
Mixed Criticality Systems with Weakly-Hard Constraints

Oliver Gettings
Dept. of Computer Science

University of York, UK
oliver@cs.york.ac.uk

Sophie Quinton
INRIA Grenoble

Rhône-Alpes, France
sophie.quinton@inria.fr

Robert I. Davis
Dept. of Computer Science

University of York, UK
rob.davis@york.ac.uk

ABSTRACT
Current adaptive mixed criticality scheduling policies as-
sume a high criticality mode in which all low criticality
tasks are descheduled to ensure that high criticality tasks
can meet timing constraints derived from certification ap-
proved methods. In this paper we present a new scheduling
policy, Adaptive Mixed Criticality - Weakly Hard, which
provides a guaranteed minimum quality of service for low
criticality tasks in the event of a criticality mode change.
We derive response time based schedulability tests for this
model. Empirical evaluations are then used to assess the rel-
ative performance against previously published policies and
their schedulability tests.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based]: Real-
time and embedded systems

General Terms
Algorithms, Performance, Design, Theory, Verification

Keywords
Mixed Criticality, Real-Time Systems, Scheduling Theory

1. INTRODUCTION
Mixed Criticality Systems (MCS) contain components of

at least two criticality levels which execute on a common
hardware platform. While the sharing of hardware resources
may result in a more efficient implementation over tradi-
tional isolated systems, there is a significant conflict between
the required certification of components and the exploitation
of temporal properties to more effectively utilise the under-
lying platform.

High criticality components may be required by a certi-
fication authority (CA) to meet a particular standard (e.g
DO-178B/C or ISO26262) which dictates the methods used
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to determine the timing behaviour of tasks. The Worst-Case
Execution Time (WCET) estimate of a task determined by
the methods required for certification may be overly con-
servative compared to the values determined by a system
designer using less rigorous methods. It is this pessimism
that can be exploited to more efficiently utilise hardware,
provided that safeguards are in place to ensure that each
component in the system is guaranteed to meet its desig-
nated level of assurance.

One way in which this issue has been approached is the
concept of criticality modes. Criticality modes are ordered
from the lowest to the highest level of assurance. A system
starts in the lowest criticality mode with timing behaviour
assumed to be that determined by the system designer. Pro-
vided that each component does not exceed its allocated ex-
ecution time budget, the system will remain in this mode.
However, should an over-run be detected, the system will
increase the criticality mode and all components assigned a
criticality below this level will either be descheduled or per-
mitted to miss their deadlines. This form of mode change
is an extreme response and despite ensuring the timing con-
straints determined by the certification process, could lead
to a loss of functionality so severe that it is not acceptable
in the design of the system.

For example, consider a unmanned aerial vehicle (UAV)
which contains three components, one of High (HI) criti-
cality (e.g the flight control system) and two of Low (LO)
criticality (e.g surveillance systems). The process required
for certification determines that the system utilisation of
the HI criticality component is 0.6. The system designer
has determined this value is 0.5 in practice. The two LO
criticality components which do not require certification are
determined by the system designer to have utilisation of 0.25
each. Under the system designer’s WCET assumptions, the
system is schedulable with a utilisation of 1.0. Should an
over-run of the HI criticality component be detected, the
system will increase its criticality mode, the HI criticality
component will be permitted to execute with a utilisation
of up to 0.6 and the two LO criticality components will
be descheduled. While this ensures that the HI criticality
component meets the timing requirements needed for certi-
fication, the LO criticality components are still critical, as
opposed to non-critical, and it may not be acceptable to lose
their functionality completely. Furthermore, the utilisation
in this HI criticality mode is now only 0.6, leaving unused
system capacity in which LO criticality components could
execute with a reduced Quality of Service (QoS), for exam-
ple meeting m−s out of m deadlines, by running surveillance
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jobs less frequently or by skipping s out of m jobs.
In this paper we introduce a new approach called Adap-

tive Mixed Criticality Weakly-Hard (AMC-WH) to provide
graceful degradation of low criticality tasks in the event of
a criticality mode change, avoiding a complete loss of low
criticality functionality. Section 2 reviews the current state
of the art in terms of MCS scheduling and the low criticality
abandonment problem. Section 3 outlines the system model
assumed in this paper. Section 4 reviews existing schedula-
bility analysis for MCS based on fixed priority scheduling.
Section 5 introduces our new algorithm based on an exist-
ing policy called Adaptive Mixed Criticality (AMC) [3]. In
section 6 we evaluate the relative performance of the new
policy. Section 7 concludes with a summary and directions
for future research.

2. RELATED WORK
Research into MCS verification was stimulated by Vestal’s

seminal paper [29] in 2007. Vestal outlined a task model
based on the assumption that a task’s WCET is dependent
on the criticality level. That is, a task of higher criticality
will have a larger, more conservative WCET estimate using
methods appropriate for certification than if the task were of
a lower criticality. This results in multiple WCET estimates
for the same task, one for each criticality level.

Vestal’s model was extended by Baruah and Vestal [4] in
2008 to lift the restriction of supporting only periodic tasks
by using a sporadic task model. The major limitation of
Vestal’s approach is that the WCET of all tasks must be
known for all criticality levels. This is not always possible
in practice. For example, the process to obtain a WCET
value for a task at the highest criticality level may involve
expensive static code analysis and on-target timing measure-
ments. It was recognised in the paper that a mechanism is
required to deal with LO criticality jobs that attempt to
exceed their designated WCET budgets to ensure that HI
criticality tasks meet their deadlines.

Baruah et al. [3] extended Vestal’s analysis to produce
Static Mixed Criticality (SMC). Using run-time monitoring,
overrunning LO criticality tasks are descheduled and so no
longer need to be verified up to the highest system critical-
ity level. Building further on this analysis, Baruah et al.
[3] developed Adaptive Mixed Criticality (AMC). This new
algorithm was shown to dominate all previous fixed priority
preemptive scheduling algorithms for mixed criticality sys-
tems. The initial model supported two levels of criticality,
however Fleming and Burns [17] demonstrated that AMC
could be generalised to n-criticality levels at the expense of
increased complexity.

In 2014, Burns and Davis [12] showed how AMC could
use final non-preemptive regions [13]. Empirical evaluations
show that this scheme improves standard AMC in terms
of schedulability; however, the method requires host Real-
Time Operating System (RTOS) support to control deferred
preemption behaviour in addition to the basic run-time mon-
itoring of AMC.

One of the major issues hindering the real-world applica-
tion of AMC is abandonment of all LO criticality jobs in the
event of a criticality mode change. This problem has been
addressed in various ways. Burns and Baruah [11] proposed
a revised system model that would reduce the priority of
LO criticality task to background level. While this permits
the execution of LO criticality tasks in the HI criticality

mode, it does not guarantee a minimum level of service (i.e
all deadlines can still be missed). Santy et al. [27] proposed
a different approach for letting some LO criticality tasks ex-
ecute after the system has switched to HI criticality mode,
as long as their execution does not compromise the schedu-
lability of HI criticality tasks. In effect Santy et al.’s algo-
rithm delays the suspension of LO criticality tasks until the
latest possible time, rather than descheduling them at the
mode change, reducing the number of dropped jobs. How-
ever, as it is unknown until run-time how much slack will be
available, offline analysis cannot be used to determine LO
criticality task behaviour in the event of an overload.

For dynamic scheduling, Su and Zhu [28] addressed the
issue of abandoning LO criticality jobs by using an elas-
tic mixed criticality task model. They introduced a policy
called Early-Release EDF (ER-EDF) which allows LO crit-
icality tasks to be released early on the slack generated by
HI criticality tasks executing for less than their certification
process determined HI criticality WCET estimate.

Jan et al. [22] also use an elastic task model in the context
of MCS by stretching a LO criticality task’s period in order
to decrease the load on the system in HI criticality mode.
This permits LO criticality functionality with a reduced fre-
quency at the expense of using online-decision algorithms to
compute the required stretch factor.

Erickson et al. [16] approached the abandonment prob-
lem from the perspective of their mixed criticality multicore
framework (MC2). Using a virtual-time mechanism to al-
ter the period of lower criticality tasks, they demonstrated
the ability to provide a scalable recovery time from overload
conditions without the complete loss of all LO criticality
functionality.

In 2014, Fleming and Burns [18] introduced the notion of
importance in mixed criticality systems, allowing the system
designer to specify which LO criticality tasks are suspended
first in the event of a criticality mode change. This provides
more control over how the system should degrade. Flem-
ing and Burns also highlighted that this approach could be
used to group a number of LO criticality tasks together (as
applications), providing a more realistic system model.

Gu et al. [20] presented a policy where the system is iso-
lated into components with each assigned a tolerance value.
If the number of HI criticality tasks executing with their
HI criticality behaviour within a component does not ex-
ceed this tolerance, than the criticality mode change within
the component has no effect on the schedulability of LO
criticality tasks executing in other components.

Previous methods aimed at allowing LO criticality tasks
to execute after a criticality mode change have mostly been
best effort with limited or no guarantees over the level of ser-
vice provided. For traditional (single criticality level) real-
time systems there is a concept called weakly-hard that could
help provide stronger guarantees. This concept assumes that
some hard real-time tasks are in fact permitted to miss some
deadlines however the number of missed deadlines must be
strictly bounded.

In 1995 Hamdaoui and Ramanathan [26] introduced (m, k)-
firm deadlines for streams where at least m deadlines in k
consecutive invocations must be met. Priorities are dynam-
ically assigned to streams based on the number of recently
missed deadlines relative to their (m, k)-firm values. How-
ever, their (m, k)-firm scheduling algorithm does not guar-
antee a minimum level of service and all streams are as-



signed a global (m, k) value. Also in 1995, Koren and Shasha
[24] worked on a different approach called skip factor where,
when a system is overloaded, one in s invocations of a task
are dropped (skipped). Bernat et al. [8, 7] later presented
a weakly-hard model which in some ways is similar to the
mixed criticality model of mode changes. Here, a system
runs under one set of scheduling assumptions, but reverts
to a panic mode, which guarantees that deadlines are met
according to some prior offline analysis, should deadlines be
at risk of being missed. The offline analysis for Bernat’s
model [7] is complex however as the entire hyper-period1 of
a taskset needs to be assessed.

Similar concepts have been developed in the domain of
Control Systems Theory. In the event of a system over-
load or transient error, a control algorithm may tolerate a
bounded number of missed deadlines; however, the system
requires a number of met deadlines to return to stable op-
eration [19]. Typical Worst-Case Analysis [21] (TWCA) ex-
ploits the fact that such overload situations are rare and usu-
ally do not occur for consecutive executions. Two response-
time analyses are then performed: the standard worst-case
analysis and a second, more optimistic analysis based on a
model ignoring the overload. In addition, TWCA solves an
ILP problem to study fined-grained effects of overload at
the input of different tasks and establish how often the opti-
mistic bound can be exceeded, expressed as a set of weakly-
hard guarantees. Unlike Bernat et al.’s approach TWCA is
not based on an analysis of the system hyper-period.

It is clear that a guaranteed, reduced Quality of Service
(QoS) for LO criticality tasks in a HI criticality mode would
be desirable. While weakly-hard analysis can become com-
plex, imposing the restriction of allowing only consecutive
skips in a fixed cycle prevents the problem from becoming
intractable. In this paper we incorporate weakly-hard con-
straints into the existing AMC [3] policy to provide graceful
degradation of LO criticality tasks in HI criticality mode by
ensuring that they meet m− s out of m deadlines, skipping
s to relieve the load on HI criticality tasks.

3. SYSTEM MODEL AND TERMINOLOGY
A system consists of a single processor executing a spo-

radic taskset, τ , comprising N tasks, under a fixed priority
preemptive scheduling policy. Each task is assigned a unique
priority, Pi, according to some policy.

In traditional real-time systems, each task has a number
of attributes associated with it such that τi = (Ti, Di, Ci).
Where Ti represents the period or minimum inter-arrival
time of the task. Di represents the relative deadline, the
maximum time allowed from the task being released to com-
pleting its execution and Ci is the task’s Worst-Case Execu-
tion Time (WCET). An invocation of a task is called a job.
An unbounded number of consecutive jobs of task τi may be
released at a maximum rate of 1/Ti.

In a mixed criticality system, there is also the concept of
a criticality level. Let L denote an ordered, finite set of crit-
icality levels, {L1, L2, ..., Ln} where L1 > L2 > · · · > Ln,
and let Li be the designed criticality level for task τi. For
simplicity in this paper will only consider dual criticality
systems where L = {HI,LO}.

The WCET value assumed for task τi at a specific criti-

1The hyper-period is the least common multiple of all task
periods.

cality level is expressed as Cli where l ∈ L. Vestal [29] high-
lighted that the WCET value is dependent on the criticality
of the task; the higher the criticality the more conservative
and pessimistic the estimate, that is CHIi ≥ CLOi for task
τi. A task in a mixed criticality system can therefore be
defined by τi = (Ti, Di, ~Ci, Li) where ~Ci is the ordered set
of Cli values. The utilisation of a task τi at criticality level

l is defined as U li =
Cl

i
Ti

, similarly the total utilisation of a

taskset, τ , is defined as U l =
∑N
i=1(

Cl
i
Ti

).

The worst-case response time of a task τi is denoted by Ri.
This represents the maximum time from the release of the
task until the completion of its execution. RLOi denotes the
worst-case response time of task τi in LO criticality mode
whereas RHIi is the worst-case response time of task τi in
HI criticality mode. R∗i represents the worst-case response
time of task τi during a criticality mode change LO → HI.
The set hp(i) represents the set of tasks with a higher pri-
ority than τi. hpHI(i) represents a subset of hp(i) which
contains tasks that are of higher priority and higher criti-
cality than τi. Similarly, hpLO(i) is the subset of hp(i) that
contains tasks that are of higher priority and lower critical-
ity than τi. We assume a discrete time model where the
time granularity ∆ = 1; this can be considered equivalent
to one processor clock cycle.

A taskset is said to be schedulable with respect to a schedul-
ing algorithm if all possible valid sequences of jobs which
may be generated by the taskset can be scheduled by the
algorithm without missing any deadlines.

Scheduling algorithm A is said to dominate scheduling al-
gorithm B if all tasksets that are schedulable under B are
also schedulable under A and there exists some taskset that
is schedulable under A, but not under B.

In section 5 we build upon this system model to incorpo-
rate weak-hard constraints for LO criticality tasks executing
in HI criticality mode.

4. EXISTING ANALYSIS
This section reviews existing scheduling policies and analysis

for MCS based on fixed priority scheduling, in particular we
recapitulate the analysis for AMC-rtb and AMC-max since
we later build on these to provide analysis for the AMC-WH
policy introduced in this paper.

4.1 Fixed Priority Preemptive Scheduling
Fixed Priority Preemptive Scheduling (FPPS) is an estab-

lished scheduling policy for real-time systems. Formal anal-
ysis was first developed by Liu and Layland [25]. Response
time analysis was later developed by Joseph and Pandya [23]
and Audsley et al. [2] under the assumption of a sporadic
task model.

Ri = CLi
i +

∑
j∈hp(i)

⌈
Ri
Tj

⌉
C
Lj

j (1)

Equation (1) can be used to calculate the worst-case re-
sponse time for each task in a MCS. This form of analysis
assumes that the host Real-Time Operating System (RTOS)
supports run-time monitoring to prevent LO criticality jobs
from executing for longer than their CLO values. For the
taskset to be schedulable the following condition must hold,
∀τi : Ri ≤ Di.

While Deadline Monotonic Priority Ordering (DMPO) has
been proven optimal for uniprocessor fixed priority preemp-
tive systems [25], Vestal showed that it is not optimal for



MCS [29] in the case where run-time monitoring is not sup-
ported. This is due to an issue where a higher priority,
LO criticality job executing for more than its assumed CLO

value may prevent aHI criticality task from executing, caus-
ing it to miss its deadline. This is referred to as criticality in-
version and highlights the conflict between criticality (func-
tional importance) and priority (scheduling importance).

4.2 Criticality Monotonic Priority Ordering
It is clear that the standard approach to scheduling fixed

priority preemptive real-time systems, with no run-time mon-
itoring support, does not suit MCS due to the challenges in
dealing with multiple WCET estimates. To address the is-
sue of criticality inversion, Criticality Monotonic Priority
Ordering (CrMPO) was devised. Tasks are first partitioned
by criticality and then ordered by DMPO within criticality
levels. This results in higher criticality tasks being priori-
tised over lower criticality tasks. Equation (1) can be used
to perform response time analysis, where each task assumes
the execution time for its designated criticality level.

4.3 Static Mixed Criticality - NO
Static Mixed Criticality - No Run-time Support (SMC-

NO) is the name given by Baruah et al. [3] to Vestal’s orig-
inal analysis for MCS [29]. As the analysis assumes no run-
time support all higher priority, LO criticality tasks need to
be verified up to the highest criticality level of any task to
which they may cause interference.

Ri = CLi
i +

∑
j∈hp(i)

⌈
Ri
Tj

⌉
CLi
j (2)

Equation (2) is used to perform response time analysis. Note
that the WCET value for an interfering task τj is the same
level as the task being assessed, Li, rather than Lj as in
(1). Priority assignment for SMC-NO is performed using
Audsley’s Optimal Priority Assignment (OPA) algorithm
[1], which was proved to be optimal for SMC-NO by Dorin
et al. [15].

4.4 Static Mixed Criticality
Static Mixed Criticality (SMC) is an extension of Vestal’s

analysis [29] by means of run-time monitoring of task execu-
tion times [10, 3]. If a LO criticality job attempts to execute
for longer than its CLO budget, it is either aborted or sus-
pended. The response time equation of Vestal’s SMC-NO is
modified to become:

Ri = CLi
i +

∑
j∈hp(i)

⌈
Ri
Tj

⌉
min(CLi

j , C
Lj

j ) (3)

The result is that, unlike Vestal’s original approach, LO
criticality tasks do not need to be verified to the highest
criticality level of the system nor do HI criticality WCET
values for LO criticality tasks need to be known. As with
Vestal’s version of SMC, priorities are assigned using Auds-
ley’s OPA algorithm [1].

4.5 Adaptive Mixed Criticality - rtb
Adaptive Mixed Criticality (AMC) builds upon the SMC

[3] notion of run-time monitoring. That is if a job of a HI
criticality task does not signal completion by its allocated
CLO budget, then a criticality mode change will occur. Fur-
ther LO criticality jobs are descheduled and HI criticality
jobs are assumed to execute for at most their CHI values.

Baruah et al. [3] developed two sufficient schedulability tests
for this policy, the first being AMC - response time bound
(AMC-rtb). Equation (4) is used to assess all tasks, us-
ing their CLO values in LO criticality mode. The condition
∀τi | RLOi ≤ Di must hold for the system to be schedulable
in LO-criticality mode.

RLOi = CLOi +
∑

j∈hp(i)

⌈
RLO

i
Tj

⌉
CLOj (4)

Equation (5) considers only HI criticality tasks using their
CHI values. Recall that hpHI(i) is the set of HI criti-
cality tasks with higher priority than τi. The condition
∀τi : Li = HI | RHIi ≤ Di must hold true for the system to
be schedulable in HI criticality mode.

RHIi = CHIi +
∑

j∈hpHI(i)

⌈
RHI

i
Tj

⌉
CHIj (5)

The analysis to assess the schedulability of the criticality
change is a little more complex. Since a change in criticality
for a HI criticality task τi must occur before RLOi , the inter-
ference from higher priority, LO criticality tasks (hpLO(i))
is bounded, as after this time LO criticality jobs would be
descheduled. R∗ is the response time of a HI task during
a criticality change (LO → HI). The first summation term
represents the interference from higher priority, HI critical-
ity tasks. The second summation term is interference from
higher priority, LO criticality tasks that arrive before the
criticality change (i.e before RLOi ).

R∗i = CHIi +
∑

j∈hpHI(i)

⌈
R∗

i
Tj

⌉
CHIj +

∑
k∈hpLO(i)

⌈
RLO

i
Tk

⌉
CLOk (6)

Audsley’s OPA algorithm [1] can be used to find a priority
ordering that allows a taskset τ to be schedulable according
AMC-rtb analysis, if such a priority ordering exits.

4.6 Adaptive Mixed Criticality - max
AMC-rtb suffers from pessimism when considering the

mode change, since it assumes that all jobs of HI criticality
tasks up to time R∗ may execute with their CHI values.

Initially, a HI criticality job may execute in LO critical-
ity mode. During its execution, a criticality mode change
may occur and so the job must be assumed to execute up
to its CHI value. As it is not known exactly when the
mode change will occur, AMC-rtb pessimistically assumes
the worst-case, is that all jobs of all HI criticality tasks
execute with their CHI values before and after the critical-
ity change. The AMC-max analysis removes this pessimism
[3] by observing that there is a bounded interval in which
a criticality change may affect the response time of a HI
criticality job of task τi. That is between 0 and RLOi . If
a criticality change occurs after RLOi then the job has al-
ready completed its execution and so will not be affected
by the mode change. Further invocations of the task in HI
criticality mode can be verified using (5).

Let y represent the time of the criticality mode change.
Figure 1 illustrates a criticality mode change at time y, af-
fecting a HI criticality task τi under AMC-max scheduling
analysis assumptions. Note that if a criticality change is sig-
nalled while a job of τi is executing, it will be assumed to
execute with its CHIi value.



Ryi = CHIi +
∑

k∈hpLO(i)

(⌊
y
Tk

⌋
+ 1

)
CLOk +

∑
j∈hpHI(i)

(
M(j, y, Ryi )CHIj +

(⌈
R

y
i
Tj

⌉
−M(j, y, Ryi )

)
CLOj

)
(7)

M(j, y, t) = min

{⌈
t−y+Dj

Tj

⌉
,

⌈
t
Tj

⌉}
(8)

Job released Deadline Met

τi

0 t

y

τi Executing
Ci

LO Ci
HI

HI ModeLO Mode

Figure 1: Criticality mode change under AMC-max

The worst-case response time of HI criticality task τi is
calculated assuming interference from higher priority, LO
criticality tasks released before the criticality change, y, plus
interference from higher priority, HI criticality jobs active at
or after the criticality change executing with up to their CHI

values and those completing before the criticality change
with their CLO values. Equation (8) calculates the maxi-
mum number of releases of a task, τj , after the criticality
change occurs at y, up to time t [3].

The values of y that need to be assessed are bounded
by 0 and RLOi , however the number of values can be large.
Baruah et al. [3] observed that the values of y where the
interference can increase correspond only to the releases of
higher priority, LO criticality tasks. The worst case response
time of a HI criticality task during a criticality mode change
is therefore given by: R∗i = max(Ryi )∀y where y ∈ kTj |
∀j ∈ hpLO(i) ∧ y ≤ RLOi | ∀k : N.

5. AMC - WEAKLY HARD
In this section we introduce Adaptive Mixed Criticality

- Weakly Hard (AMC-WH). This new scheduling policy al-
lows a number of consecutive jobs of LO critically tasks to
be skipped when in HI criticality mode. This reduces the
load on the system, freeing up capacity for HI criticality
tasks while also providing a degraded service for LO criti-
cality tasks, which are guaranteed to meet m − s out of m
deadlines, where s is the number of skips and m is the length
of the cycle.

The number of skips permitted and the number of subse-
quent deadlines that must be met (m− s) may be a require-
ment from the design of a control algorithm [19] or it may
derive from physical properties of the system, for example
with a radar altimeter it may be acceptable to drop some
readings, but not to lose them altogether.

As an illustrative example consider Figure 2 which de-
scribes a LO criticality task initially executing in LO crit-
icality mode. Task τk has been assigned the weakly-hard
constraints that state that it must skip every 2 consecutive
jobs on every 4 releases. Upon entering the HI criticality
mode, the task observes these constraints, starting skipping
at the first release in HI criticality mode. This cycle of skip-
ping will repeat indefinitely providing the system remains in
HI criticality mode.

20 4 6 8 10 12 14 16 18 t

τk

Criticality Mode Change
LO Mode HI Mode

Job 
released

Deadline
Met τk Executing τk Job 

Skipped

Figure 2: Example AMC-WH Execution

Building on the model in section 3, let sk equal the number
of skips assigned for the task τk and mk equal the assigned
cycle length in periods. Let n equal the position of a skipped
job of task τk from the end of the cycle such that the release
of a skipped job is at mkTk −nTk, where n may take values
from 1 to mk.

In the transition from LO → HI criticality, the jobs of
LO criticality task τk released before the mode change will
continue to completion as assumed with AMC, however the
next release of τk will be the start of the consecutive skips
sk in the cycle mk (as shown in Figure 3).

20 4 6 8 10 12 14 16 18 t

τk

Ri
LO

mkTk

LO Mode HI Mode

xk
mkTk

Job 
released

Deadline
Met τk Executing τk Job 

Skipped

n=4 

Figure 3: Criticality Change of τk

The maximum amount of execution of the task τk in an
interval of length t (see Figure 4) can be expressed as the
number of jobs of τk assuming no skips, minus the number of
skipped jobs in each cycle. Equation (9) computes this value,
accounting for a number of consecutive skips, sk, where 1 ≤
sk ≤ mk.

10 2 3 4 5 6 7 8 9

Job 
released

t

Deadline
Met

τk

τk Executing

mkTk

n=1 

τk Job 
Skipped

n=2 n=3 

Figure 4: Cycle of τk

(⌈
t
Tk

⌉
−

sk∑
n=1

⌈
t−(mk−n)Tk

mkTk

⌉)
Ck (9)

We note that the maximum amount of execution in an
interval of length t occurs when the phasing of consecutive
skips is at the end of a cycle i.e n = 1, 2.., sk.



5.1 AMCrtb-WH
We now extend the AMC schedulability analysis (subsec-

tion 4.5) to account for these weakly hard constraints as
follows.

1) Schedulability of the LO Criticality Mode
In LO criticality mode, the AMC-WH model behaves the
same as AMC. HI criticality and LO criticality tasks are
assumed to execute with their CLO values and so the worst-
case response time of each task can be calculated using (4).

2) Schedulability of the HI Criticality Mode
The worst-case response time occurs when skips sk, are at
the end of the cycle mk for each higher priority, LO crit-
icality task τk. Therefore in the HI criticality mode, the
worst-case response time of a task τi can be expressed as its
computation time, plus the interference from higher priority,
HI criticality tasks executing with their CHI values, plus
the interference from higher priority, LO criticality tasks,
minus the interference from skipped jobs hence;

RHIi = CLi
i +

∑
j∈hpHI(i)

⌈
RHI

i
Tj

⌉
CHIj +

∑
k∈hpLO(i)

(⌈
RHI

i
Tk

⌉
−

sk∑
n=1

⌈
RHI

i −(mk−n)Tk

mkTk

⌉)
CLOk

(10)

where sk < mk. Unlike AMC, both HI and LO criticality
tasks need to be assessed using the above analysis. In the
event that 100% skipping for a LO criticality task is used
(i.e sk = mk), the LO criticality task in question does not
need to be assessed. In addition the task will produce zero
interference to lower priority tasks in HI criticality mode.

3) Schedulability of the Criticality Mode Change
Consider Figure 3 which shows the execution of a LO crit-
icality task τk. If a HI criticality task τi reaches its RLOi
without completing then a criticality mode change will be
triggered. If there is a job of τk executing at this time then it
will be allowed to complete; however the next sk releases of
τk, starting at time xk, will be skipped. This is in contrast
to standard weakly-hard [7] systems and aimed at increasing
schedulability during the criticality mode change.

Equation (6) is modified to become (11) to assess the
schedulability of the mode change for HI criticality tasks.
The worst-case response time includes the interference from
higher priority, HI criticality tasks, assuming CHI values
for all releases from t = 0 to R∗, plus interference from
higher priority, LO criticality tasks, minus the interference
from skipped jobs between xk and R∗.

R∗i = CHIi +
∑

j∈hpHI(i)

⌈
R∗

i
Tj

⌉
CHIj +

∑
k∈hpLO(i)

(⌈
R∗

i
Tk

⌉
−

mk∑
n=sk

⌈
R∗

i−(mk−n)Tk−xk
mkTk

⌉
0

)
CLOk

(11)

where xk =

⌈
RLO

i
Tk

⌉
Tk and sk < mk.

Note that following the criticality mode change, the phas-
ing of skips of LO criticality jobs occurs at the beginning of
the cycle, hence n ∈ [sk,mk] is used in the summation term,
rather than n ∈ [1, sk]. During the fixed point iteration,

when R∗ < xk, the use of dae0 denoting max(dae, 0) lower
bounds dae by 0 to avoid including a negative number of
skips. We note that no change to HI criticality mode ear-
lier than RLOi could result in more interference according to
the final term in (11). Thus (11) gives a valid upper-bound
on R∗i .

We now consider the schedulability analysis for LO crit-
icality tasks across the criticality mode change. As it is
unknown when the criticality mode change may occur, the
worst-case response time for LO criticality tasks may be
upper bounded using (12) which assumes that there are no
skips of LO criticality jobs up to R∗.

R∗i = CLOi +
∑

j∈hpHI(i)

⌈
R∗

i
Tj

⌉
CHIj +

∑
k∈hpLO(i)

⌈
R∗

i
Tk

⌉
CLOk (12)

5.2 AMCmax-WH
For a HI criticality task τi, AMCrtb-WH is pessimistic

with regards to the mode change due to assuming that all
higher priority, HI criticality tasks execute with their CHI

values up to R∗i (11) and also that there is no skipping of LO
criticality jobs up to RLOi (4). Using the same principles as
AMC-max, AMCmax-WH addresses this pessimism by tak-
ing into account the points at which a criticality change may
occur. Figure 5 illustrates how a criticality mode change at
time y may affect a LO criticality task (Figure 1 shows how
a HI criticality task may be affected). LO criticality mode

t

τk

y

mkTk

LO Mode HI Mode

zk
mkTk

Job 
released

Deadline
Met τk Executing τk Job 

Skipped

Figure 5: Criticality Change of τk

and HI criticality mode schedulability for all tasks can be
assessed using the same approach as AMCrtb-WH (see (4)
and (10)).

1) Schedulability of the Criticality Mode Change
The AMC-max analysis embodied in (7), can be modified
to incorporate weakly-hard LO criticality tasks. The func-
tion M(j, y, t) is the same as that used in AMC-max (8).
This approach removes the pessimism in AMCrtb-WH by
assuming HI criticality jobs execute with their CLO values
up to the criticality change at time y, at which point active
and subsequent HI criticality jobs will execute up to their
CHI values. In addition, jobs of each LO criticality task τk
are assumed to exhibit their weakly-hard behaviour, starting
consecutive skips at zk, the first release after the criticality
change at y.

For HI criticality tasks, the points at which the triggering
of a criticality change y, may affect the response time of a
job are bounded by y = [0, RLO). If the criticality change
were to occur after RLOi then the job would have already
completed its execution. For LO criticality tasks being as-
sessed, y should be increased until R∗ converges below the
current value of y. Once R∗ < y, increasing the time of the



criticality mode change will have no effect on the job and
therefore the worst-case response time must have already
been obtained.

Ryi = CLi
i +

∑
k∈hpLO(i)

(⌈
R

y
i

Tk

⌉
−

mk∑
n=sk

⌈
R

y
i−(mk−n)Tk−zk

mkTk

⌉
0

)
CLOk

+
∑

j∈hpHI(i)

(
M(j, y, Ryi )CHIj +

(⌈
R

y
i
Tj

⌉
−M(j, y, Ryi )

)
CLOj

)
(13)

where zk =

⌈
y
Tk

⌉
Tk and sk < mk.

The worst-case for the response time for the criticality mode
change can be calculated by: R∗i = max(Ryi )∀y where
y ∈ kTj | ∀j ∈ hpLO(i) ∧ y ≤ RLOi | ∀k : N, since these are
the only values of y where the expression on the right-hand
side of (13) can increase.

We note that AMC dominates AMC-WH since the for-
mer effectively skips all jobs of LO criticality tasks in HI
criticality mode. However this means that AMC provides
no service for LO criticality tasks. Thus the dominance re-
lationships are as follows; AMC-max (AMC-rtb) dominates
AMCmax-WH (AMCrtb-WH).

5.3 Priority Assignment for AMC-WH
Davis and Burns [14] formalised three Conditions for a

schedulability test to be compatible with Audsley’s Optimal
Priority Assignment (OPA) algorithm [1]:

1. The schedulability of a task τk may, according to test S,
depend on any independent properties of tasks with pri-
orities higher than τk, but not on any properties of those
tasks that depend on their relative priority ordering.

2. The schedulability of a task τk may, according to test
S, depend on any independent properties of tasks with
priorities lower than τk, but not on any properties of those
tasks that depend on their relative priority ordering.

3. When the priorities of any two tasks of adjacent priority
are swapped, the task being assigned the higher priority
cannot become unschedulable according to test S, if it
was previously schedulable at the lower priority.

Theorem 1. AMCrtb-WH and AMCmax-WH schedula-
bility tests comply with the above Conditions [14] and hence
Audsley’s OPA algorithm can be used to obtain optimal pri-
ority assignment ordering.

Proof. Inspection of equations (10) to (13) in section 5
shows that the schedulability of τk under AMC-WH depends
only on independent properties of higher priority tasks. As
interference is not caused by lower priority tasks, both Con-
ditions (1) and (2) are satisfied. Consider two tasks, τj
and τk with priorities, P (v) and P (w) respectively, where
P (v) > P (w). If τk is schedulable with priority P (w) un-
der AMC-WH and is swapped with τj to acquire priority
P (v), interference from higher priority tasks, as calculated
by the summation terms, would decrease and so the worst-
case response time of τk would become less than at P (w),
hence τk will remain schedulable. If τj is not schedulable at
P (v) and is swapped with τk to acquire priority P (w), in-
terference from higher priority tasks would increase and so
τj will remain unschedulable. This satisfies the two scenar-
ios of Condition (3) and therefore, as with SMC and AMC

[3], Audsley’s OPA algorithm can be used to find an opti-
mal priority ordering with respect to both AMCrtb-WH and
AMCmax-WH schedulability tests.

6. EXPERIMENTAL EVALUATION
In this section we report on an empirical evaluation used

to examine the relative performance of the new scheduling
policy, AMC-WH, and the associated schedulability tests
introduced in section 5. A number of experiments were de-
vised in which the new policy is compared to the previous
policies reviewed in section 4.

6.1 Taskset Generation
A set of uniformly distributed utilisation values were gen-

erated using the UUnifast algorithm [9]. Periods were then
assigned to each task with a log-uniform distribution be-
tween 10 and 1000. Task deadlines were assigned the same
values as their periods (D = T ). CLOi values were calculated
using the utilisation equation CLOi = Ui/Ti and CHIi values
were assigned by multiplying the CLOi value by a criticality
factor (CF ). CP denotes a criticality probability, that is
the probability that a particular task will be designated as
HI criticality rather than LO criticality. For the success
ratio experiments, 2500 tasksets were generated per utilisa-
tion level. For the weighted schedulability [5] tests, a total of
1000 tasksets were generated per utilisation level and value
of the varied parameter. By default, each taskset contained
20 tasks with CP = 0.5 and CF = 2.0.

6.2 Schedulability Tests
UB-H&L - is a composite upper-bound schedulability test.
Schedulability is assessed for all tasks assuming they execute
with their CLO values with DMPO. Separately, all HI crit-
icality tasks are assessed, assuming their CHI values, also
using DMPO.
AMC-max - (subsection 4.6) is a tighter analysis to AMC-
rtb, taking into account a finite set of points when the crit-
icality change may occur [3].
AMC-rtb - (subsection 4.5) is the response time bound
analysis for AMC [3].
SMC - (subsection 4.4) is SMC with run-time monitoring
that deschedules overrunning LO criticality jobs.
SMC-NO - Vestal’s original analysis [29] which does not
have support for run-time monitoring.
AMCmax-WH - Adaptive Mixed Criticality max - Weakly
Hard (subsection 5.2).
AMCrtb-WH - Adaptive Mixed Criticality response time
bound - Weakly Hard (subsection 5.1).
FPPS - Fixed Priority Preemptive Scheduling (subsection 4.1).
Tasks are in DMPO, ignoring criticality levels. We note that
this may lead to criticality inversion however for the purpose
of these experiments, run-time monitoring is assumed which
prevents LO criticality tasks from exceeding their CLO val-
ues. Each task assumes its CLi

i value.
CrMPO - Criticality Monotonic Priority Ordering (see sub-
section 4.2) is where tasks are partitioned by criticality level
and then DMPO is used within criticality levels. Response
time analysis is then carried out on the tasks using FPPS
analysis, where each task assumes its CLi

i value. As HI crit-
icality tasks have higher priorities, no run-time monitoring
is needed.
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Figure 6: Expt.1 - Percentage of Schedulable Tasksets
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Figure 7: Expt.2 - Varying the Criticality Factor
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Figure 8: Expt.3 - Varying the Criticality Mix
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Figure 9: Expt.4 - Varying the Number of Tasks
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Figure 10: Expt.5 - Varying the Number of Skips, m = 10

0 1 2 3 4 5 6 7 8 9 10
Length of Cycle (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
e
ig

h
te

d
 S

ch
e
d
u
la

b
ili

ty

UB-H&L

AMCmax

AMCrtb

SMC

SMC-NO

AMCmax-WH

AMCrtb-WH

FPPS

CrMPO

Figure 11: Expt.6 - Varying the Cycle Length, s = 1
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Figure 12: Expt.7 - Varying the Cycle Length where
s = m− 1

6.3 Experiments
Expt.1 (Figure 6) - illustrates the schedulability of the dif-
ferent tests at taskset utilisations.
Expt.2 (Figure 7) - shows the result of altering the Criti-
cality Factor (CF) on schedulability. That is the multiplier
between a task’s CLO value and its CHI value.
Expt.3 (Figure 8) - varies the Criticality Probability (CP)
of tasks in a taskset.
Expt.4 (Figure 9) - investigates the effect that larger tasksets
have on the schedulability tests.
Expt.5 (Figure 10) - varies the number of skips in a cycle
of fixed length, m = 10.
Expt.6 (Figure 11) - varies the cycle length, m while keep-
ing the number of skips constant at 1.
Expt.7 (Figure 12) - varies the cycle length and skips such
that (s,m) = (m− 1,m).

For experiments 1 to 5, the weakly-hard constraints are
set at (s,m) = (1, 2) for all LO criticality tasks. This is
equivalent to doubling the period while keeping the dead-
line the same for LO criticality tasks executing in the HI
criticality mode. For experiments 2 to 4 and 6 to 8, weighted
schedulability [5] is used to flatten the data from 3 dimen-
sions to 2. Weighted schedulability is calculated via (14)
where Sφ(τ, p) is a binary test of schedulability of taskset
τ with test φ and parameter p. Higher utilisation tasksets
that are schedulable with test φ are more heavily weighted
than lower utilisation tasksets.

Wφ(p) =
(∑
∀τ

U(τ) ∗ Sφ(τ, p)
)
/
∑
∀τ

U(τ) (14)

6.4 Discussion of Results
The schedulability tests are grouped into three categories.

Solid lines represent tests that guarantee that at least some
jobs of LO criticality tasks, assumed to execute up to their
CLO estimates, will meet all their deadlines in HI criticality
mode. Tests that permit LO criticality tasks to miss their
deadlines or deschedule LO criticality tasks in HI criticality
mode are represented by dashed lines. The dotted lines on
the graphs represent the upper-bounds on schedulability.

A number of points can observed by inspection of the re-
sults (Figure 6 to Figure 12). AMC dominates AMC-WH
due to AMC dropping all LO criticality jobs when in HI

criticality mode, therefore being schedulable at higher util-
isations. The dominance of AMCmax-WH over AMCrtb-
WH can be seen across all of the experiments.

Comparing the AMC-WH schedulability tests directly with
tests which guarantees LO criticality task deadlines in HI
criticality mode, namely CrMPO and FPPS (with run-time
monitoring), there is a clear dominance. When AMC-WH
is assigned a global value of 100% skips for all LO criticality
tasks in HI criticality mode, that is s = m, the scheduling
behaviour becomes that of AMC. Examining the equations
in section 5 shows that the schedulability tests for AMCmax-
WH and AMCrtb-WH reduce to the equations of AMC-max
and AMC-rtb under this condition. This is illustrated in
Expt.5 (Figure 10) and Expt.6 (Figure 11). At the oppo-
site extreme, where there are 0% skips for all LO criticality
tasks in HI criticality mode, both AMC-WH schedulability
tests reduce to the behaviour of FPPS which can be seen in
Expt.5 (Figure 10) and Expt.7 (Figure 12). AMC-WH is
therefore a compromise between AMC and FPPS, providing
scalable performance trade-offs between the quality of ser-
vice of LO criticality tasks in HI criticality mode and the
schedulability of the system. Expt.7 (Figure 12) illustrates
a behaviour similar to the work of Yip et al. [30] in terms of
AMC-WH, where a task’s period is extended while its rela-
tive deadline remains constant, resulting in lower utilisation.

7. CONCLUSIONS
The main contribution of this paper is the scheduling pol-

icy, AMC-WH, introduced in section 5. This policy can be
used to ensure a minimum Quality of Service (QoS) for LO
criticality tasks in the event of a criticality mode change, an
imperative issue if such a policy is to be deployed on real
systems. Empirical evaluations demonstrated that AMC-
WH performs favourably with respect to existing policies,
exhibiting a reasonable reduction in schedulability to ac-
commodate the continued execution of LO criticality tasks
without compromising the assurance of HI criticality tasks.

The approach provided by AMC-WH offers the flexibility
for per-task constraints, allowing a system designer to dic-
tate the level of QoS required for a particular component in
the event of entering the HI criticality mode. This opens
up the possibility of combining AMC-WH with the notion
of importance developed by Fleming and Burns [18].

In future we aim to generalise AMC-WH to n-criticality
levels, as has been done with AMC-rtb and AMC-max [17].
We also expect to generalise the model to allow all tasks to
exhibit weakly-hard behaviour in any criticality mode, where
each task is assigned a set of constraints (one per criticality
level). This will offer additional flexibility to the system de-
signer when deciding how the system should degrade after
a criticality mode change. Another interesting avenue of re-
search is to explore the use of sensitivity analysis to derive
the weakly-hard parameters needed for schedulability under
AMC-WH. This approach would allow the highest possible
quality of service for LO criticality tasks. We also intend to
investigate the integration of methods for the rapid recovery
to LO criticality mode [6] with the AMC-WH policy.
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