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Multicore Timing Verification: Traditional Approach

Implicit assumptions:
� Tasks can be analyzed independently
� WCETs are context independent
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Problems with context-independent WCETs
Non-pre-emptive uniprocessor:

τ1 τ2 τ3

works well

Pre-emptive uniprocessor:

τ1τ2 τ3

works relatively well

Multicore:
τ1

τ2

τ3

Core 1:

Core 2:

Core 3:
...
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Problems with context-independent WCETs

Core

Loc Mem
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Loc Mem
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Loc Mem

Core

Loc Mem

Core

Loc Mem

. . .

. . .

memory
global

IO/

Memory Access

Core 1:

Core 2:

Core 3:
...

τ1

⇒ Highly inflated execution time bounds
(multicore may perform worse than single cores)
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Multicore Timing Verification: Isolation

+

Isolate tasks from each other, remove interference
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Multicore Timing Verification: Isolation

+

Isolate tasks from each other, remove interference

Memory Access

Core 1:
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Core 3:
...

τ1

Still inflated, but smaller bounds ...
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Multicore Timing Verification: Isolation

+

Isolate tasks from each other, remove interference

Memory Access

Core 1:

Core 2:

Core 3:
...

τ1

τ2

τ3

Pays for interference, even if there is none
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Multicore Timing Verification: Fully Integrated Approach

� One, all-combining analysis
� Analyze exact interleavings
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Multicore Timing Verification: Fully Integrated Approach

� One, all-combining analysis
� Analyze exact interleavings

Promises best precision

Memory Access

Jitter

Core 1:

Core 2:

Core 3:
...

τ1

τ2

τ3

, but very high complexity. Too high?
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Multicore Timing Verification: Comparisons

Guaranteed
performance

Complexity

X
Traditional Timing

Verification

X Isolation

X
Fully

Integrated
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Multicore Timing Verification: Comparisons
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Interference Analysis

7 / 26



Interference Analysis
Decompose

τ1

τ2

τ3

⇒
τ1

τ2

τ3
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Interference Analysis
Decompose

τ1

τ2

τ3

⇒
τ1

τ2

τ3

and re-assemble
τ1

over the response time:

release deadline

response time
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Analysis Framework
Multicore architecture with shared components:
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Multicore architecture with shared components:
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What is the impact of each component on a task’s response time:

Ri = Delay on the core +

Delay on the bus/local memory +

Delay on the global memory
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Targeted Processor Model
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� � identical cores {P1, . . . ,P�},
� fixed-priority pre-emptive scheduling, partitioned tasks
� one shared bus
� local memories
� a global memory (DRAM)
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Impact of the Multicore Components
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Loc Mem
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Core How long does it take to execute a task?

Local Memory How many memory requests go to the bus?

Bus How many competing accesses can occur?

Global Memory How many DRAM refreshes can occur?
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Core: Processor Demand

Core
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How long does it take to execute a task?

Provides:
� processor demand PD of a task

i.e., execution time without any interference, memory delays, etc.

13 / 26



Local Memory: Memory Demand

MEM(o) = (MD,UCB,ECB)
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How many memory requests go to the bus?

Provides:
� memory demand MD, i.e., # bus accesses

� metrics for the pre-emptions costs (UCB,ECB)
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Bus: Competing Accesses

BUS(i, x, t)
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How many competing accesses can occur?

Provides:
� #bus accesses that delay task τi on processor Px during time t
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How many competing accesses can occur?

Provides:
� #bus accesses that delay task τi on processor Px during time t

Uses

S(t) #competing accesses on same core

A(t) #competing accesses on all other cores

Derived using output of the memory function: MD, UCBs and ECBs
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DRAM: Number of DRAM refreshes

DRAM(t ,m)
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Loc Mem
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memory
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How many DRAM refreshes can occur?

Provides:
� #DRAM refreshes during time t with up to m memory accesses

16 / 26



Which components can we model so far?

Core

Loc Mem

Core

Loc Mem

Core

Loc Mem

Core

Loc Mem
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Core
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. . .

. . .

memory
global

IO/

Core: any timing-compositional core

Local Mem.: Scratchpads, LRU/DM caches, partitioned caches,
uncached systems (all for instruction and data)

Bus: Fixed-Priority Bus, TDMA, Round-Robin, Processor
Priority

DRAM: burst refreshes, distributed refreshes

and any combination thereof.
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From Component Model to Interferences

IC(i, x,Ri)

Interference/Delay of component C during the response time Ri

of task τi executing on processor Px
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of task τi executing on processor Px

IPROC(i, x, t) =
∑

j∈Γx∧j∈hp(i)

⌈
t
Tj

⌉
PDj

IBUS(i, x, t) = BUS(i, x, t) · dmain

where dmain is the bus access latency to the global memory.

IDRAM(i, x, t) = DRAM(t ,BUS((i, x, t)) · drefresh

where drefresh is the refresh latency.
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Multicore Response Time Analysis

Core

Loc Mem
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Ri = PDi + IPROC(i, x,Ri) + IBUS(i, x,Ri) + IDRAM(i, x,Ri)

(solved via fixed-point iteration)

Task set feasible, if:

∀i : Ri ≤ Di
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Proof-of-Concept Instantiation

� System based on the ARM Cortex A5:

ICache DCache

ARMv7

ICache DCache

ARMv7

ICache DCache

ARMv7

ICache DCache

ARMv7

memory
global

IO/

� 4 cores, separate instruction and data caches,
FP/FIFO/TDMA bus, and distributed DRAM controller.

� Compared different configurations for a large number of
randomly generated task sets
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Randomly generated task sets

Task set parameters

� 32 tasks in total, with 8 tasks per core, uniform core utilization

� each task was randomly assigned a task from Mälardalen
benchmark suite (see table)

� implicit deadlines

� priorities in deadline monotonic order.

Name # Instr. (PD) Read/Write MD UCB ECB
adpcm enc 628795 124168 38729 155 346
bsort100 272715 1305613 25464 31 135
compress 8793 3358 993 74 174
fdct 5923 3098 1088 67 193
lms 3023813 373874 120821 150 276
nsichneu 8648 4841 1582 397 589
...

...
...

...
...

...
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Results: Core Utilization

1000 task sets per (core) utilization
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Results: Bus Utilization

schedulable task sets vs. bus utilization
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better results: bus/global memory is the bottleneck
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Conclusions

Multicore Response Time Analysis framework
� based on interference modelling
� directly aiming at response time
� parametric in the hardware configuration
� extensible to other sources of interference
� but ignores overlapping

Proof-Of-Concept Implementation
� based on ARM Cortex A5
� temporal isolation not needed
� promising results for work-conserving bus policies
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Questions?
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