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ABSTRACT
Many of the processors used in automotive Electronic Control

Units (ECUs) are resource constrained due to the cost pressures

of volume production; they have relatively low clock speeds and

limited memory. Controller Area Network (CAN) is used to connect

the various ECUs; however, the broadcast nature of CAN means

that every message transmitted on the network can potentially

cause additional processing load on the receiving nodes, whether

the message is relevant to that ECU or not. Hardware filters can

reduce or even eliminate this unnecessary load by filtering out

messages that are not needed by the ECU. Filtering is done on the

message IDs which are primarily used to identify the contents of the

message and its priority. In this paper, we consider the problem of

selecting filter configurations to minimize the load due to undesired

messages. We show that the general problem is NP-complete. We

therefore propose and evaluate an approach based on Simulated

Annealing. We show that this approach finds near-optimal filter

configurations for the interesting case where there are more desired

messages than available filters.
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1 INTRODUCTION
Controller Area Network (CAN) is a multi-master serial data bus

[3] with real-time capabilities [10, 11]. CAN is a broadcast bus, thus

each message that is transmitted on the network can be received

by every node connected to it. Each node then needs to decide if

the message is relevant for it or not. This is done by examining the

message ID, which uniquely identifies each message. Effectively,

each node needs to perform filtering of all incoming messages, and

then process only those messages relevant to it.

If a high number of messages are broadcast over the network,

but only a small number of them are relevant to a particular node,

then software-based filtering can become a substantial source of

unnecessary runtime overhead. The high number of message

receive interrupts and the execution of code for software-based

filtering cause significant processor load; particularly for

processors running at relatively low clock speeds. In order to

tackle this problem, CAN-controllers are equipped with hardware

based message acceptance filters. When configured appropriately,

these filters can block most or all of the messages which are not

relevant to the node. Since filtering is done via hardware, the ECU

only processes relevant messages avoiding unnecessary overhead.

If the hardware filter configuration is not perfect, then some

undesired messages will still pass through. In general, a

multi-stage approach is typically needed, involving (i)

hardware-based message filtering, (ii) software-based message

filtering, and finally (iii) message processing.

Hardware-based filtering is useful for any CAN-node, but is

particularly important for low performance nodes that are

connected to a heavily utilized network, and for gateway nodes

which are connected to multiple networks. Clearly the goal is to do

as much filtering as possible in hardware, as it comes with no

processing cost. A perfect hardware filter configuration is one

where no subsequent software filtering is needed and no desired

messages are discarded. This raises an interesting and challenging

engineering task: How best to configure the hardware-based

message acceptance filters? To the best of our knowledge, this

problem has not been addressed by the research community.

With CAN, as well as uniquely identifying the message, the

message ID is also used as the priority for bus arbitration [10].

This dual purpose complicates the problem of ID assignment and

message filtering. In some systems, for example based on Volcano
1
,

designers have full control over the configuration of all message IDs.

In this case the two key problems of ID assignment and message

filtering can be considered together. An effective way of doing this

is to partition the message ID field into two sections, with the most

significant bits (that are transmitted first) reserved for the unique

message priority, and the least significant bits used for filtering.

1
See https://www.mentor.com/products/vnd/in-vehicle_software/

https://doi.org/10.1145/3139258.3139266
https://doi.org/10.1145/3139258.3139266
https://www.mentor.com/products/vnd/in-vehicle_software/
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With 29-bit IDs, 11 bits could be used for a unique message priority,

with the remaining 18 bits used as an address field to indicate which

nodes on the network need to receive the message (1 bit per node).

With this scheme, perfect filtering can be supported for up to 18

nodes, which is sufficient for most automotive applications
2
. With

11-bit IDs the problem is more acute, since with typical numbers of

messages (circa 100) there are too few bits left for effective filtering.

The ideal scenario of complete freedom to set the IDs of all

messages is in any case rarely seen in practice [7]. The use of

legacy software, ECUs transmitting messages with predefined IDs

(for logistical reasons), and the allocation of message IDs reflecting

only the ECU supplier and data content mean that in many systems

the message IDs are fixed. This leaves the problem of determining,

for each individual ECU, the best filter configuration, given the

fixed set of messages transmitted on the network and the subset of

those messages which it needs to receive. This is the problem that

we address in this paper.

We focus on two related questions: 1. How to assess the quality

of a filter configuration? 2. How to find an optimal filter

configuration? By answering these questions, we make the

following contributions: (i) We bring the CAN message acceptance

filter problem to the attention of the real-time community. (ii) We

formally define the problem, and its complexity. (iii) We provide a

metric for determining the quality of filter configurations. (iv) We

provide a method for finding optimal or near-optimal filter

configurations.

1.1 Organization
The remainder of the paper is organized as follows: Section 2

introduces the system model, explains how hardware-based

message acceptance filtering works, and provides a brief review of

the hardware filters provided by different CAN controllers. Section

4 describes a quantitative metric that can be used to assess the

quality of a given filter configuration. Section 5 considers the

problem of optimizing the filter configuration. The general

problem is shown to be NP-complete, optimal solutions are

provided for special cases, and a generic approach based on

simulated annealing is proposed. Section 6 evaluates the proposed

approach on synthetically generated message sets, and on an

industrial case study. Section 7 concludes with a summary and

directions for future work.

2 MESSAGE FILTERING
2.1 System Model
We assume that the system comprises a set of ECUs or nodes

connected via a CAN bus. Each node can broadcast messages

which can be received by all other nodes on the network. Each

messagem is characterized by its unique message ID (which is 11

or 29 bits long), its period or minimal inter-arrival time Tm ,

deadline Dm , and its payload data which determines the maximum

length of the message. The payload data comprises a set of signals

which need to be received by one or more nodes. In general, each

node has a subset of messages that it needs to receive, referred to

as desired messages, and a subset of messages that it is not

interested in, referred to as undesired messages.

2
While many vehicles have upwards of 50 ECUs, these are typically connected in

smaller groups via multiple CAN buses and other networks.

Within its CAN-controller each node has a set of buffers, which

can be configured to either transmit or receive CAN messages. In

the literature and CAN controller documentation, these buffers are

often referred to as “message objects”. Typically, each receive buffer

has a hardware-based message acceptance filter that can be set. We

model this by assuming that each node has f acceptance filters.

Each broadcast message can either pass through one (or more) of

the filters, or is blocked by them. The messages which pass through

the filters raise a receive interrupt or set a bit in a control register,

and are then processed by the node. Note that depending on the

filter settings, messages of more than one ID can be received by

the same buffer. Similarly, a single message may pass through more

than one filter, in which case it is only received in one of the buffers,

according to some implementation dependent policy.

2.2 Hardware-based Filtering
The hardware-based acceptance filteringworks as follows: The ID of

an incoming message is compared against the specified acceptance

filter pattern. If the ID matches the filter pattern, the message passes

through, and is stored in the receive buffer. If the ID does not

match the filter pattern, the message is blocked. The filter pattern

comprises two registers per filter: The mask specifies which bits

of the ID are considered, and the tag specifies the corresponding
ID-values that are allowed to pass.

The filter logic is shown in the pseudo-code below; however,

note that the actual implementation is by shift registers and logic

gates in hardware.

if (ID AND mask) == (tag AND mask)
pass = true

else
pass = false

end

Table 1 gives a simple example. By specifying the acceptance

filter pattern 0001100xx00, only messages with message IDs 192,

196, 200, or 204 will pass through the filter, and arrive in the receive

buffer. All other messages will be blocked. Note that an x in the

filter pattern means that the bit value at that bit position does not

matter, also referred to as “don’t care”.

Field Value (Bin.) (Dec.)

mask 111 1111 0011

tag 000 1100 0000

filter 000 1100 xx00

pass ID 000 1100 0000 192

pass ID 000 1100 0100 196

pass ID 000 1100 1000 200

pass ID 000 1100 1100 204

Table 1: Example of message acceptance filtering

Further examples that explain how acceptance filtering works

can be found in [30] on page 45, or in [1] on page 246.

For the sake of simplicity, we use the term filter as a synonym for

acceptance filter and filter pattern in the rest of the paper. Further,

we make use of the abstract filter pattern notation (with 0, 1, and

x) instead of the specific mask and tag values.
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2.3 CAN-controller Filter Implementations
While the basic principle of CAN message acceptance filtering is

the same for all CAN-controllers, there are differences in

implementation and number of available filters.

The most effective implementation is where each message buffer

has its own dedicated mask and tag.

ATMEL’s AT90CAN128 [1] is a low-power 8-bit microcontroller,

its CAN-controller has 15 message buffers, and each one has its

own mask. Infineon’s CAN-controllers (called MultiCAN) [18] offer

several variants on XC16, TriCore and AURIX processors. This

CAN-controller implementation also has a dedicated mask for each

message buffer.

In contrast, there are some CAN-controllers which share a global

mask between message buffers (instead of having a dedicated mask

for each buffer). This limits flexibility and efficiency. Note each

buffer still has its own tag.

Freescale’s MPC555 [14] is a 32-bit microcontroller. It has 2 CAN-

modules (called TouCAN). Mitsubishi’s M32R microcontroller also

has 2 CAN-modules, while Renesas’ M16C [25] microcontroller

has 1 CAN-module. All of these CAN modules have 16 message

buffers; however, they only have 3 masks. One global mask (for

buffers 0 to 13), and 2 local masks (for buffers 14 and 15 respectively).

National’s CR16 [21] microcontroller has 1 CAN-module with 15

message buffers. It has 2 masks. One global mask (for buffers 0 to

13) and one local mask (for buffer 14).

Note that the message buffers can be configured to transmit or

receive messages. Thus for example if 7 out of 15 message buffers

are used to transmit messages, then that leaves at most 8 message

buffers for received messages.

Motorola’s CAN-controller (called msCAN) offers a single 32-bit

filter. However, the filter can be configured flexibly: 1x 32-bit, or

2x 16-bit, or 1x 16-bit and 2x 8-bit, or 4x 8-bit. The 32-bit option

is suitable for 29-bit message IDs, and the 16-bit option for 11-

bit message IDs. When using the 8-bit option, only a subset of

the message ID bits can be utilized for filtering, making finding

an effective filter pattern more difficult; however, on the positive

side, more filters are available. The M68HC08 family [15] uses

one msCAN module, while the M68HC12 and S08 [17] use two

msCAN modules. Motorola’s msCAN Filter Configuration Tool [16]
automates the task of finding a suitable filter size (32, 16, or 8

bits) and filter values, based on the specification of all broadcast

messages and desired messages. However, it does not consider any

timing information, such as the transmission period. The tool’s

internal algorithms are not publicly available, and unfortunately

the tool is no longer available either.

This brief review only covers a subset of available

CAN-controllers. However it shows that almost all of them fall

into one of two categories: “dedicated mask” CAN-controller

(where each buffer has its own dedicated mask) or “shared mask”

CAN-controllers (where a mask is shared between several buffers).

3 RELATEDWORK
Schedulability analysis for CAN was first developed in the mid

1990’s, with the flaws in that early work later corrected in

2007 [10]. This analysis provides guarantees that CAN messages

will meet their deadlines, including under a prescribed error model,

i.e accounting for re-transmissions when there are errors on the

bus.

Message acceptance filtering is highly dependent on the

message ID assignment. In industrial applications, message ID and

thus priority assignment has often followed an ad-hoc approach,

with message IDs allocated based on the ECU supplier and the

type of signals contained in the message. This has led to priority

assignments that leave automotive networks unschedulable at bus

utilizations of more than about 30-35% [4], when more appropriate

priority assignment would allow bus utilizations of around 80% [8]

before any deadlines are missed.

Academic research into priority assignment for CAN has mainly

focused on optimal priority assignment policies, with Audsley’s

OPA algorithm [2, 22] proved optimal for systems using priority
queues [10], and deadline minus jitter priority assignment proved

optimal with some common constraints on the sets of messages [7].

Further work has explored the issues that can arise if the priority-

based arbitration mechanism is circumvented, for example by the

use of non-abortable transmit buffers [20], or FIFO queues [8, 9]. In
practical applications, using an optimal priority assignment policy

is not in itself enough, since the ordering generated could leave

the system only just schedulable, and thus vulnerable to deadline

misses in the event that there is an increase in errors on the bus.

Work on robust priority ordering [5, 6] addresses this problem by

generating a priority ordering that is not only optimal, but also

tolerates the maximum amount of additional interference (i.e. is

robust as well). Later work provides a robust priority assignment

for new messages added to a system where existing message IDs

are fixed [7], addressing flaws in previous work in this area [26].

One might expect that a system that is robust would also be

extensible, i.e. most able to accommodate additional messages;

however, this is not necessarily the case [23]. Recent work in this

area [24] provides an extensibility metric for CAN, and a message

ID assignment which optimizes extensibility by assigning IDs

according to ID-bands, aligned with timing requirements.

Other related works aim to provide holistic solutions for task

allocation, signal to message mapping and priority assignment

using Mixed Integer Linear Programming (MILP) [28, 29].

We note that none of the above works onmessage priority and ID

assignment considers the impact on message acceptance filtering.

In this paper, we consider the problematic case where message

IDs have already been fixed without consideration for message

filtering. As far as we are aware there is no prior work addressing

this specific problem.

4 MESSAGE FILTER QUALITY
In this section, we focus on how to quantify the quality of a given

filter configuration. We make use of the following notation:Mall

is the complete set of m messages which are broadcast over the

network. Mdes
is the subset those messages which must be

received by the node of interest. F is the node’s filter configuration,

consisting of f filters. We need to determine (i) if the filter

configuration is feasible, and (ii) a measure of its quality.

By applying the acceptance rules of the filter configuration F on

the set of broadcast messagesMall
the result is the set of messages

Mpass
that pass through the filters, and the set of messages

Mblock = Mall \ Mpass
that are blocked by the filters. By

comparing these sets against the set of messagesMdes
that must

be received, we obtain two further subsets:
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MU B = Mblock ∩Mdes
is the set of messages that are blocked by

the filters, but are needed by the node (i.e. unintended block), and
MU P = Mpass \Mdes

is the set of messages that pass through the

filters, even though they are not needed by the node

(i.e. unintended pass). Based on these sets, we can analyse the filter

configuration as follows. First we make a classification with

respect to feasibility. The filter configuration is infeasible if there is
at least one unintended blocked message (i.e. MU B , ∅). It is
feasible if there are no unintended blocked messages

(i.e.MU B = ∅). Further, we say that the configuration is perfect if
there are no unintended blocked messages, and no unintended

pass messages either (i.e.MU B = ∅ andMU P = ∅).
Clearly, the aim is to achieve perfect message filtering. However,

due to the limited number of available filters and the way in which

the filters work, this may not be possible in all cases. Thus, we

propose a measure of the quality of a feasible filter configuration in

terms of its imperfection, i.e. considering the set of unintended pass

messages MU P
. Since each message is transmitted with a given

period or minimum inter-arrival time, we normalize by Tm .

QoF =
MU P

sec .
=

∑
MU P

1

Tm
(1)

This imperfection metric measures how many unintended pass

messages per second are received, even though we would rather

they were blocked. These messages cause undesired receive

interrupts and additional processing load. The lower the

imperfection is, the better the filtering. Ideally, imperfection

becomes zero (i.e. perfect filtering).

5 DESIGNING OPTIMAL FILTERING
In this section, we focus on optimizing the filter configuration

(i.e. obtaining a filter configuration that is both feasible and

minimizes the imperfection metric QoF). First we consider the

complexity of the problem, then we provide solutions for some

special cases, and finally propose an approach to solving the

general problem.

5.1 Problem Complexity
The number of possible filter configurations is exponential in the

length (len) of the message IDs and the number of filters f . Since
each filter bit can effectively take one of 3 values (0, 1, x) where x

represents “don’t care”, there are 3
(len ·f )

possible filter

configurations. This value quickly becomes large, thus exhaustive

enumeration of all possible filter configurations is intractable for

realistic sized problems. (For example with 11-bit IDs and 3 filters,

there are over 10
15

possible configurations).

We now show that the general problem of filter selection is

NP-complete via reduction to the SET COVER problem [19].

The SET COVER problem is as follows. Given a Universe of

elements X = {1, 2, . . . ,n} and a collection S = {S1, S2, . . . , Sm } of
m subsets of X whose union equals X , determine if there is a set

covering of size k (i.e. k or fewer sets from S) whose union is X .

The filter selection problem is as follows. Given a set of desired

messages Mdes = {M1,M2, . . . ,Mn } and at least one undesired

messageMu , with IDs given by bit patterns of lengthm, determine

if there is a selection of at mostk filters (selecting bits in themessage

IDs as must-match 1, must-match 0 or don’t-care) that permit all

desired messages to be received but exclude the undesired message.

Theorem 5.1. The filter selection problem is NP-complete.

Proof. We prove the theorem via reduction to the SET COVER

problem which is known to be NP-complete [19].

First, we note that a solution to the filter problemmay be trivially

checked by a deterministic algorithm in polynomial time. For each

desired message we check against the selected filters to ensure that

it can be received via at least one of them, and for the undesired

message we check that it cannot be received via any of the selected

filters. The filter selection problem is thus in the NP complexity

class.

Given an instance of the SET COVER problem, we construct an

instance of the filter selection problem as follows. Each element in

the set X maps to a message with that index in the set of desired

messagesMdes = {M1,M2, . . . ,Mn }. Hence there is a one-to-one
mapping between elements in X and desired messages. Each subset

Si in S maps to a unique bit position i in the message IDs. (There are

m bits in the message IDs, equal to the cardinality of the collection

S). All desired messages with indices in Si have a 1 in bit position

i , all other messages, both desired and undesired, have zeros in

bit position i . Note this completely defines the IDs of all messages,

with the undesired message having all bits in its ID set to zero.

We note that without loss of generality the only filters that

need to be considered in solving an instance of the filter selection

problem, constructed from an instance of SET COVER in the way

described above, are those with a single bit set to must-match 1

and don’t-care for all other bits. If no bits are set to must-match

1, then the undesired message will be received. Setting more than

one bit to must-match 1, e.g. bits i and j would result in receiving

messages matching elements in the intersection of the two sets

(Si ∩Sj )which confers no advantage over receiving either all of the

messages matching elements in Si or all of those matching elements

in Sj . With a single bit i set to must-match 1, setting any other bit

to must-match zero cannot include any further desired messages.

Thus without loss of generality, we restrict the available filters to

the set F = {F1, F2, . . . , Fn } where Fi indicates must-match 1 in bit

position i and don’t-care for all other bits. Note the precise one-to-

one mapping between Fi and Si . Filter Fi with a must-match 1 in

bit position i and don’t-care for all other bits receives only those

desired messages with indices matching elements in Si .
Now assume we have a black box that can solve the filter

selection decision problem. Via the above construction, we may

use this black box to solve the SET COVER decision problem.

Correctness of this approach needs to be shown for both if and

only if cases.

If case: For an instance of the SET COVER problem for which the

answer is yes, there exists a sub-collection S ′ ⊆ S of cardinality k
that covers X . Mapping this instance to the filter selection problem,

then S ′ implies that there is an equivalent collection of filters F ′ ⊆ F
of cardinality k that enables all desired messages to be received,

without receiving the undesired message. The black box, which can

solve all filter selection problems, therefore gives the answer yes.

Only if case: If the black box returns yes, then there exists a sub-

collection of filters F ′ ⊆ F of cardinality k that enables all desired

messages to be received. This implies that there is an equivalent

sub-collection S ′ of cardinality k that covers X . Similarly, if there is
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no such sub-collection of filters F ′ ⊆ F of cardinality k , then there

is no such sub-collection S ′ of cardinality k that covers X .

We have shown that our algorithm solves the SET COVER

problem using the black box for the filter selection problem. Since

the construction takes polynomial time, and we have shown that

the filter selection problem is in the NP complexity class, we

conclude that the filter selection problem is NP-complete □

We reduced a simplified version of the filter selection problem

to SET COVER, showing that the former is also NP-complete. The

more general filter selection problem, with more than one

must-match bit per filter, and optimization of the weighted sum of

undesired messages which are received is at least as hard. While

the decision problem of SET COVER is NP-complete, the

optimization problem (finding the smallest cardinality k which

achieves coverage) is NP-hard. Given the direct mapping to the

filter selection problem, we expect that its optimization is also

NP-hard.

5.2 Special Cases
The filter configuration problem comes in three variants, depending

on the relationship between the number of available filters and the

number of desired messages.

Case f = 1: There is only a single filter available. For this special

case Algorithm 1 constructs an optimal feasible filter configuration.

It sets the filter digit in position i to 0 if the bits in position i of IDs
of all desired messages are 0. Similarly, if they are all 1, then it sets

the filter digit to 1. Otherwise it sets the filter digit to x.

Algorithm 1: Optimal Solution for f = 1

Input:Mdes
/* desired messages */

1 foreach ID-digit do
2 if ∀mi ∈ Mdes the ID-digit is 0 then
3 filter-digit = 0

4 else if ∀mi ∈ Mdes the ID-digit is 1 then
5 filter-digit = 1

6 else
7 filter-digit = x

Output: F /* feasible filtering */

Theorem 5.2. For the restricted case of a single filter, Algorithm 1
is optimal.

Proof. We prove the theorem by showing that any changes to

the filter pattern obtained by Algorithm 1 either make the filter

configuration infeasible (i.e. block some desired messages) or allow

additional undesired messages to be received. We consider each

digit of the filter obtained by Algorithm 1 in turn.

Case filter-digit = 0: Changing this digit to 1 would exclude some

desired messages, making the configuration infeasible. Changing

it to x is unnecessary to allow all desired messages to be received

and could potentially allow through undesired messages.

Case filter-digit = 1: Changing this digit to 0 would exclude some

desired messages, making the configuration infeasible. Changing

it to x is unnecessary to allow all desired messages to be received

and could potentially allow through undesired messages.

Case filter-digit = x: Changing this digit to 0 or 1 would exclude

some desired messages, making the configuration infeasible.

Since no changes to the filter configuration obtained by

Algorithm 1 can improve the imperfection metric QoF, the filter

configuration is optimal □

Case f ≥ |Mdes |: The number of available filters equals or

exceeds the number of messages that must be received. For this

special case, Algorithm 2 constructs a perfect filter configuration.

It sets each filter equal to the unique ID of one desired message.

Algorithm 2: Optimal Solution for f ≥ |Mdes | Filters
Input:Mdes

/* desired messages */

1 foreachmi ∈ Mdes do
2 fi = ID(mi )
Output: F /* perfect filtering */

Theorem 5.3. For the special case of at least as many filters as
desired messages, Algorithm 2 provides an optimal filter configuration
which achieves perfect filtering.

Proof. Since Algorithm 2 uses a specific filter for each desired

message which enables only that message to pass, and all

messages on CAN have unique IDs, then there are no unintended

messages that pass, and thus the filter configuration is perfect and

the imperfection metric QoF zero □

We note that Algorithm 2 has one minor drawback: It uses as

many filters as there are desired messages. As we later show, it is

sometimes possible to construct a perfect filter configuration using

fewer filters.

Case 1 < f < |Mdes |: The number of available filters is smaller

than the number of desired messages that must be received. This is

the general case. Here, we aim to find a feasible filter configuration

which minimizes the imperfection metric. We know that the

problem is NP-complete, thus we propose the use of a

meta-heuristic search-based solution, specifically Simulated

Annealing (SA). We initially considered two different approaches,

both using SA:

Direct: We set the pattern in each of the f filters directly. The

downside of this approach is that it explores many patterns that are

not useful, i.e. that do not allow through some desired messages. In

fact most of the possible filters configurations are like this.

Two-step: We first divide the set of desired messagesMdes
into

f groups, and allocate each group to one filter. Based on this

allocation, we then derive the pattern for each filter by applying

Algorithm 1. The benefit of this approach is that each local filter

pattern is optimal. This does not,however, guarantee a globally

optimal solution.

Preliminary experiments showed that the two-step approach is

much more effective, we therefore tackle the problem in that way.

5.3 Generic Solution: Simulated Annealing
We use Simulated Annealing to solve the filter configuration

problem for 1 < f < |Mdes |. SA has several benefits: It rarely gets

stuck in local optima, thus it is likely that it will find the global

optimum. It is relatively easy to understand, and thus it is likely

that engineers will accept it. Further, it is relatively easy to adapt

to a specific problem, since there are only a few specific

parameters that need to be tuned. Finally, it is effective in solving
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complex problems, as has already been demonstrated for several

problems in the real-time systems domain (e.g. task allocation

[12, 13, 27] and network configuration [23]).

SA starts with an initial candidate solution. It then uses the

neighbor-move function to transform this solution into a

new/different solution. For each generated solution, the solution’s

quality is evaluated via the cost function. If the new solution

improves the quality, it becomes the new starting point for

subsequent exploration. If not, it may still be chosen according to

an ever decreasing probability. This ensures that the search does

not get stuck in a local optima. After some time, the search reaches

its termination criteria (specified in terms of a maximum number

of iterations, or quality improvements below a certain threshold),

and returns the best solution found.

In order to apply SA to the filter configuration problem, we

need to encode the optimization criteria into the cost function, and

implement an appropriate neighbor-move function.

5.3.1 Cost Function. The cost function measures the quality of

a filter configuration. We encode it as a weighted sum as follows:

cost =

∑
costi ·wi∑

wi
→ min (2)

The individual cost terms encode the constraints and

optimization goals. We normalize each cost term so that it takes

values from 0.0 to 1.0, where 0.0 represents the optimum.

cost1 =
MU B

Mdes
(3)

cost2 =
MU P /sec .

(Mall \Mdes )/sec .
(4)

cost1 measures the number of unintended blocked messages, and

normalizes them by the number of desired messages. It is

responsible for avoiding infeasible filter configurations. cost2
measures the number of unintended pass messages per second,

and normalizes them by the number of intended blocked messages

per second. It is responsible for optimizing the filter quality. Note

that both cost terms are dimensionless quantities.

The weights of the cost terms were set during a manual tuning

phase. During that phase we tried several different weights, and

evaluated which ones led to a good results. The weights chosen

were:w1 = 100 andw2 = 3. These are our recommendations, they

could be set differently by engineers using this solution; however,

such changes should be made with care, as they can impact the

search performance and the quality of the best solution found.

5.3.2 Neighbour-Move Function. The neighbour-move function

transforms one filter configuration into another. We used a simple

transformation based on moving one desired message from one

filter to another. A desired message is chosen at random fromMdes
;

a filter is chosen at random from the set of filters to which the

message is not currently assigned; the message is then assigned

to that filter. Once the neighbour-move has transformed the filter

configuration, Algorithm 1 is applied to derive a feasible pattern for

each filter. Note only the two filters that have a modified allocation

of messages need be re-evaluated.

5.3.3 SA Parameters. We used the following SA parameters:

initial temperature = 0.05, cooling-factor = 0.95, iterations at same

temperature = 100, max iterations = 10,000. (These parameters were

set after a manual tuning phase). In addition, we improved the

search time via a problem specific exit criteria; once SA finds a

perfect filter configuration, there is no need to search any further,

thus the search terminates.

Algorithm 3: Simulated Annealing

Input: t /* initial temperature */

Input: scur /* initial solution */

1 ccur = cost(scur ) /* initial cost */

2 repeat
3 iterAtT = 0

4 repeat
5 iter++

6 iterAtT++

7 /* generate new solution */

8 snew = neighbour(scur )
9 cnew = cost(snew )

10 /* accept move? */

11 if cnew < cbest then
12 /* cost is improved */

13 scur = snew
14 else
15 /* cost is not improved */

16 if e
ccur −cnew

t > random(0, 1) then
17 scur = snew
18 /* remember best solution */

19 if cnew < cbest then
20 cbest = cnew
21 sbest = snew
22 until iterAtT == iterAtTmax;
23 t = t * coolingFactor

24 until iter == iterMax;
Output: sbest /* best solution found */

5.4 Engineering Heuristic and Initial Solution
To the best of our knowledge, there are no approaches to solving

the general filter configuration problem that are available in the

literature. For the purposes of comparison, we make use of a

heuristic approach which, in the absence of the method proposed

in this paper, could be used in the form of a simple engineering

solution. The approach is as follows. First, the desired messages

are sorted by message ID. Next the desired messages are assigned

in order to the available filters, so that ⌈|Mdes |/f ⌉ messages are

assigned to each filter. Due to the initial ordering, the messages

assigned to each filter may have similar IDs (improving the filter

quality). A feasible filter pattern is then derived for each filter

using Algorithm 1. In the evaluation that follows, we indicate this

heuristic solution by H. We also use it as the initial starting point

for SA. In that way SA dominates the heuristic, since it always

returns a solution that is at least as good.

6 EVALUATION
In this section we evaluate the performance of the proposed

approaches for various scenarios. We use synthetic examples,

which are randomly generated. Message IDs are 11-Bit (i.e.

standard format), and their values are randomly chosen from 0 to

2047 (uniformly distributed). Message periods are randomly

chosen from 10 ms to 1000 ms according to a log-uniform
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distribution. The set of messages Mdes
that must be received by

the node are a randomly chosen subset of the messagesMall
that

are broadcast on the network. We examine scenarios with 25 to 100

broadcast messages, from 5 to 40 desired messages, and from 1 to

16 filters. We assume that each message has the maximum length

(i.e. 8 data bytes). Only those message sets that were schedulable at

a bus speed of 1Mbit/sec were included in the evaluation.

Our evaluation criteria focus on the best solutions that are found

by the different approaches. The perfect rate indicates the proportion
of examples where a perfect filter configuration was found. Filter
quality is the optimization goal, and is encoded as 1 − cost2, thus
1.0 represents an optimal solution. All values shown (points on the

graphs) are the average over 100 examples for that specific scenario.

6.1 One Filter
First, we examine the case where only a single filter is available

(f = 1). This is relevant for low-cost CAN-controllers. Algorithm 1

will (by definition) always construct a feasible filter, and with some

luck this might be a perfect filter; however, this solely depends on

themessage IDs. This problem is themost constrained, whichmakes

it hard to obtain a feasible filter with good filter quality. Figure 1

illustrates how often a perfect filter configuration is obtained. We

observe that perfect filtering can only be achieved for a very small

number of desired messages, and becomes virtually impossible for

a larger number.

Figure 1: Perfect Filtering with 1 Filter

Figure 2 illustrates the filter quality (1− cost2). Here, we observe
that filter quality significantly worsens with an increasing number

of desired messages. Once we reach 10 desired messages, the filter

is ineffective; it is letting all of the broadcast messages pass.

Based on these experiments, we conclude that with a single filter,

it is unlikely that high quality or perfect filtering can be achieved

once there are more than approx. 5 desired messages. (Obviously

this is dependent on the actual IDs of the broadcast and desired

messages). This means that ECUs with a CAN-controller with only

a single filter are likely to have to filter many messages in software,

and thus incur additional runtime overheads.

6.2 More Filters than Desired Messages
When the number of filters equals or exceeds the number of desired

messages (f ≥ |Mdes |) then Algorithm 2 will (by definition) always

Figure 2: Filter Quality with 1 Filter

construct a perfect filter configuration. Therefore evaluating this

case and Algorithm 2 is of little interest.

6.3 Fewer Filters than Desired Messages
Next, we evaluate the performance of the SA-based solution for the

general case, where the number of available filters is smaller than

the number of desired messages (1 < f < |Mdes |). For comparison

purposes, we also employed the engineering heuristic, described in

section 5.4 (marked as H on the graphs).

Figure 3 illustrates how the number of filters and the number of

broadcast messages impacts filter quality for a fixed number of

desired messages (|Mdes | = 20). We observe that as the number of

filters increases from 2 to 16, then as expected the filter quality

improves. Filter quality is also better for fewer broadcast messages.

These trends hold for both SA and the heuristic; however, SA

achieves significantly better filter performance.

Figure 5 illustrates how filter quality is impacted by the number

of desired messages. In this case, the number of broadcast messages

is set to 100, and we vary the number of available filters and the

number of desired messages. Here, as expected the filter quality

worsens as the number of desired messages increases. Again SA

finds significantly better filter configurations than the heuristic.

Finally, Figure 7 illustrates sensitivity with respect to the number

of available filters. Here, we set the number of broadcast messages to

100, and varied the number of desired messages and available filters.

We observe that as the number of filters increases, so does the filter

quality. Again, SA finds significantly better filter configurations

than the heuristic. Notably, SAwith 2 filters has similar performance

to the heuristic with 4 filters, and again for 4 versus 8 filters.

6.4 Shared Global Filter Mask
Some CAN-controllers (e.g. the CAN modules on Freescales’s

MPC555, Mitsubishi’s M32R, Renesas’ M16C, and Nationale’s CR16

microcontrollers) use a global filter mask that is shared between

several message buffers, with one or two message buffers having

separate local masks. Such systems are often configured with

(f − 1) message buffers (using the global mask) set to receive only

1 message each, and one message buffer (using a local mask) set to

receive all the remaining desired messages.

In order to evaluate the effect of a shared global mask, we

implemented this approach using SA via an alternative
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Figure 3: Filter Quality using f Filters (1 < f < |Mdes |) for 20
desired messages

Figure 4: Filter Quality using f Filters (1 < f < |Mdes |) for 20
desired messages, using f-1 approach

Figure 5: Filter Quality using f Filters (1 < f < |Mdes |) for 100
broadcast messages

Figure 6: Filter Quality using f Filters (1 < f < |Mdes |) for 100
broadcast messages, using f-1 approach

Figure 7: Filter Quality using f Filters (1 < f < |Mdes |) for 100
broadcast messages

Figure 8: Filter Quality using f Filters (1 < f < |Mdes |) for 100
broadcast messages, using f-1 approach

In the above figures we only examine scenarios where the number of filters is smaller than the number of desired messages (1 < f < |Mdes |).
Once the number of filters equals or exceeds the number of desired messages (f ≥ |Mdes |) then the filtering is always perfect (i.e. filter

quality = 1.0); however, we do not plot these scenarios here. This is why some lines in Figures 5-8 do not span the entire x-axis.
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neighbour-move function. This ensures that for f − 1 filters only 1

message is assigned. We also implemented a modified heuristic

that assigns |Mdes | − (f − 1) messages to one filter, and the

remaining f − 1 messages individually to the remaining filters.

Figures 4, 6, and 8, on the right hand side of the previous page,

show the results for a repeat of the experiments shown in

Figures 3, 5, and 7, but assuming a shared global filter mask. While

the overall trends from the previous experiments hold, the overall

filter quality is significantly worse, indicating an inherent loss of

performance compared to having an individual filter mask for each

message buffer. We conclude that it is preferable to have one filter

(mask and tag) per message buffer, rather then needing to share a

mask between buffers. A single global mask becomes detrimental

to filter performance once the number of desired messages exceeds

the number of receive buffers.

6.5 Industrial Case Study
Evaluation based on synthetic examples shows that the proposed

SA-based solution is effective in finding optimal or near-optimal

message filtering. In this section, we demonstrate its practicality

by applying it to an industrial case study.

The system is a HVAC (heating, ventilation and air conditioning)

controller for a lightweight battery electric vehicle. The vehicle

was developed in the EU-funded project Epsilon
3
. We used an

AT90CAN128 micro-controller [1] which has 15 message buffers; 4

of which were used for transmitting messages, leaving 11 that could

be used for receiving messages. In total 55 messages are broadcast

on the network, out of which the HVAC node must receive and

process 11 messages, marked as “desired = yes” in Table 2.

Since the number of desired messages matches the number of

available receive buffers, the engineers originally configured the

system such that each of the buffers receives a single message,

the same as Algorithm 2 does, thus resulting in a perfect filter

configuration. Since this is somewhat uninteresting, we investigated

whether perfect filtering can be achieved using fewer filters (receive

buffers). We therefore reduced the number of filters from 11 down

to 1 in steps of 1, and applied the SA algorithm at each step. We

repeated each experiment 100 times, so that we could also examine

how often perfect filtering was obtained. Figure 9 shows the results.

With 3 filters, good filter quality is obtained, with for example only

48 undesired messages/sec requiring software filtering, compared to

227 desiredmessages/sec received, and 1407messages/sec broadcast

in total. With 7 filters perfect filtering can be achieved. Table 3

shows one such perfect filter configuration using 7 filters. With this

configuration, 4 filters (message buffers) would be left for future

proofing the HVAC-controller, for example allowing for further

messages to be transmitted.

The CAN receive interrupt handler execution time is between

220 and 610 cycles (13.75 µs and 38.13 µs at 16MHz), not including

software filtering. Assuming an average execution time of approx.

500 cycles (31.25 µs) with software filtering, then the overhead of

filtering out all of the 1180 undesired messages/sec in software is

approx. 36.9 ms. Using 3 hardware filters, the number of undesired

messages/sec can be reduced to 48, implying overheads of just 1.5

ms. By comparison, receiving the 227 desired messages/sec takes

approx. 7.1 ms of processing time.

3
http://www.epsilon-project.eu

Figure 9: Filter Quality for HVAC-controller

ID [hex] T [ms] desired ID [hex] T [ms] desired

0x00A 1000 0x2F2 100

0x010 1000 yes 0x300 1000

0x020 100 0x350 1000

0x060 100 0x3AC 100

0x06A 100 yes 0x400 100

0x06E 10 0x410 100

0x071 100 0x411 100

0x078 100 0x420 1000

0x07D 100 0x425 1000

0x081 1000 yes 0x565 500

0x08C 100 0x610 100

0x091 100 0x611 1000

0x096 500 0x612 100

0x100 10 0x613 1000 yes

0x101 10 0x614 1000

0x102 10 0x618 100

0x110 10 0x620 100 yes

0x120 10 0x6F0 1000 yes

0x130 10 0x6F8 1000

0x150 10 0x700 1000

0x160 1000 0x702 1000

0x161 1000 0x710 1000 yes

0x200 1000 0x711 1000

0x201 10 0x720 1000

0x210 10 yes 0x730 1000 yes

0x220 10 yes 0x770 1000 yes

0x2F0 10 0x771 1000

0x2F1 100

Table 2: Network Specification of Battery Electric Vehicle
(BEV) available for HVAC-Controller

filter 0x000010000 filter 11100x10000

ID 00000010000 (0x010) ID 11100010000 (0x710)

ID 01000010000 (0x210) ID 11100110000 (0x730)

filter 11xx1110000 filter x1000100000

ID 11011110000 (0x6F0) ID 01000100000 (0x220)

ID 11101110000 (0x770) ID 11000100000 (0x620)

filter 00001101010 filter 00010000001

ID 00001101010 (0x06A) ID 00010000001 (0x081)

filter 11000010011

ID 11000010011 (0x613)

Table 3: Perfect Filtering for HVAC-controller (using 7
rather than 11 Filters)

The SA algorithm requires knowledge of the IDs of both desired

messages and undesired messages. This presents a potential issue

when the system is extended later. New, previously unknown

http://www.epsilon-project.eu


RTNS ’17, October 4–6, 2017, Grenoble, France Florian Pölzlbauer, Robert I. Davis, and Iain Bate

messages may be undesired from the perspective of a node whose

operation is unchanged; however, some of them may pass through

the node’s existing hardware filters, leading to additional processor

load. In general, this issue can only be avoided completely if a

separate filter is available for each desired message. Nevertheless,

the use of Algorithm 1 within the SA-based solution locally

optimizes each filter for the desired messages assigned to it. This

has the effect of minimizing the number undesired and unknown

messages that can pass through. As an example, with 3 filters, 1818

(91.2%) out of the 1993 unknown messages (i.e. unused IDs) are

blocked, while with 7 filters, 1991 (99.9%) are blocked. In future, we

aim to explore how filter configurations can be designed with

extensibility in mind.

7 SUMMARY AND CONCLUSIONS
In this paper we presented the problem of configuring CAN

message acceptance filters. We formally specified the problem,

provided a metric for determining the quality of a filter

configuration, analysed the problem complexity, and provided a

solution based on Simulated Annealing. Further, we provided

optimal algorithms for solving two specific special cases. A

large-scale evaluation, based on synthetic examples, showed the

effectiveness of the SA-based solution to the general problem, with

significant performance improvements over a simple engineering

heuristic. Finally, we demonstrated the practicality of the approach

via an industrial case study. Here we were able to achieve perfect

filtering using only 7 receive buffers and filters, compared to 11 in

the original implementation, thus providing headroom for future

upgrades in the form of extra transmitted or received messages.

The work in this paper considered the common industrial

constraint where message IDs are fixed. When there is freedom to

configure messages IDs, as in the case with Volcano
4
, then a

simple scheme can be employed to achieve perfect filtering in

hardware provided that 29-bit IDs are used, as discussed in Section

1. In future, we aim to look at the joint problem of message ID

assignment and filter configuration for systems that use 11-bit

identifiers. This problem is more challenging, since the solution

may need to compromise between a priority ordering that is

desirable for network schedulability and an ID assignment that

enables a high level of message filtering in hardware.
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