
Modelling Fault Dependencies when Execution Time
Budgets are Exceeded

David Griffin
University of York

david.griffin@york.ac.uk

Benjamin Lesage
University of York

benjamin.lesage@york.ac.uk

Iain Bate
University of York

iain.bate@york.ac.uk

Frank Soboczenski
University of York

frank.soboczenski@york.ac.uk

Robert I. Davis
University of York and Inria

Paris-Rocquencourt
rob.davis@york.ac.uk

ABSTRACT
Given that real-time systems are specified to a degree of
confidence, budget overruns should be expected to occur in
a system at some point. When a budget overrun occurs, it
is necessary to understand how long such a state persists,
in order to determine if the fault tolerance of the system is
adequate to handle the problem. However, given the rarity
of budget overruns in testing, it cannot be assumed that
sufficient data will be available to build an accurate model.
Hence this paper presents a new application of Markov
Chain based modelling techniques combined with
forecasting techniques to determine an appropriate fault
model, using Lossy Compression to fit the model to the
available data. In addition, a new algorithm, DepET, for
generating job execution times with dependencies is given
for use in task simulators.

1. INTRODUCTION
Real-time systems [5] are characterised by a need for

correctness of their temporal properties, in addition to
their logical properties. As such, a fault in a system can
manifest itself through overrunning the amount of time
allocated to a task to execute i.e. either the anticipated
Worst Case Execution Time (WCET) or Worst Case
Response Time (WCRT) of the task being exceeded. As
ruling out such temporal faults completely is normally an
intractable problem, alternative arguments must be
presented. In practice, this means that a system will be
engineered to withstand a certain level of faults, defined as
the fault tolerance of the system. Provided that the faults
the system encounters do not exceed its ability to deal with
them, the system will be able to continue to function [15].
For example, aircraft and automotive Electronic Engine
Controllers (EEC) are designed to have a fallback by
outputting the last calculated value in the case of a budget
overrun; this approach is not restricted to EECs [15, 14].
While this strategy may allow the system to continue
operating safely if budget overruns are rare events, a burst
of faults would present a difficult argument for the safety
case.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
RTNS 2015, November 04 - 06, 2015, Lille, France
Copyright 2015 ACM 978-1-4503-3591-1/15/11 ...$15.00.
http://dx.doi.org/10.1145/2834848.2834870.

The reliability of a system is typically measured by its
acceptable failure rate; provided that this failure rate is not
exceeded, the system will be able to continue to operate.
Given a system comprised of a set of tasks, an execution
budget failure is caused when an instance of a task, a job,
exceeds its WCET budget. The rates of such failures are
typically mandated by an appropriate standard and a
WCET budget selected such that the failure rate is
satisfied [22]). Recent techniques include measurement
based probabilistic timing analysis (MBPTA) [9], where
statistical methods are used to predict the rate of
execution time budget overruns. However, while normally
presented as a single figure, the probability of a fault
occurring does not convey all the relevant information. For
example, consider a task that out of 10,000 executions,
observes 30 consecutive faults. Over all the executions, the
failure rate is 0.03%, which appears low. However, if it is
restricted to the last 100 executions, the failure rate
becomes 30%. Indeed, in the last 10 executions a 100%
failure rate is observed, which is clearly undesirable.

This leads to the conclusion that the term “failure rate”,
as used in MBPTA literature [9], actually refers to the
probability of an initial fault. Once this initial fault has
occurred, the given failure rate does not necessarily remain
valid unless faults occur independently, which is a common
assumption in previous fault models [4]. In addition, the
related concept of weakly hard real time systems [2] also
makes the assumption that faults occur independently.
Research has also been conducted on the assumption that
due to the rarity of budget overruns, consecutive budget
overruns are a rare occurrence [19]. However, if the inputs
to the system exhibit any kind of dependencies, one would
expect that dependencies could also manifest in system
execution times, therefore causing dependent faults. An
example of this can also be observed in EECs; given the
rate of change in the physical system providing input (the
engine, accelerator position, etc.), the inputs to the task
will not change substantially between samples and
therefore similar paths through the program are likely to
be exercised, leading to a burst of faults.

Therefore it becomes necessary to consider the behaviour
of a system once a fault has been observed. This is
especially relevant in systems where the inputs to tasks
change by a limited amount between jobs, such as the
aforementioned EEC example. Hence if a particular job
exceeds its WCET due to the computation required to
process its inputs, then the next job, expected to have
similar inputs, is expected to be at an increased risk of a
budget overrun when compared to normal behaviour.

System
Model

Simulator

Execution Time
Generation

Job
Generation

Update
Simulator State

Taskset
Generation

Figure 1: Workflow of a Scheduling Simulator

However, the problem encountered in attempting to model
the behaviour of a system after a fault is that faults are, by
definition, rare events. It could be reasonably expected
that during testing, not enough faults are observed and
therefore it is impossible to gather sufficient information
about the system’s behaviour after a fault.

This problem is demonstrated by approaches seen in
current state of the art scheduling simulators. As
illustrated in Figure 1, a scheduling simulator given a
taskset and system model, simulates how jobs will behave.
For example, the SimSo simulator [6] is capable of
considering a variety of execution time models for jobs.
However, in these models the base execution times are
produced by using sampling from a normal distribution,
with some additional factors allowing limited dependencies
for the cases of premption or task migration. Even
removing this source of dependencies, it is still unlikely
that a real system will experience jobs where the base
execution times are independent, due to dependencies in
input to the system. Therefore, this assumption introduces
an inaccuracy in the simulator, and an improved execution
time generator is therefore desirable.

This inaccuracy is highlighted in mixed criticality
systems (MCS) [4] where the system is specified at multiple
levels. In the simplest case, the system has two levels, low
criticality, where budget overruns do not usually occur,
and high criticality, a reduced functionality mode with
increased execution time budgets for the remaining tasks
such that budget overruns are guaranteed not to occur [4].
In the case that a WCET budget overrun occurs in low
criticality mode, the system transitions to high criticality
mode to guarantee no further budget overruns. However,
to do this, low criticality functionality is sacrificed. Given
that current simulators do not provide for dependencies for
when budget overruns occur, this presents a challenge for
evaluating the effectiveness of MCS algorithms.

As Markov Chain modelling is a widely used technique
with broad applicability, this paper presents an algorithm
which utilises Markov Chains to construct a model for job
execution times exceeding a given threshold, which is
capable of modelling faults caused by exceeding a WCET
budget. The novel step of this algorithm is the use of Lossy
Compression to guarantee statistical confidence in the
model, as well as the use of forecasting methods to
counteract the rarity of observing actual WCET budget
exceedances. To the authors knowledge, this is the first
application of forecasting techniques to the job execution
time generation problem, and enables a prediction of the
behaviour of the system under extreme circumstances.

In addition, this paper presents a new job execution time
generation algorithm, DepET, which utilises the forecast
models of job execution time. DepET uses these models to

target an overall distribution while also giving temporal
dependencies between the execution times of jobs. When
used in a task simulator, DepET distinguishes itself by
presenting more realistic job execution times, and therefore
removes a source of inaccuracy commonly found in task
simulators.

2. RELATED WORK
While little research has been conducted on the

occurrence of faults due to budget overruns in a system,
techniques have been employed in predicting the existence
of functional faults in software by Fenton et al. [12].
Fenton et al. used a set of training data to create a
Bayesian Network which in turn could predict, with
reasonable accuracy, the number of faults to be expected in
other pieces of software based on simple observations of the
software (e.g. lines of code, size of development team etc.).
However, Bayesian Networks are designed to assign a
probability to a particular outcome given various inputs,
which does not match the class of problems that a fault
model would seek to solve, due to the fact that a fault
model must attempt to produce realistic data on the
nature of faults. Such data may in turn be repetitive,
which is something that cannot be expressed in a Bayesian
Network. Hence, the related construct of Markov Chains
[20] is employed instead.

A Markov Chain is a conditional probability model that
satisfies the Markov Property: “Given the present state,
future states are independent of past states”. This property
provides a simplification of real systems in that it limits
the effect of dependencies between states, but provides a
compromise which allows a limited amount of information
to influence dependencies. Unlike alternative systems, the
Markov Property that a Markov Chain adheres to ensures
that the resulting model is sufficiently simple that only a
limited amount of data is required to train it.

In order to find information on events which have not
been observed, Forecasting methods [13] are employed.
Forecasting allows a forecast model to be populated with
observed data, followed by the identification of a trend or
pattern within the model, and therefore an expectation of
future unobserved events. Hence forecasting methods are
an appropriate technique to attempt to predict the
behaviour of faults given their low frequency in observed
data; patterns are identified in observed data and then
extrapolated to provide a prediction of unobserved data.
While forecasting is not typically employed on real-time
systems, there are limited methods available in order to
predict unobserved data. In particular, this paper focuses
on the technique of extrapolation: the identification of a
pattern or trend in observed data which is then used to
predict the behaviour of unobserved phenomena. It should
also be noted that these techniques allow underlying
factors of the system being modelled (e.g. details of the
tasks or the computer architecture) to be abstracted;
during evaluation, it is possible to determine the accuracy
of the forecast model relative to the actual system. This
demonstrates that the model is accurate, and hence the
potential downside of not using detailed information on the
target system is mitigated.

Lossy Compression, previously used on models of real
time systems by Griffin et al., has been applied to static
analyses of PLRU caches [16, 18] and random replacement
caches [17]. Given that Lossy Compression is capable of
simplifying the models used in static analysis without
discarding useful information, the same principles can be

0 100 200 300 400 500

Job Number

0.5

1.0

1.5

2.0

2.5

Jo
b

E
xe

cu
tio

n
Ti

m
e

×106

Figure 2: Instructions taken for FFmpeg 2.4.3 decoding
video frames of Return of the Kung Fu Dragon (MPEG4)

used to simplify a model populated by data from
measurements. Specifically, this is used to take a generic,
highly detailed model, and simplify the model until the
observations available are sufficient to to populate the
aspects of the model with enough data to give statistical
confidence.

3. CONSECUTIVE EXECUTION TIMES
AND BUDGET OVERRUNS

As previously stated, during the execution of a job it is
expected that the inputs to that job will not change
significantly when compared to previous invocations of the
task. While there are examples of systems which break this
rule (e.g. random number generators), for the majority of
systems this is a realistic assumption. For example, the
velocity of an aircraft does not vary wildly (as governed by
the laws of physics), and indeed will have a maximum rate
of change. Similarly, in video decoding the content of a
video frame is likely to be similar to the previous video
frame, and therefore takes a similar amount of effort to
encode. To extend this analogy to recent encoding
technologies which utilise different types of frame
(normally I-frames and P-frames), the input for each type
of frame is similar to the previous instance of that type of
frame. Assuming that inputs are similar, then it is
reasonable to assume that the amount of effort that the job
must expend processing those inputs is likely to be similar.

This assumption results in the kind of distribution of
execution times that is seen in Figure 2. Figure 2 gives the
number instructions taken for decoding the P-frames of an
XVID video using FFmpeg [7], extracted by running the
program under Callgrind [8]. This data source was chosen
due to the fact that it is an easily obtainable example of a
system which is commonly deployed, and for which data
can be easily extracted using precise instrumentation. In
addition, due to the use of the number of instructions
taken rather than execution time being used to model task
length, many of the specific details of the CPU being used
become irrelevant. While the number of instructions taken
is not entirely analogous to the execution time of the job in
question, it does provide a reproducible result which
captures enough of the actual behaviour to provide a useful
data source. Throughout this paper, data was extracted by
decoding the film Return of the Kung Fu Dragon1.

Further, FFmpeg is a highly complex piece of software
which exhibits real-time properties (in that decode times

1https://archive.org/details/Return of the Kung Fu Dragon

0 100 200 300 400 500

Job Number

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
at

io
of

Jo
b

E
T

to
pr

ev
io

us
Jo

b
E

T

Figure 3: Correlation between the execution time of a job
and the execution time of the previous job

Duration of Fault Number of instances
0− 5 12685
6− 10 1082
11− 15 362
16− 25 281
26− 50 85
51− 75 63
> 75 50

Figure 4: Duration of consecutive budget overruns for
FFmpeg decoding video frames

appear to be bounded), and has no shortage of valid, real,
input data; this is in contrast to other public domain
benchmarks (EEMBC, MDH), where real input data is
limited. Given the shape of the graph, it is clear that a
good indicator of the execution time of the next job is the
execution time of the previous job. The ratio of these
quantities is plotted in Figure 3, which show that the
execution time of a job is most commonly within 20% of
the execution time of the previous job, and rarely outside
of a 30% margin.

Given this strong correlation, it confirms the position
that for any given execution time threshold, execution
times exceeding the threshold tend to be observed in
consecutive groups. Hence, if one were to set such a
threshold for budget overruns, budget overruns also tend to
be observed in groups as seen in Figure 4. In this paper,
the specific quantity modelled is the duration of budget
overruns, defined as once a budget overrun has occurred,
the number of additional task invocations before normal
operation is resumed. This was chosen instead of modelling
the magnitude of the overruns (the amount of time spent
on consecutive jobs not budgeted for) as many task
schedulers will take action when an overrun occurs (e.g.
killing the job or switching criticality mode).

Unfortunately, the number of budget overruns observed
during testing is unlikely to be sufficient to construct an
accurate model of the system’s behaviour after a budget
overrun, at any reasonable confidence. For example, to
obtain a statistically significant sample of 1000 job
overruns which occur with a probability of 10−6, then one
would need to execute the system between 106 and 109

times depending on the degree of dependence between
overruns. However, referring back to Figure 2, one can see
that budget overruns are likely to occur around the peaks
of consecutive computationally expensive jobs; this is due
to the previous observation that a strong indicator of the
execution time of a job, is the execution time of the

0 100 200 300 400 500

Job Number

0.5

1.0

1.5

2.0

2.5

Jo
b

E
xe

cu
tio

n
Ti

m
e

×106

Threshold 1
Threshold 2
Threshold 3

Figure 5: Setting thresholds such that sufficient data is
available to construct a model

1 2

3

0.2

0.4
0.3 0.3

0.50.1

0.5 0.3

0.4

Figure 6: An example of a Markov Chain, where the states
are annotated with 1, 2, 3 and state transitions occur with
the given probabilities.

previous job of the same task. As illustrated in Figure 5,
thresholds can be set such that these jobs are observed in
high numbers. Hence, one could use these lower thresholds
to capture information on the computationally expensive
jobs, and then by varying the threshold, extrapolate the
information to the cases where budget overruns occur.

Specifically, this paper hypothesises that information
about the behaviour of runs of jobs after the system has
experienced a fault due to a budget overrun (an event not
seen in testing with any high confidence) can be inferred by
collecting data on computationally expensive runs of jobs,
and using this information to extrapolate the behaviour of
the system after a budget overrun. In the evaluation
(Section 7), this hypothesis is tested by comparing the
forecast model of the system with actual observations.

In order to accomplish this, it is necessary to select an
appropriate model for the system. The model chosen is a
Markov Chain based model, which is outlined in the next
section.

4. MARKOV CHAIN MODELS
Markov Chains [20] are a mathematical model which

allows conditional probabilities based only on the current
state; this ensures the Markov Property, “Given the
Current State, the Past and Future are Independent” holds
[20]. Markov chains are useful for modelling a number of
systems, especially when the actual model is unknown; this
is primarily due to their flexibility in capturing a limited
amount of conditional behaviour.

As stated in the previous section, the overall strategy is
to determine a model of behaviour after a budget overrun,
by extrapolating from the behaviour of the system when
the overrun threshold is lowered to a level at which the
system can be tested. On it’s own, a model of the duration
of a budget overrun is not capable of providing a job

execution time generator; the additional information
required for this is laid out in the DepET algorithm in
Section 4. As the model is only of the duration of an
budget overrun, this extra information includes the
probability of a budget overrun which will cause the
exceedance model to be sampled from.

At its simplest, a Markov Chain is composed of a
number of states (which may be annotated with additional
information), each containing a probability table which
gives the probabilities for which state is advanced to next.
An example of a Markov Chain is given in Figure 6. In this
case, the Markov Chain is evaluated by considering the
probability table of the current state αs. The next state,
αs+1 is chosen in accordance with the probability table
contained within the current state αs. Repeated sampling
allows the limited amount of history contained within the
current state to inform the probabilities of the next state,
as required. In order to extrapolate the behaviour of
budget overruns, it is necessary to use a fixed structure for
the Markov Chain. This ensures that the values contained
in the probability tables are of the same type and therefore
comparable. In order to accomplish this, each node of the
Markov Chain corresponds to a range of durations of
consecutive budget overruns; this allows sufficient data to
be supplied to each node such that there is confidence in
the results.

Ideally, the Markov Chain would comprise nodes where
the state represents the number of consecutive budget
overruns, and the probability table gives the probabilities
for the next state. This would enable the model to evaluate
the likelihood of the size of the next set of consecutive
budget overruns in the context of the current set of budget
overruns. This capability is important to distinguish
different patterns of budget overruns, such as cases where a
large number of budget overruns are followed by a short
period with no budget overruns, but more budget overruns
are likely to occur because the computational load has not
disappeared, as illustrated in Figure 5. In order to
accomplish this, the input data is then categorised
appropriately and this information used to inform the
probability tables in the Markov Chain. However, the
amount of data obtainable through testing is likely to fall
well short of being able to sufficiently populate such a
model, due to the number of states that the model
contains. In order to address this issue, the next section
introduces Lossy Compression which is used to modify the
model such that the evidence is capable of supporting it.

5. COMPRESSING THE MARKOV CHAIN
MODEL

To compensate for a lack of data, Lossy Compression
[18] is applied to the model. Lossy compression states that
in order to compress a model, one should first list the types
of information contained in the model, evaluate their
importance to the desired result, and discard or
approximate information which is of low importance to the
overall result. By doing so, the least useful information is
lost first, and hence the effects on the accuracy of the
results are minimised. A common example of Lossy
Compression is image compression (e.g. JPEG), where
details of the image are ranked based on how perceptible
they are to the human eye, with the least perceptible
elements being compressed. Further, while previous
applications of Lossy Compression were to Static Analysis
[18], there is an additional benefit to applying Lossy
Compression to a Measurement Based technique: as the

1 2-3
0.5

0.4

0.5 0.6

Figure 7: Revised version of Figure 6, compressed by
collapsing states 2 and 3 to a single state.

1 2

3

0.4
0.5 0.6

0.5

0.5

0.5

Figure 8: Revised version of Figure 6, compressed by
removing transitions with low probability.

model becomes simpler, each portion of the model becomes
supported by more data. Therefore, more evidence
supports each point of the model, increasing the statistical
soundness of the model and minimising errors due to
extrapolation.

Practically speaking, compressing the model such that
the evidence supports the model is accomplished by
modifying the question that is being asked of the model.
Hence, instead of attempting to find an exact model of the
system, for which there is insufficient evidence and
therefore there is little confidence in the correctness of the
model, an approximation is found. As the approximation
has less precision than the actual model, there is less of a
burden on evidence gathering and hence less evidence is
required to support the model. To illustrate this in terms
of the WCET problem, the uncompressed model simply
lists all available paths through the program, and finding
the worst case path with any confidence requires measuring
each path. The model can be compressed by identifying
features of these paths to establish groups; these groups
can then be sampled, and hence evidence gathered on
which group of paths contains the worst case path. As
evidence is gathered per group and not per path, less
evidence is required to produce a statistically sound model.

As previously stated, the ideal Markov Chain model
consists of states corresponding to a number of consecutive
budget overruns, with a probability table dictating the
probability of the next state. This simple description gives
two forms of information to work with:

• States and Annotations: The states annotation, αs,
gives the number of consecutive budget overruns. By
lowering the precision of αs from a specific duration of
budget overruns, to a bucket of durations for budget
overruns, as well as merging the appropriate Markov
States, the model becomes simpler and requires less
information to populate it. However, such a change
comes with a corresponding loss of accuracy as the
exact number of consecutive budget overruns will no
longer be known. An example of this is given in Figure
7.

• Probability Table: The probability table within each
state, denoted by the rows tr ∈ states[αs] must be
constructed based on evidence provided. If there is
insufficient evidence to support a state transition
probability in the probability table, then this state

transition can be merged with a sufficiently similar
(although pessimistic) state transition to remove the
offending evidence, albeit with a loss of accuracy. An
example of this is given in Figure 8.

In order to compress the ideal Markov Chain model into
a more manageable and smaller model, states and
annotations are compressed such that instead of an exact
value, the state and annotation correspond to a bucket
containing a range of consecutive budget overruns. When
fitting the Markov Chain to data, an event leading to n
consecutive budget overruns is categorised in the bucket
which contains n. While this obviously represents a large
drop in accuracy, it also lowers the amount of test data
needed for learning considerably. However, other than the
adaptation to buckets, the input test data is used to inform
the probability tables just as in the ideal case. Provided
that the user can provide a series of specific numbers of
consecutive budget overruns which are interesting for the
system, buckets can be constructed to provide the
maximum possible accuracy for these values. For example,
if a user is interested in events causing at least 10, 20, or
30 budget overruns, appropriate buckets are [1, 9], [10, 19],
[20, 29], and [30,maximum − overruns). In general, if a
user is interested in events causing at least a1, a2... budget
overruns, the appropriate buckets are given by partitioning
the range [0,maximum − overruns] by the values a1, a2....
Of note is that the buckets are the only input that a user
must provide to the compression; all other compression
employed is fully automated.

The next stage in compressing the Markov Chain is to
compress the probability table. It is expected that the
amount of data points contributing to each entry in the
probabilities tables will vary significantly. As some entries
may not have sufficient data points to have confidence in
their results, action must be taken. This results in
modification of the probability table such that values
which do not have sufficient data to have confidence are
merged into an appropriate and pessimistic set of values.
For example, if there are only a few observed values for the
transition to state α1, then the observed values are merged
into the transition to state α2, where the state α2 is more
pessimistic than α1. This is repeated as necessary, unless
α1 is the state corresponding to the largest bucket; in this
case compression cannot continue and the user would have
to provide additional data as insufficient data is present for
the model to have the desire statistical confidence. As the
compression always increases the expected duration of a
fault, the compression cannot introduce unsound results.
When this compression is successful, as the user has
provided information on the intended use case, the loss of
precision is expected to have minimal effect on the
usefulness of the model. This can be tested by examining
the accuracy of the extrapolation with and without
compression; when compression is enabled, it is expected
that the results will be more accurate when compared to
real data, due to the questions being answered becoming
simpler. However, one should take care that the model is
not overly compressed, as this will result in the questions
the model can answer being so simple that they provide no
useful information. In practice, the degree of compression
can be automatically determined by comparison of the
desired structure with the structure used in the model, and
in the case of overcompression the user can be alerted.

More concretely, this process is defined in Algorithm 1,
LearnLC. At this level, the fault durations have already
been extracted from observed data, and so the only task is

1 minSamp← minimum sample size needed for statistical
significance

2 Function LearnLC(buckets, faultDurations)
3 create an empty Markov Chain model states using the

labels αs from buckets
4 compressed← set()
5 curentState← the label α0 of the initial state of states
6 for fd in faultDurations do
7 states[currentState][bucket(fd)]+ = 1
8 currentState← bucket(fd)
9 for αs in states do

10 for tr in states[αs] do
11 if states[αs][tr] < minSamp then
12 if tr 6= max(states[αs]) then
13 tr′ ← least value in states[αs] > tr
14 states[αs][tr′]+ = states[αs][tr]
15 states[αs][tr]← 0
16 add (αs, tr, tr′) to compressed
17 else
18 return None, Data is unusable
19 for αs in states do
20 total← sum(states[αs][tr] for tr in states[αs]) for

tr in states[αs] do
21 states[αs][tr]← states[αs][tr]/total
22 return states, compressed
Algorithm 1: The LearnLC function, which uses Lossy
Compression to fit a Markov Chain to represent input data

to construct the Markov Chain model. Line 6 takes the
observed fault durations and works out which transitions
are taken in the Markov model; this data is then stored in
appropriate counters. Line 9 takes this Markov model and
applies appropriate compression to any transition between
states which fails to have enough samples for the desired
statistical confidence. This algorithm applies compression
in a pessimistic manner, by assuming that a greater
number of faults will occur (Line 12); if such a transition
cannot be found, then the compression fails and as the
model can no longer be constructed with the desired
confidence, the model is considered unusable (Line 18).
Finally, Line 19 takes the observed tallies of transitions
and converts them to the probability tables required for a
Markov Chain. These probability tables are then returned,
along with a description of which states were compressed.
An illustration of a sample fault model produced by this
method is given in Figure 9.

Summarising, this section gives the LearnLC method to
fit a Markov Chain model to a set of budget overrun
durations, which given the limited variability between
consecutive job execution times, is expected to provide an
adequate model of budget overruns. However, test data is
still unlikely to contain sufficient budget overruns to
provide enough data to fit the model. Hence this method
must be applied to data encountered with an artificially
lowered budget overrun threshold, for which there will be
much higher amounts of data, and these results used to
infer the model for actual budget overruns. An overview of
how this is accomplished is given in the next section.

6. FAULT THRESHOLDS AND BUDGET
OVERRUNS

Given the lack of data available for the system when it
has failed, it is necessary to determine a method to infer
this data. As previously stated, due to the assumption that
when deployed, inputs between consecutive jobs have
limited variability, and therefore consecutive job execution
times have limited variability. This results in the kind of
distribution seen in Figure 5, where budget overruns occur

1-5 6-20

> 20

0.4
0.5 0.6

0.5

0.5

0.5

Figure 9: A Sample Fault Model

at the peaks of computationally intensive periods.
In order to prepare the raw data for use in creating

forecast models, it is necessary to provide multiple points
of observation. This is accomplished by setting multiple
thresholds for computationally intensive jobs, as illustrated
in Figure 5, which unlike a WCET budget exceedance,
provide sufficient amounts of observations. However, due
to the compression applied by the LearnLC method, it is
possible that Markov Chains with different structures will
be produced. As this complicates the forecasting process,
the simplest method to counter this is to produce as many
models as possible, and then select the most commonly
occurring model structure. This process is given in the
GatherData function, given in Algorithm 2. Specifically,
GatherData iterates over every possible threshold level
and uses a map (Line 2) to keep track of what model
structures are seen (Line 6).
1 Function GatherData(buckets, rawData)
2 learntData← map()
3 for x in 0...max(rawData) do
4 durations← list of contiguous elements of rawData

all greater than x
5 if LearnLC(buckets, durations) is not None then
6 states, compressed = LearnLC(buckets,

durations) if compressed not in learntData
then

7 learntData[compressed] = list()
8 append (x, states) to learntData[compressed]
9 return longest list in values of learntData
Algorithm 2: The GatherData function, which gathers
observations from execution time data
After the data for each point is found, forecasting is

applied by fitting an appropriate curve to the data. This is
accomplished by using the Levenberg-Marquardt algorithm
[21], otherwise known as the Damped Least-Squares
method, to fit a variety of polynomial curves and choosing
the one with the lowest order which gives a sufficiently
accurate fit. This selection criteria is due to the fact that
higher order polynomials are subject to concerns about
overfitting the data, which causes extrapolation to give
wildly inaccurate results.

It can reasonably be hypothesised that the parameters of
the Markov Model converge; this is due to the fact that as
thresholds increase, the durations of faults decrease. This
in turn leads to a smaller number of paths in the Markov
model being taken, and hence the parameters will
converge. In turn, this means that it is expected that
non-linear curves which converge on a fixed value (e.g.
hyperbolic curves) are an appropriate model. This also has
the advantage that as the curves converge on a fixed value,
errors from extrapolation are minimised. For completeness,
other types of curve are considered by the algorithm.
However, one consideration of fitting a non-convergent
curve is that extrapolation becomes much more prone to
errors, and hence the correctness of the input data becomes

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Threshold 1e6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
T
ra

n
si

ti
o
n
 P

ro
b
a
b
ili

ty

Figure 10: Fitting Curves to Probability of Transition from
State 15-25 to State 5-10

much more important. Finishing the formal definition, the
Extrapolate function, shown in Algorithm 3, generates the
extrapolated Markov Model.
1 Function Extrapolate(buckets, rawData, threshold)
2 create an empty Markov Chain extrapolatedStates
3 for states in GatherData(buckets, rawData) do
4 for each Markov Chain parameter in states, x do
5 Fit a curve to the plot threshold, x
6 Set the corresponding Markov Chain parameter

in extrapolatedStates to the extrapolated value
at threshold

7 return extrapolatedStates
Algorithm 3: The Extrapolate function, which generates
an Extrapolated Markov Model

7. EVALUATION OF FORECAST MODELS
As previously mentioned in Section 3, data for

experimentation was extracted from FFmpeg [7], using
Callgrind [8] to extract the number of instructions taken to
decode P-frames from a video. As in previous examples,
the video used for this evaluation is Return of the Kung Fu
Dragon, an input which has no special properties other
than being a valid and typical input to FFmpeg. This is in
contrast to other sources, for example encoded random
noise, which are not representative of the types of input
that FFmpeg would be expected to handle in normal
operation. In order to evaluate the effectiveness of the
forecasting techniques employed, modelling is conducted
using a fraction of the available data. This allows the
extrapolation to be compared against the complete data
set, and its accuracy to be evaluated.

In this experiment, 5%, 7% and 10% of the data of the
film was used to learn a Markov model using the rules
given in Sections 5-6. These amounts of data were chosen
as they provide a statistically significant amount of data to
the learning process, but also reduce the amount of data
required for learning significantly.

In this experiment, fitting curves is relatively
straightforward; all curves are similar to that seen in
Figure 10, and admit a hyperbolic curve with minimal
error. Excluding the initial data (below 110000
instructions), the data points are displaced from the curve
by an independent random amount, which is indicative of
random sample variation (as opposed to data which is
displaced from the curve by a non-random or dependent
variable, which is indicative of systematic sampling errors).
While there may be cases where a different curve is needed
to provide an accurate forecast, this demonstrates that
curve fitting is an appropriate forecasting method in this

Fault Duration

N
o
rm

a
lis

e
d

 N
u
m

b
e
r

o
f

In
st

a
n
ce

s

Figure 11: Forecast and Actual Consecutive Budget
Overruns at threshold 1600000 for Return of the Kung Fu
Dragon

case.
As expected, longer fault durations produce less data.

Hence, lossy compression identified that data on longer
fault durations was scarce and reduced the number of
buckets used for the longer durations. This gives the
desired effect of trading accuracy of the model for
statistical confidence; by contrast, if the model was not
compressed the buckets for longer durations would contain
less than 15 data points each, which cannot be argued as
being statistically significant. Hence the LearnLC method
was capable of finding a model for which there is sufficient
data to give statistical significance to each aspect of the
model.

In addition, to verify the expected result that lossy
compression improves the confidence of the model’s
forecast by simplification of the questions the model seeks
to answer, the previous experiment was repeated with lossy
compression of the probability tables disabled. In this case
the errors produced by the model were incredibly high, due
to some entries in the probability tables having very little
evidence (less than 5 samples), and hence confidence in
such a model is low.

Examining the specific results of the model, Figure 11
compares the results of the extrapolated Markov model,
when trained with 10%, 7% and 5% of the data
respectively, for forecasting the frequency and duration of
budget overruns, defined to be at 1600000 cycles. The
graph illustrates the mean and standard deviation of model
when compared to the observed data. As expected,
lowering the amount of data used to train the model
results in a decrease in accuracy. This can be seen in the
results as while the error on the model trained with 10% of
the data is normally in the region of 10%, as the amount of
data decreases the error increases. However, in most cases
the model is not wildly divergent from the actual
behaviour, and thus provides a useful fault model. This
demonstrates that the techniques used to construct the
model, lossy compression, Markov Chains and
extrapolation, are capable of producing a useful description
of the behaviour of faults even if there is little data
available about these faults.

There is however one caveat to these results, which is
that the data includes 2 computationally intensive
segments, caused by fading scene transitions in the input
video, which are not representative of normal operation.
The primary reason for the divergence of the 5% trained
model is that unlike the 7% and 10% models, it only

N
o
rm

a
lis

e
d

 N
u
m

b
e
r

o
f

In
st

a
n
ce

s

Fault Duration

Figure 12: Forecast and Actual Consecutive Budget
Overruns at threshold 1600000 for Return of the Kung Fu
Dragon, excluding 2 computationally intensive areas

contains a portion of one of these computationally
expensive segments. Figure 12 shows the results when the
2 computationally expensive segments are excluded
(analogously to the exclusion of startup times in other
forms of analysis). In this case, the model becomes
substantially more pessimistic, typically forecasting longer
faults than the observed data; this is explained by the fact
that as the computationally expensive portion has been
removed, the number of elements being placed in longer
duration bins has decreased and therefore more
compression has taken place (to gain a significant sample),
resulting in higher pessimism. However, in this case the
data which has been used to train the 5% model is now
more representative of the actual data, and therefore the
model no longer diverges as much from the other forecast
models. This leads to a conclusion that the lower the
variability of the data, the less data is needed to get a
consistent result; hence by examining the variability of the
input data, an appropriate sample size is then found.
However, it also highlights that the buckets used must be
chosen carefully; while in this case the buckets have been
kept consistent to allow direct comparison of the results, as
the buckets are selected inappropriately for the data, the
additional compression results in a more pessimistic result.

8. DEPET: EXECUTION TIMES WITH
DEPENDENCIES

Research has been conducted into effectively splitting a
given processor utilisation into uniformly distributed task
utilisations, for example the UUniFast algorithm [3], and
extensions to multicore UUniFast-discard [10] and
RandFixedSum [11]). Such algorithms are designed to be
used in the testing and development of scheduling
algorithms. In the case of UUniFast, given that scheduling
algorithms are expected to handle a wide variety of
tasksets, the use of a uniformly distributed set of test data
is appropriate to find any corner cases.

While these methods, combined with approaches for task
period generation, are appropriate for determining a set of
WCETs, they do not provide a means of generating the
execution times of jobs at runtime. Indeed, there has been
little research on a model for the temporal dependencies of
job execution times within a system, with the most
advanced approaches [6] only allowing very specific forms
of dependencies. However, evaluating the performance of
scheduling algorithms on realistic scenarios (i.e. finding the
number of times a processor enters its low power state due

to tasks not reaching their WCET), or evaluating the
performance of the mode change algorithm in a mixed
criticality system [4, 1] would benefit from such a
generator.

Utilising the previous results on forecasting exceedance
durations, it is possible to construct a model for execution
times which includes dependencies between execution times
of runs of a task, which can be used to generate job execution
times in a task simulator (Figure 1). The new approach,
DepET, uses multiple forecast models to determine how
the model generates execution times, while maintaining an
appropriate overall distribution.

The use of multiple forecast models is accomplished by
splitting the execution times of the task into a series of bands,
which allow distinct behaviours of the task to be identified
and expressed independently. When generating an execution
time for a given task, that task’s currently selected band
is used to determine the parameters of the execution time.
In addition, when sampled each band has a probability of
causing the execution times of the task to move into the next
band, for a duration determined by an exceedance model,
such as the exceedance models given in the previous section.

• mn,mx: The minimum and maximum values within
this band

• d: The maximum value that an execution time may be
displaced from it’s previous instance

• p: The probability of leaving the band

• EM : An exceedance model, used to determine the
duration of entering a higher band

• prev, next: Pointers to the previous and next band.

• duration: A counter to store the number of samples to
take from this or a higher band; when the algorithm
runs, the duration of each band is decremented on each
generated value

• cET : Holds the current execution time value

While the p value of a band can be set by the user (for
example, if the user has knowledge on the system), in order
to match an overall distribution defined by a probability
density function P bounded above by dmx, an approximate2

p value for each band is as follows:

band.p =

(
P [task.mn ≤ X ≤ task.mx]

P [task.mx ≤ X ≤ dmx]

) 2
no quantiles

(1)

Tasks are primarily characterised by the bands which
comprise them. In the DepET algorithm, these bands are
given produced based on the statistical distribution of the
training data, with the n bands being picked to denote the
n-quantiles3 of the training data. For each of these bands,
the exceedance model of the band is defined to be the
exceedance model predicted by the extrapolation
prediction method for the maximum value of the quantile.
In addition, to account for data which is predicted but not
seen in the training data, additional bands can be added; it
should be noted that due to the nature of the predicted
models, the further these bands extend from the training
population, the less accurate the predicted exceedance
model will be. In addition, as mentioned in the overview of

2This approximation was found by search, but is much
simpler than the computation for an accurate value.
3n-quantiles: the set of values which divide the population
into n components of equal size.

0 50 100 150 200 250
0.5

1.0

1.5

2.0

2.5

3.0

Jo
b

E
xe

cu
tio

n
Ti

m
e

×106 observed

0 50 100 150 200 250

Job Number

ACET

0 50 100 150 200 250

DepET

Figure 13: Temporal Distribution of Execution Times

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

R
at

io
of

Jo
b

E
T

to
pr

ev
io

us
Jo

b
E

T

observed

0 50 100 150 200 250

Job Number

ACET

0 50 100 150 200 250

DepET

Figure 14: Ratio of Job Execution Time with Previous Instance

0 1000000 2000000 3000000 4000000 5000000
Execution Time

0.0

0.2

0.4

0.6

0.8

1.0

1
 -

 C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n observed

ACET

WCET

DepET

Figure 15: Overall Distribution of Execution Times

the algorithm, tasks also contain state to indicate the
current band that the task is utilising for execution time
generation. Hence the tasks are defined with the following
properties:

• bands: The bands which generate execution times for
the task

• current: The current band being used for generation
of execution times

Having given the overall operation of the algorithm,
Algorithm 4 gives a concrete definition.

9. EVALUATION OF DEPET
In order to demonstrate the properties of DepET, a

simple evaluation was carried out against the ACET
method implemented in SimSo [6]. This method was
picked as this analysis focuses on a single task and most
other methods in SimSo focus on the effects of pre-emption
and task migration, which clearly do not have an impact in
the single task case. To carry out the evaluation, the same
data set was used as in the previous training example. In
order to instantiate the variables in the DepET and ACET
methods, appropriate measurements were taken so that
these methods approximate the input data.

1 Function DepET(tasks)
2 ETs← []
3 for task ∈ tasks do
4 band← task.current
5 add randomnormal() ∗ band.d to band.cET
6 ETs.append(band.cET)
7 clamp band.cET within band.mn and band.mx
8 if band.duration = 0 then
9 task.current← band.prev

10 else if random() < band.p then
11 task.current← band.next
12 band.next.duration← band.EM.sample()
13 while band is not None do
14 decrement band.duration
15 band← band.prev
16 return ETs

Algorithm 4: The DepET algorithm

As seen in Figure 15, all methods are capable of
producing an overall distribution similar to the input
distribution. There are minor discrepancies with the
ACET method due to the assumption that average
execution times are normally distributed. On the other
hand, DepET is capable of producing a very similar
distribution, although with errors around band transitions.

The advantage of DepET over the ACET methods
becomes clear when examining the temporal distribution,
shown in Figure 13. In the temporal distribution, the
ACET methods only shares the distribution of the
magnitude of execution times with the training data;
temporal dependencies are not expressed. However,
temporal dependencies can be clearly seen in DepET, and
this is highlighted in Figure 14, which shows the ratio of a
(simulated) jobs execution time to the previous instance.
Although due to the effects of bands DepET struggles to
capture some of the variability when the chance of band
transition is high, the characteristics of DepET are much
more similar to the observed data. In particular, the
number of times that the ratio exceeds 30%, marked on the
graphs, is far higher in the ACET method than with
DepET or observed data, indicating that DepET provides
a much more realistic model of dependencies.

10. CONCLUSIONS
This paper presented a method to model dependencies in

job budget overruns by utilising Markov Chains, Lossy
Compression and Forecasting methods to create a model of
budget overrun durations. Markov Chains were
demonstrated to provide a suitable representation of the
system, Lossy Compression was used to ensure that all
observations were of statistical significance, and
Forecasting used to combat the rarity of observations of
budget overruns in testing. The resulting algorithm was
tested using a controlled experiment, and provided that
sufficient data was available, produced a forecast accurate
to within 10% of the actual observed data.

In addition, a new algorithm for the generation of job
execution times, DepET, was defined. DepET addresses
the need for a realistic execution time generator for use in
task simulators, by combining multiple exceedance models
to control the generated execution times. This approach
delivers clear dependencies between instances of tasks,
while respecting the overall profile of the task. As DepET
is expected to be employed after being trained on a
relatively small set of data, the effect of DepET is to
enable a task simulator to effectively mimic the properties
of an actual task, rather than relying on a synthetic
random distribution of execution times which is unrealistic
due to an assumption of independence.

Further work is needed to verify the effectiveness of this
approach with other sources of data, in particular when the
input data has a higher degree of variability. In addition,
the forecast modelling methods presented in this paper are
currently being adapted to take into account additional
sources of information, such that a model of execution
times can be derived for a given circumstance. This is
expected to be useful in cases such as incremental
development, as the model could be used to determine the
impact of changes to one task on other tasks with minimal
retesting. This is especially useful given the challenges of
development on multicore platforms.

Acknowledgement
This work was partially funded by the EU FP7 Integrated
Project PROXIMA (611085) and EPSRC MCC Grant
EP/K011626/1 and the Inria International Chair program.
EPSRC Research Data Management: No new primary
data was created during this study. We acknowledge the
Swedish Foundation for Strategic Research (SSF)
SYNOPSIS Project for supporting this work.

11. REFERENCES
[1] I. Bate, A. Burns, and R. I. Davis. A bailout protocol

for mixed criticality systems. In 27th Euromicro
Conference on Real-Time Systems, 2015.

[2] G. Bernat, A. Burns, and A. Llamosi. Weakly hard
real-time systems. IEEE Trans. Comput.,
50(4):308–321, April 2001.

[3] E. Bini and G. C. Buttazzo. Measuring the
performance of schedulability tests. Real-Time
Systems, 30(1-2):129–154, 2005.

[4] A. Burns and R. Davis. Mixed criticality systems-a
review. Department of Computer Science, University
of York, Tech. Rep, 2013.

[5] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages: Ada, Real-Time Java and
C/Real-Time POSIX. Addison Wesley, fourth edition,
May 2009.

[6] M. Chéramy, P. E. Hladik, A. M. Déplanche, and
S. Dubé. Simulation of real-time scheduling with

various execution time models. In Proceedings of the
9th IEEE International Symposium on Industrial
Embedded Systems (SIES), Work-in-Progress session,
2014.

[7] Contributors. FFmpeg. https://www.ffmpeg.org/.
[8] Contributors. Valgrind tool suite. http://valgrind.org/.
[9] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo,

T. Vardanega, L. Kosmidis, J. Abella, E. Mezzetti,
E. Quiñones, and F. J. Cazorla. Measurement-based
probabilistic timing analysis for multi-path programs.
In 24th Euromicro Conference on Real-Time Systems,
pages 91–101, 2012.

[10] R. I. Davis and A. Burns. Improved priority
assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems.
Real-Time Systems, 47(1):1–40, 2011.

[11] P. Emberson, R. Stafford, and R. I Davis. Techniques
for the synthesis of multiprocessor tasksets.
Proceedings 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2010), pages 6–11, 2010.

[12] N. Fenton, M. Neil, and D. Marquez. Using bayesian
networks to predict software defects and reliability. In
Proceedings of the Institution of Mechanical Engineers,
Part O: Journal of Risk and Reliability, volume 222,
pages 701–712. SAGE Publications, 2008.

[13] R. Fildes. The evaluation of extrapolative forecasting
methods. International Journal of Forecasting, 8(1):81
– 98, 1992.

[14] P. Graydon and I. Bate. Safety assurance driven
problem formulation for mixed-criticality scheduling.
In Proceedings of the 1st International Workshop on
Mixed Criticality Systems, pages 19–24, 2013.

[15] P. Graydon and I. Bate. Realistic safety cases for the
timing of systems. The Computer Journal,
57(5):759–774, 2014.

[16] D. Griffin. Lossy Compression applied to the Worst
Case Execution Time Problem. PhD thesis, University
of York, 2013.

[17] D. Griffin, B. Lesage, A. Burns, and R. I. Davis. Lossy
compression for worst-case execution time analysis of
plru caches. In Proceedings of the 22nd International
Conference on Real-Time Networks and Systems,
RTNS ’14, pages 203–212, 2014.

[18] D. Griffin, B. Lesage, A. Burns, and R. I. Davis. Static
probabilistic timing analysis of random replacement
caches using lossy compression. In Proceedings of the
22Nd International Conference on Real-Time
Networks and Systems, RTNS ’14, pages 289–298,
2014.

[19] Z. A. H. Hammadeh, S. Quinton, and R. Ernst.
Extending typical worst-case analysis using
response-time dependencies to bound deadline misses.
In Proceedings of the 14th International Conference on
Embedded Software, EMSOFT ’14, pages 10:1–10:10,
New York, NY, USA, 2014. ACM.

[20] W. K. Hastings. Monte carlo sampling methods using
markov chains and their applications. Biometrika,
57(1):97–109, 1970.

[21] J. J. Moré. The Levenberg-Marquardt algorithm:
implementation and theory. In Numerical analysis,
pages 105–116. Springer, 1978.

[22] I. Wenzel, R. Kirner, B. Rieder, and P. P. Puschner.
Measurement-based timing analysis. In ISoLA, pages
430–444, 2008.

