
Optimising Task Layout to Increase
Schedulability via Reduced Cache

Related Pre-emption Delays

Will Lunniss1 Sebastian Altmeyer2 Robert I. Davis1

1Real-Time Systems Research Group, University of York, UK
{wl510, rob.davis}@york.ac.uk

2Department of Computer Science, Saarland University, Germany
altmeyer@cs.uni-sb.de

RTNS 2012 - Pont à Mousson, France – 8th & 9th November
1

Outline

• Brief overview of CRPD
• Task layout
• Optimising task layout
• Case study
• Synthetic taskset experiments
• Conclusions

2

Background

• Caches sit between memory and the CPU
• Can store instruction, data, or both

– We only consider instruction caches
• When fetching an instruction

– First check the cache, if the block containing the
instruction is there -> Cache hit

– Otherwise, fetch the block from memory and store it
into cache - > Cache miss

• Want to maximise cache hits as cache misses can
be an order of magnitude slower

3

Pre-emptions and Cache
Related Pre-empt Delays (CRPD)

• Pre-empting task can evict blocks belonging to
the pre-empted task

• CRPD are introduced when the pre-empted
task has to reload some of those evicted cache
blocks after resuming

4

CRPD Analysis

• Evicting Cache Blocks (ECBs)
– Loaded into cache and can therefore evict other

blocks
• Useful Cache Blocks (UCBs)

– Reused once they have been loaded into cache
before potentially being evict by the task

– If evicted by another task, they may have to be
reloaded which intrudes CRPD

– UCBs are always ECBs

5

CRPD Analysis

• Example block classification

• Instructions inside loops are often UCBs as
they get reused

6

CRPD Analysis

• There are a number of approaches for Fixed
Priority Pre-emptive Scheduling

• Can consider:
– The pre-empting task
– The pre-empted task(s)
– The pre-empted and pre-empting task(s)

7

CRPD Analysis

• E.g. ECB-Only is the simplest approach
– It considers just the pre-empting task
– Assumes that every block evicted by the pre-

empting task has to be re-loaded
– The CRPD caused by task τj pre-empting task τi

8

,− = BRT ∙ ECB

CRPD Analysis

• Used the combined multiset approach by
Altmeyer et al. [1]
– Considers the pre-empted and pre-empting task(s)

including the different costs associated with
different nested pre-emptions

[1] Altmeyer, S., Davis, R.I., and Maiza, C. Improved Cache Related Pre-emption Delay Aware Response Time Analysis
for Fixed Priority Pre-emptive Systems. Real-Time Systems, 48, 5 (September 2012), 499-512

9

Memory and Cache Layout
• Memory layout controls the cache layout
• We want to layout tasks in memory, so that

the number of evicted UCBs is minimised

10

Optimising Task Layouts

• Used a Simulated Annealing (SA)
– Starts at a initial ‘temperature’
– Reduced by a cooling rate each iteration
– Completes when it reaches an absolute

temperature
– Accepts large negative changes when ‘hot’ during

the initial stages

11

Evaluating Task Layouts

• Perform Response Time Analysis (RTA) using
integrated CRPD analysis
– Tells us whether the taskset is schedulable at a

specific utilisation
• Find the Breakdown Utilisation (BU)

– Point at which a taskset becomes unschedulable
– Found by scaling deadlines and periods
– Driven by a binary search

• ‘Good’ layouts result in a high BU

12

Modifying Task Layout

• Swap two neighbouring tasks (e.g. 3 and 4)

13

1 2 3 4 5

3 4 1 2 5

3 4 5

Modifying Task Layout

• Swap two random tasks (e.g. 2 and 6)

14

1 2 3 4 5 6

6 3 4 5 1 2

Modifying Task Layout
• Adding a gap (e.g. after task 3)

• Insert up to ± half the cache size
– But the gap can never be negative

• Reduced if the gap becomes > cache size
• Gaps are moved when swapping tasks
• Overall size of gaps limited to

– 0%, 10% and 100% of total task size

15

1 2 3 4 5 4 5

16

SA Algorithm

Case Study

• Based on a code from the Mälardalen
benchmark suite to create a 15 task taskset

• Setup to model an ARM7
– 10MHz CPU
– 2KB direct-mapped instruction cache
– Line size of 8 Bytes, 4 Byte instructions, 256

cache sets
– Block reload time of 8μs

17

Evaluation

• Compared the SA against
– No pre-emption cost

• All cases exclude CSC due to e.g. reloading registers

– Sequential ordered by priority (SeqPO)
– 1000 random layouts
– CS[i]=0 (Aligns all tasks at cache set 0)

18

Results

Breakdown Utilisation

No pre-emption cost 0.984

SA 0.876

SeqPO 0.698

Random (min, average, max) 0.526, 0.685, 0.882

CS[i]=0 0.527

19

Case Study – SeqPO Layout

20

Case Study – SA Layout
No gaps between tasks

21

Case Study - CRPD/task

22

Case Study - Explanation

• The layout generated by the SA algorithm vs SeqPO
– Overall, more UCBs in conflict
– However, UCBs of lower priority tasks are evicted

less often
– This shifts the CRPD from low to high priority tasks

23

Synthetic Tasksets

• 10 tasks per taskset
• 1000 tasksets for baseline experiments
• 512 cache sets
• Cache utilisation of 5
• Maximum UCB percentage of 30%
• Grouped UCBs into five groups spread out

throughout the task

24

Baseline Experiment

25

Weighted Schedulability

• Combines the data across the full range of
utilisation levels into a single value

• Individual results are weighted by taskset
utilisation

• We use 100 tasksets for weighted
schedulability experiments

26

Baseline Experiment
Weighted

schedulability

No pre-emption
cost 0.859

SA 0.465

SeqPO 0.377

Random 0.379

CS[i]=0 0.347

27

28

Varying the
Maximum Number of UCB Groups

Varying the
Cache Utilisation

29

Varying the
Maximum UCB Percentage

30

Varying the
Number of Tasks

31

Does adding gaps
between tasks help?

• Not significantly
– Varied allowed space from 0%-100%
– Weighted measure varied from 0.463 to 0.469

• High cache utilisations and scattered UCBs
means there will always be conflicts

• Reduces problem to finding the optimum
permutation of task ordering

• Good for embedded systems, do not want to
waste memory

32

Brute force comparison
• Tried all 5040 (7!)

orderings for 7 tasks
• Feasible for 7 tasks,

but not for higher
numbers

• SA got very close
using just 377

33

Conclusion
• Task layout has a significant effect on CRPD and

schedulability
• Our SA algorithm was able to find near optimal

layouts that significantly increased the
breakdown utilisation of tasksets

• Found that allowing space between tasks made
little difference

• Uses include:
– Optimising an unschedulable task
– Allowing a low power system to clocked at a lower

frequency

34

Thank you for listening

Any Questions?

35

	Optimising Task Layout to Increase Schedulability via Reduced Cache Related Pre-emption Delays�
	Outline
	Background
	Pre-emptions and Cache�Related Pre-empt Delays (CRPD)
	CRPD Analysis
	CRPD Analysis
	CRPD Analysis
	CRPD Analysis
	CRPD Analysis
	Memory and Cache Layout
	Optimising Task Layouts
	Evaluating Task Layouts
	Modifying Task Layout
	Modifying Task Layout
	Modifying Task Layout
	SA Algorithm
	Case Study
	Evaluation
	Results
	Case Study – SeqPO Layout
	Case Study – SA Layout�No gaps between tasks
	Case Study - CRPD/task
	Case Study - Explanation
	Synthetic Tasksets
	Baseline Experiment
	Weighted Schedulability
	Baseline Experiment
	Varying the �Maximum Number of UCB Groups
	Varying the �Cache Utilisation
	Varying the�Maximum UCB Percentage
	Varying the�Number of Tasks
	Does adding gaps�between tasks help?
	Brute force comparison
	Conclusion
	Thank you for listening

