
Mixed Criticality Systems with
Weakly-Hard Constraints

Sophie Quinton
INRIA Grenoble

sophie.quinton@inria.fr

Rob Davis
University of York

rob.davis@york.ac.uk

Oliver Gettings
University of York

oliver@cs.york.ac.uk

n Mixed Criticality
n Criticality is the required level of assurance against failure
n Mixed Criticality Systems contain applications of at least two criticality levels
n Examples: Aerospace – Flight Control Systems v. Surveillance

Automotive – Electric Power Steering v. Cruise Control

n Motivation for MCS
n Driven by Size, Weight and Power (SWaP) and cost requirements
n Applications with different criticalities (safety critical, mission critical etc.) on the

same HW platform

n This research:
n Dual-Criticality - Applications of HI and LO criticality

Mixed Criticality Systems

2

Mixed Criticality Systems

n Key requirements
n Separation – must ensure that LO-criticality applications cannot impinge on

those of HI-criticality
n Sharing – want to allow LO- and HI-criticality applications to use the same

resources for efficiency
n Real-Time behaviour

n Concept of a criticality mode (LO or HI)
n LO and HI-criticality applications must meet their time constraints in

LO-criticality mode
n Only HI-criticality applications need meet their time constraints in HI-

criticality mode (?)
n Initial Research (Vestal 2007)

n Idea of different LO- and HI-criticality WCET estimates for the same code
n Certification authority requires pessimistic approach to 
n System designers take a more realistic approach to 	

3

System Model

n Uniprocessor, fixed priority pre-emptive scheduling
n Sporadic task sets where a task,  = (, , , )

n  - Task period or minimum inter-arrival time
n  - Relative deadline
n  - WCET of  at criticality level 
n  - Designated criticality level for 

n ℎ() - Set of higher priority tasks (than )
n ℎ() - Set of higher priority,  criticality tasks
n ℎ() - Set of higher priority,  criticality tasks

4

Recap: Adaptive Mixed Criticality

n AMC scheduling scheme
n If a HI-criticality task executes for its  without signalling completion then no

further jobs of LO-criticality tasks are started1 and the system enters HI-criticality
mode

n This frees up processor bandwidth to ensure that HI-criticality tasks can meet their
deadlines in HI-criticality mode

n But, … it has the drawback that LO-criticality functionality is completely
abandoned

1Any partially executed job of each LO-criticality task may complete

5

Job released Deadline Met

τi

0 t

y

τi Executing
Ci

LO Ci
HI

HI ModeLO Mode

τk

0 t

y

Ck
LO

HI ModeLO Mode

τk Preempted τk Executing

Recap: Adaptive Mixed Criticality

6

After Criticality
change,  assumed
to execute up to 

No more releases
of  after
criticality change

 criticality task

 criticality task

Recap: AMC-rtb Analysis

-criticality mode

 =  +  
 

∈()

-criticality mode

 =  +  
 

∈()

Mode change transition

∗ =  +  ∗
 

∈()
+  

 
∈()

7

Interference from
higher priority

LO-criticality tasks
only up to RLO

Recap: AMC-max Analysis

n AMC-rtb analysis assumes (pessimistically) that all jobs of -
criticality tasks execute with their  values

n AMC-max removes this pessimism

8

Job released Deadline Met

τi

0 t

y

τi Executing
Ci

LO Ci
HI

HI ModeLO Mode

 , ,  =   +  + 
 , 

Calculates number
of releases after
criticality change
up to t

Recap: AMC-max Analysis

AMC-max Criticality Mode Change (	 → )	at time y

 =  +  
 + 1  +   , ,   +


 −  , ,  

∈()∈()

n Values of  that need to be assessed are bounded by 0 and .
n Values of  at which response time may change correspond to releases of

higher priority, -criticality tasks:

∗ = max  ∀ where  ∈  ∀ ∈ ℎ  ∧  ≤  ∀ ∶ 	ℕ

9

AMC Abandonment Problem

n Abandoning all -criticality jobs
n Is not acceptable in many real systems
n May lead to loss of important functionality as -criticality tasks

are still critical (not non-critical)

n This work:
n Aims to address the abandonment problem by combining AMC

with an existing concept called Weakly-Hard
n Provides a guaranteed minimum quality of service for -criticality

tasks in -criticality mode – graceful degradation

10

AMC-Weakly Hard

n Weakly Hard Model
n Proposed in 2001 by Guillem Bernat et al.
n Guarantees that (m− ) out of any m deadlines are met via (somewhat

complex) offline analysis

n AMC-Weakly Hard
n Combines a simple interpretation of the weakly-hard concept with existing

AMC policy and schedulability analysis
n Allows  out ofm -criticality jobs to be skipped in -criticality mode to

reduce the load on the system
n Still provides a level of service to -criticality applications, since (m− )

out of m deadlines are met
n Gives system designer flexibility to provide graceful degradation for

-criticality applications

11

AMC-Weakly Hard

20 4 6 8 10 12 14 16 18 t

τk

Criticality Mode Change
LO Mode HI Mode

Job
released

Deadline
Met τk Executing τk Job

Skipped

12

 criticality task

Skips a number of
consecutive jobs in
a cycle

§ After criticality mode change:
§ Skip  jobs in next  releases
§ Repeat this cycle indefinitely in -criticality mode
§ Number of skipped jobs is strictly bounded (m− ) out of

m deadlines met

AMCrtb-WH Analysis

10 2 3 4 5 6 7 8 9

τk Job Skipped

Job released

t

Deadline Met

τk

τk Executing

mkTk

n=1 n=2 n=3

13


 −   −  −  








 = , , , , ,
 is length of a cycle
 is number of skipped jobs in a cycle
n is index of a skipped job

AMCrtb-WH Analysis

 Criticality Mode

 =  + ∑ 
 	∈()

 Criticality Mode

 =  +  
 

∈()
+  

 −   −  −  




 ∈ 


14

Worst case assumes
skips are at the end
of each cycle

AMCrtb-WH Analysis

Criticality Mode Change (	 → 	)	

15

20 4 6 8 10 12 14 16 18

τk Job Skipped

Job released

t

Deadline Met

τk

τk Executing

Ri
LO

mkTk

LO Mode HI Mode

xk
mkTk

First release of job after Criticality Mode Change  = 
 

Skips starts on first
release after mode
change

AMCrtb-WH Analysis

Criticality Mode Change (	 → 	)	:  Criticality Tasks

∗ =  +  ∗
 

∈()
+  ∗

 −  ∗ −  −   − 
 



∈ 


Criticality Mode Change (	 → 	)	:  Criticality Tasks

∗ =  +  ∗
 

∈()
+  ∗

 
∈()

16

No skipping
assumed for
higher priority -
criticality task.

Assumes skips are at
the start of each cycle

AMCmax-WH Analysis

n AMCrtb-WH criticality mode change analysis is pessimistic
n Analysing -criticality: Assumes all -criticality jobs up to ∗ execute with

their  values
AND
n Analysing -criticality: Assumes no skipping of -criticality jobs up to ∗.

n AMCmax-WH analysis remove these sources of pessimism by taking into
account the points at which a criticality mode change could occur

n Analysis for - and -criticality modes is same as AMCrtb-WH

17

AMCmax-WH Analysis

Criticality Mode Change (	 → 	)	at time y

First release of job after Criticality Mode Change  = 
 

18

τk Job Skipped

Job released

t

Deadline Met

τk

τk Executing

y

mkTk

LO Mode HI Mode

zk
mkTk

AMCmax-WH Analysis

Criticality Mode Change (	 → 	)	: All Tasks

∗ = max  ∀where  ∈  ∀ ∈ ℎ  ⋀  ≤ 	 ∀ ∶ ℕ
n For -criticality tasks,  checked for values up to 
n For -criticality tasks  is increased until ∗ converges below the current value of 

19

 =  +  
 −   −  −   − 

 



∈ 


+   , ,   +

 − , ,   	

∈()

Jobs of LO-criticality
task k skipped after the
criticality mode change
at time 

Jobs of HI-criticality
task k only take CHI
values after the criticality
mode change at time 

Evaluation

§ Compared existing policies:
§ UB-H&L - Composite upper-bound on schedulability
§ AMC-max – Baruah et al. 2011 [3]
§ AMC-rtb - Baruah et al. [3]
§ SMC – SMC-NO with budget enforced execution for LO-criticality tasks [3]
§ SMC-NO - Vestal’s original analysis [29]
§ AMCmax-WH - Weakly-Hard version of AMC-max
§ AMCrtb-WH - Weakly-Hard version of AMC-rtb
§ FPPS – Fixed priority preemptive scheduling with run-time monitoring to

prevent LO-criticality tasks overrunning
§ CrMPO – Criticality Monotonic Priority Ordering. Tasks ordered by criticality

then by DMPO within the two partitions

20

Evaluation

n Taskset generation:
n Uniformly distributed utilisation values generated with UUnifast
n  randomly assigned from a Log uniform distribution between 10 and 1000
n  = /
n Criticality Factor (CF)
n  =  ∗ 
n Criticality Probability (CP) - probability that a task will be -criticality

n Notes about graphs
n Plotted against -criticality utilisation
n Solid lines represent policies that guarantee some -criticality task

deadlines are met in -criticality mode.
n Dashed lines represent polices that de-schedule or permit deadline misses

of -criticality tasks in  criticality mode.

21

1: Percentage of Schedulable Tasksets

22

•  = 1
•  = 2
•  = 0.5
•  = 2.0
•  = 
• 20	Tasks

AMC-WH dominates
CrMPO and FPPS

AMC-WH dominated
by AMC

Weighted Schedulability

n Weighted Schedulability
n Enables overall comparisons when varying a specific parameter (not just

utilisation)
n Combines results form of a set of equally spaced utilisation levels

  = ∑   ∗ ∀ 	 , 
∑ ()∀

n Collapses all data on a success ratio plot for a given method, into a single
point on a weighted schedulability graph

Weighted schedulability is effectively a weighted version of the area under a
success ratio curve biased towards scheduling higher utilisation message sets

23

2: Varying the Criticality Mix

24

•  = 1
•  = 2
•  = 0.05	 0.95
•  = 2.0
•  = 
• 20	Tasks

Less pessimistic analysis of -
criticality tasks in HI-criticality mode
with AMCmax-WH v. AMCrtb-WH

3: Varying the Number of Skips (fixed cycle)

25

•  = 0		10
•  = 10
•  = 0.5
•  = 2.0
•  = 
• 20	Tasks

 =  => AMC

 = 0 => FPPS

Summary and Conclusions

n AMC-WH
n Combines AMC protocol, with a simple interpretation of Weakly Hard

constraints
n Provides guaranteed minimum Quality of Service (QoS) for -criticality

tasks -criticality mode, meet (m	- s) out of m deadlines
n Performance scales between AMC and FPPS

n Schedulability tests developed based on AMC-rtb and AMC-max.
n Scope for future work:

n Permit weakly-hard behaviour in any criticality mode, where each task is
assigned a set of weakly hard constraints per criticality level

n Investigate recovery to -criticality mode

26

Questions?

27

