
Analysis of Write-back Caches under
Fixed-priority Preemptive and
Non-preemptive Scheduling

Robert I. Davis1,2, Sebastian Altmeyer3 , Jan Reineke4

1Real-Time Systems Research Group, University of York, UK
2INRIA, Paris, France

3University of Amsterdam, Netherlands
4Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Overview
 What is the presentation about?

 The integration of information from analysis of data caches using a
write-back policy, such as:

Dirty Cache Blocks (DCBs)
 Final Dirty Cache Blocks (FDCBs)
 Evicting Cache Blocks (ECBs)
into schedulability analysis for fixed priority preemptive (FPPS) and fixed
priority non-preemptive (FPNS) scheduling
 Aiming to account for the overheads of write backs in the schedulability

analysis

 What is it not about?
 The actual analysis of data caches that use a write-back policy to

provide the information needed by schedulability analysis

Caches and memory
 Main memory

 Slow to access (e.g. 10 – 100 clock cycles)
 Logically divided into memory blocks (typically 32-128 bytes each)

 Caches
 Small fast memories (e.g. 1 cycle) that bridge the gap in terms of speed

between CPU and main memory
 This paper considers direct mapped caches: different memory blocks

can map to the same cache line, only action on a miss is to replace the
memory block in the cache line

 Interested in data caches and unified caches
 Write Policies

 Write through and Write back

4 a

d
c
b

1 2 3 1

Write policies: write through
Memory

Cache
2 3

CPU

4 4

 Key points: write through
 Write to memory requested at the same time as the write to cache
 Results in many (unnecessary) accesses to memory when a memory

block is written to multiple times without being evicted from cache
 Can re-use a cache line (evicting contents) with no additional delay

4 a

d
c
b

3 1

Write policies: write back
Memory

Cache
2 3

CPU

4 4

 Key points: write back
 Memory block is only written to memory when it is evicted
 Multiple writes can take place efficiently to the cache (only)
 Need to keep track of dirty cache lines which need to be written back
 Write back can delay other read and write accesses

Classification of write backs
 Job-internal write backs

 Write backs of dirty cache lines written by the same job
 Assumed to be accounted for in WCET analysis

 Carry-in write backs
 Write backs of dirty cache lines that were in the cache before the job

started
 lp-carry-in write backs from lower priority jobs that are still active
 finished-carry-in write backs from lower or higher priority jobs that

have finished
 Preemption-induced write backs

 Write backs of dirty cache lines that were introduced by a preempting
job (that has finished).

Classification of write backs
Example
Memory blocks a,c share a cache line as do blocks b,d,f
c* means a write access to block c

What information is needed to analyse
write backs?

 Evicting Cache Blocks (ECBs)
 Set of cache lines that the task touches (reads or writes) during

execution
 Dirty Cache Blocks (DCBs)

 Set of cache lines that the task writes to at some point in its execution
and could as a result be dirty when the task is preempted

 Final Dirty Cache Blocks (FDCBs)
 Set of cache lines that the task writes at some point in its execution that

could as a result be dirty when the task finishes execution

Task model
 Sporadic task model

 Static set of n tasks τi with priorities 1..n
 Worst-Case Execution Time Ci assuming non-preemptive scheduling

starting from an empty (clean) cache (includes job-internal write backs)
 Sporadic/periodic arrivals: minimum inter-arrival time Ti

 Relative deadline Di (constrained Di ≤ Ti)
 Response time Ri

 Scheduling policies
 Fixed Priority Preemptive Scheduling (FPPS)
 Fixed Priority Non-preemptive Scheduling (FPNS)

Write backs under FPPS
 FPPS (exact test)

 Extended schedulability analysis

 write backs due to initially dirty cache lines (at start of busy period)
 accounts for CRPD
 lp-carry-in and finished-carry-in and preemption

 induced write backs

Write backs under FPPS

 Initially dirty cache lines
 Due to pre-empted lower priority jobs and due to finished higher priority

tasks (and previous job of task τi)

 Finished-carry-in and preemption induced write backs
 Left by jobs that complete during the busy period

 Lower priority carry-in write backs due to preempted tasks
Two ways of accounting for these:
 (a) Write backs due to dirty cache lines introduced by the job immediately

preempted by task τj that occur at some point within the response time of τj

 (b) Write backs due to dirty cache lines introduced by any (nested)
preempted lower priority task(s) that occur within the execution of task τj

Write backs under FPPS

 DCB-Only
 Any task that is active in the busy period and of lower priority than task τj

i.e in could be the immediately preempted task

 ECB-Union
 Refines DCB-Only approach by only including write backs that could happen

due to evictions by tasks that can execute during the response time of τj

FPPS: lp-carry-in
method (a)

 ECB-Only
 Lp-carry-in write backs introduced by any (nested) preempted lower priority

task(s) written back by task τj are upper bounded by the ECBs of task τj

 DCB-Union
 Refines ECB-only by noting that we are only interested in write backs of

dirty cache lines introduced by preempted lower priority tasks

FPPS: lp-carry-in
method (b)

FPPS approaches
 Dominance relations

 ECB-Union dominates DCB-Only
 DCB-Union dominates ECB-Only
 DCB-Union and ECB-Union incomparable
 Combined approach more effective than DCB-Union and ECB-Union

since it is applied on a per task basis

Worked examples showing these relations in the technical report

ECB-
Only

DCB-
Only

DCB-Union ECB-Union

Combined

Write backs under FPNS:
four approaches
 ECB-only

 Number of write backs upper bounded by ECBs of
the job

 FDCB-Union
 Improves upon ECB-only by accounting for which

cache lines may be dirty when a task executes
 FDCB-Only

 Covers write backs in subsequent jobs due to dirty
cache lines left by task that run during the busy
period or before it starts

 ECB-Union approach
 Improves upon FDCB-only by accounting for the

dirty cache lines which may actually be evicted

Details of all 4 approaches in the paper
Similar dominance and incomparability relationships
to FPPS

Method (a)

Method (b)

Evaluation: write back v. write through
 Benchmarks

 Code from Mälardalen and EEMBC benchmark suites
 Compiled using ARM cross compiler
 Traces generated using gem5 instruction set simulator
 Bounds for ECBs, DCBs, FDCBs obtained from traces via cache

simulation
 Assume 1 cycle for cache hit, 10 cycles for cache miss / write back
 Separate Instruction and Data Caches (each of 512 lines, 32 bytes

per line)
 Task set generation

 Random choice of benchmark to represent each task’s code
 Utilisations chosen using UUnifast
 Task periods set based on Ui and WCET for write back cache
 Enables generation of a large number of task sets with different

utilisations based on limited benchmarks

Evaluation data
 Benchmarks

 Different WCETs for write back and write through
 Write back has WCETs a factor of 1.28 to 3.02 better than write through
 UCBs, ECBs, DCBs, FDCBs (instruction and data caches)

Evaluation: results for FPPS

No cache

Write through

Write back

Write back
(no overhead)

Evaluation: results for FPNS

No cache
Write through

Write back

Write back
(no overhead)

Write buffers (technical report)
 Latency hiding

 Write buffer can hide the write latency with write-through caches
(and write-back caches)

 Behaviours
 Lazy / eager retirement
 Read from write buffer /flush
 Write merge / no merge

 Domino effects
 Small change in memory access sequence can cause an unbounded

increase in total latency for an arbitrarily long sequence of accesses
 Examples showing how domino effects can occur with write buffers

(similar to FIFO caches)

Details in the technical report:
https://www.cs.york.ac.uk/ftpdir/reports/2016/YCS/502/
YCS-2016-502.pdf

Write buffers: evaluation: FPPS

Write buffer depth = 4
needed to match write
back BUT domino effects
not accounted for

Write buffer depth = 1
Valid analysis, small
 improvement

Write buffers: evaluation: FPNS

Write buffer depth = 4
Does not quite match write
back BUT domino effects
not accounted for

Write buffer depth = 1
Valid analysis, small
 improvement

Summary
 What we have done

 Classified different types of write back and the information needed
from cache analysis (ECBs, DCBs, FDCBs)

 Integrated information from analysis of write back caches into
schedulability analysis for FPPS and FPNS:
4 methods and combined approaches for each

 Demonstrated the effectiveness of the analysis via evaluation using
multiple benchmarks

 WCET with write back 1.2 to 3.0 times lower than with write through
(0.98 to 1.98 compared to write through with a write buffer of depth 1)
Showed that write buffers can result in domino effects

 Analysable overheads of write backs were small – little degradation
compared to upper bound assuming no write back cost.

Improvement in WCET more than compensates for overheads
Analysable performance of write back cache was significantly better than
write through

Open issues
 Difficulty in precisely analysing write back caches

 Our proof of concept evaluation used simple benchmarks with
fixed inputs, this enabled analysis of ECBs, DCBs, FDCBs via traces
and cache simulation

 More complex software requires the use of static analysis
 Assuming critical real-time software can expect minimal use of

pointers, no recursion, statically allocated data structures, fixed stack
location for each calling context, hence many memory accesses can
be resolved

 Difficulties remain in resolving memory accesses inside loops – could
potentially be addressed via virtual loop unrolling

 input data dependent locations cannot be resolved, leads to
imprecision in ECBs, DCBs, FDCBs

Note review of prior work in the technical report

Future work
 Handling Imprecision in ECBs, DCBs, FDCBs

 Inevitably there will be degrees of imprecision dependent on the
actual code

 One challenge is to handle this uncertainty without incurring
significant or unbounded pessimism

 Analysis needs to be adapated to this challenge
 Set-associative caches

 Analysis in the paper is for direct mapped caches – extension needed
to set-associative LRU caches

Questions?

	Analysis of Write-back Caches under Fixed-priority Preemptive and�Non-preemptive Scheduling
	Overview
	Caches and memory
	Write policies: write through
	Write policies: write back
	Classification of write backs
	Classification of write backs
	What information is needed to analyse write backs?
	Task model
	Write backs under FPPS
	Write backs under FPPS�
	Write backs under FPPS�
	FPPS: lp-carry-in�method (a)
	FPPS: lp-carry-in�method (b)
	FPPS approaches
	Write backs under FPNS:�four approaches
	Evaluation: write back v. write through
	Evaluation data
	Evaluation: results for FPPS
	Evaluation: results for FPNS
	Write buffers (technical report)
	Write buffers: evaluation: FPPS
	Write buffers: evaluation: FPNS
	Summary
	Open issues
	Future work
	Questions?

