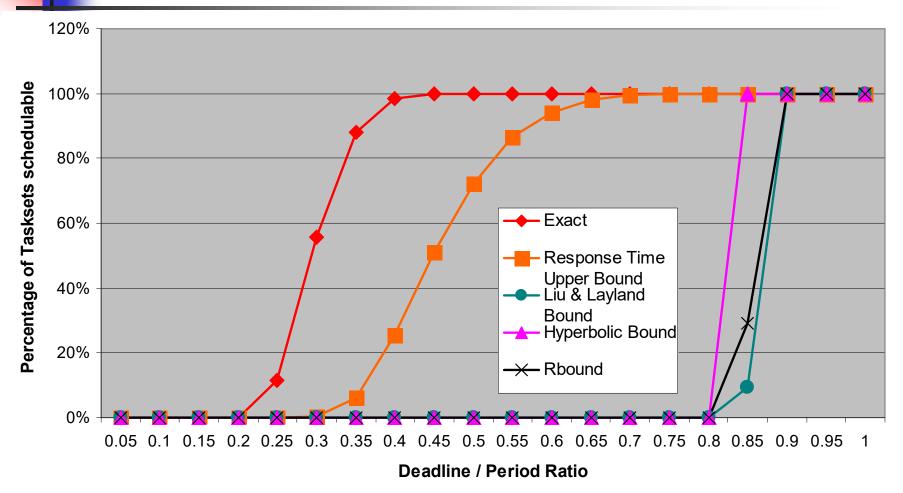
- Number *M* of orders of magnitude ranges used for task period selection (1-5, default = 2)
 - E.g. for M=3 task periods chosen from 3 ranges [100-1000, 1000-10,000]
- Utilisation (5% 95%, default 60%)
- Deadlines (0.05 0.95 of period, default = period,)
- Blocking factors (0.5 9.5 of execution time, default =0)
- Release jitter (0.05 0.95 of period, default =0)
- 10,000 tasksets for each x-axis point on graphs
- Taskset cardinality = 24

Expt 1: Range of task periods



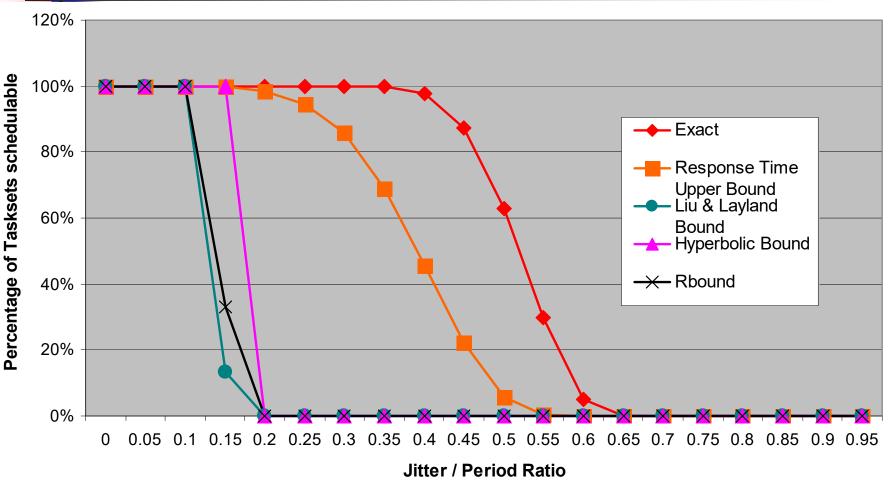
(Fixed parameters: D = T, B = 0, J = 0)

Expt 2: Deadline : period ratio



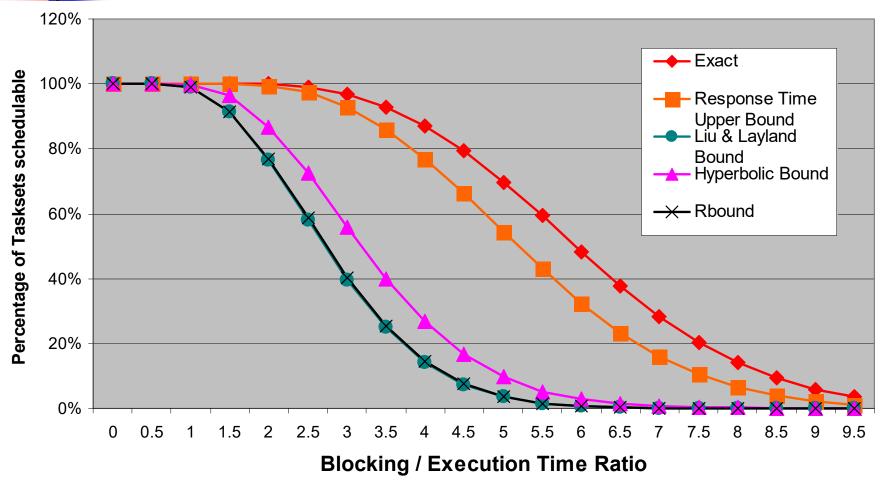
(Fixed parameters: M = 2, U = 60%, B = 0, J = 0)

Expt 3: Jitter : period ratio



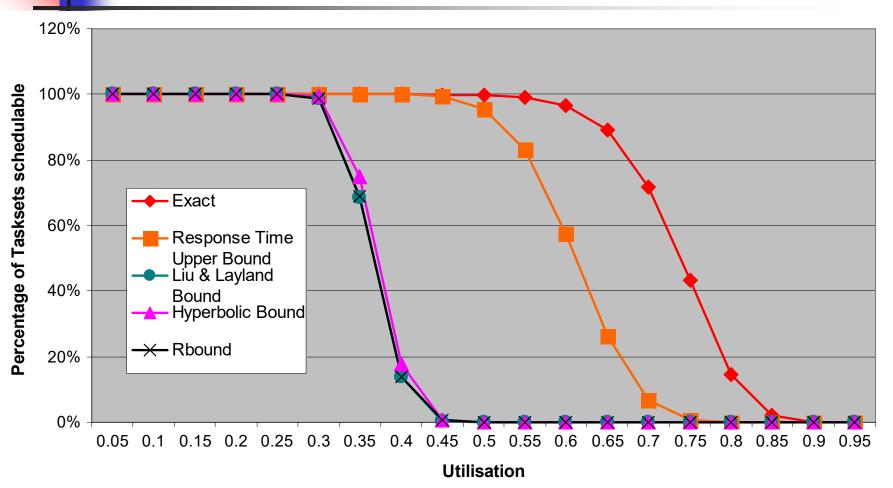
(Fixed parameters: M = 2, U = 60%, D = T, B = 0)

Expt 4: Blocking : ET ratio



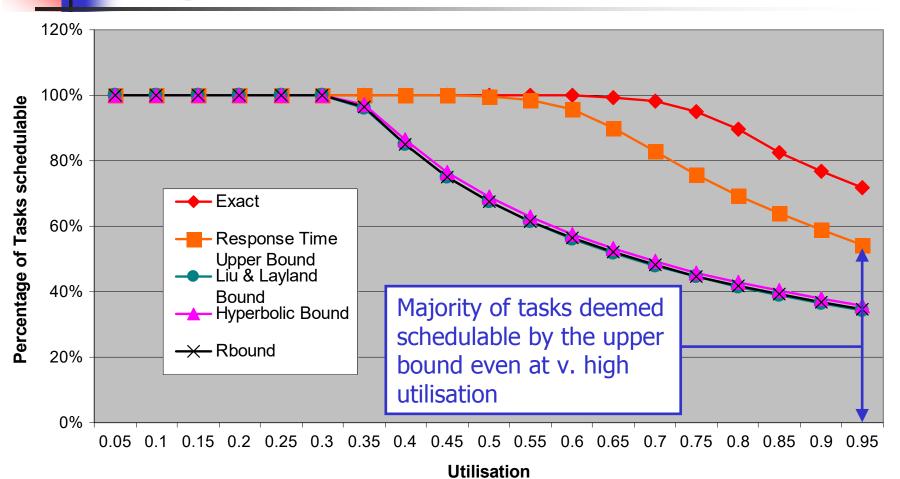
(Fixed parameters: M = 2, U = 60%, D = T, J = 0)

Expt 5: All parameters varied



(Fixed parameters: M = 2, Varied parameters: D = 0.5T to 1.0T, J = 0.5D to 1.0D, B = 0 to 1.0C)

Expt 6: Tasks schedulable



(Parameters as Expt. 1)

Summary and conclusions

Derived a response time upper bound

- Based on the idea of a linear bound on interference
- Extended scope to a general system model supporting
 - Blocking, release jitter (and arbitrary deadlines)
- Shown that the bound can be applied to pre-emptive, cooperative, and non-pre-emptive scheduling

Single closed form upper bound applicable to a wide range of real-time systems and networks

- Forms a linear time sufficient schedulability test
 - O(*n*) time for *n* tasks
- Can be used to significantly improve the efficiency of exact response time analysis in practical applications
 - Used on a task-by-task basis; only perform exact calculation when sufficient test fails

Summary and conclusions

• Other uses of the Response Time Upper Bound

- Online admission tests
 - With stringent time constraints on start-up
- Interactive system design tools
 - Response Time Upper Bound is continuous and differentiable w.r.t. parameters
 - No nasty surprises: small increase / decrease in a parameter cannot cause a sudden large increase in the response time upper bound
- System optimisation via search (future research)
 - Early stage of search; find region of interest in search space using continuous upper bounds
 - Use exact analysis to find solution

 $B_i + C_i - F_i + \sum (U_j J_j + C_j (1 - U_j))$ $\frac{1}{1 - \sum U_j}$ $R_i^{UB} =$ $-+F_i$ $\forall j \in hp(i)$

The End