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Background 

• Caches sit between memory and the CPU 
• Can store instruction, data, or both 

– We only consider instruction caches  
• When fetching an instruction 

– First check the cache, if the block containing the 
instruction is there -> Cache hit

– Otherwise, fetch the block from memory and store it 
into cache - > Cache miss

• Want to maximise cache hits as cache misses can 
be an order of magnitude slower 
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Pre-emptions and Cache 
Related Pre-empt Delays (CRPD)

• Pre-empting task can evict blocks belonging to 
the pre-empted task 

• CRPD are introduced when the pre-empted 
task has to reload some of those evicted cache 
blocks after resuming 
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CRPD Analysis 

• Evicting Cache Blocks (ECBs) 
– Loaded into cache and can therefore evict other 

blocks 
• Useful Cache Blocks (UCBs) 

– Reused once they have been loaded into cache 
before potentially being evict by the task 

– If evicted by another task, they may have to be 
reloaded which intrudes CRPD 

– UCBs are always ECBs 
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CRPD Analysis 

• Example block classification 

• Instructions inside loops are often UCBs as 
they get reused 
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CRPD Analysis 

• There are a number of approaches for Fixed 
Priority Pre-emptive Scheduling 

• Can consider: 
– The pre-empting task 
– The pre-empted task(s) 
– The pre-empted and pre-empting task(s) 
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CRPD Analysis 

• E.g. ECB-Only is the simplest approach 
– It considers just the pre-empting task 
– Assumes that every block evicted by the pre-

empting task has to be re-loaded 
– The CRPD caused by task τj pre-empting task τi
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CRPD Analysis 

• Used the combined multiset approach by 
Altmeyer et al. [1] 
– Considers the pre-empted and pre-empting task(s) 

including the different costs associated with 
different nested pre-emptions 

[1] Altmeyer, S., Davis, R.I., and Maiza, C. Improved Cache Related Pre-emption Delay Aware Response Time Analysis 
for Fixed Priority Pre-emptive Systems. Real-Time Systems, 48, 5 (September 2012), 499-512 
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Memory and Cache Layout 
• Memory layout controls the cache layout 
• We want to layout tasks in memory, so that 

the number of evicted UCBs is minimised 
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Optimising Task Layouts 

• Used a Simulated Annealing (SA) 
– Starts at a initial ‘temperature’ 
– Reduced by a cooling rate each iteration 
– Completes when it reaches an absolute 

temperature 
– Accepts large negative changes when ‘hot’ during 

the initial stages 
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Evaluating Task Layouts 

• Perform Response Time Analysis (RTA) using 
integrated CRPD analysis 
– Tells us whether the taskset is schedulable at a 

specific utilisation 
• Find the Breakdown Utilisation (BU) 

– Point at which a taskset becomes unschedulable 
– Found by scaling deadlines and periods 
– Driven by a binary search 

• ‘Good’ layouts result in a high BU 
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Modifying Task Layout 

• Swap two neighbouring tasks (e.g. 3 and 4) 

13 

1 2 3 4 5 

3 4 1 2 5 



3 4 5 

Modifying Task Layout 

• Swap two random tasks (e.g. 2 and 6) 
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Modifying Task Layout 
• Adding a gap (e.g. after task 3) 

• Insert up to ± half the cache size 
– But the gap can never be negative 

• Reduced if the gap becomes > cache size 
• Gaps are moved when swapping tasks 
• Overall size of gaps limited to 

– 0%, 10% and 100% of total task size 
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Case Study 

• Based on a code from the Mälardalen 
benchmark suite to create a 15 task taskset 

• Setup to model an ARM7 
– 10MHz CPU 
– 2KB direct-mapped instruction cache 
– Line size of 8 Bytes, 4 Byte instructions, 256 

cache sets 
– Block reload time of 8μs
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Evaluation 

• Compared the SA against 
– No pre-emption cost 

• All cases exclude CSC due to e.g. reloading registers 

– Sequential ordered by priority (SeqPO) 
– 1000 random layouts 
– CS[i]=0 (Aligns all tasks at cache set 0) 
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Results 

Breakdown Utilisation

No pre-emption cost 0.984

SA 0.876

SeqPO 0.698

Random (min, average, max) 0.526, 0.685,  0.882

CS[i]=0 0.527
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Case Study – SeqPO Layout 
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Case Study – SA Layout 
No gaps between tasks 
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Case Study - CRPD/task 
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Case Study - Explanation 

• The layout generated by the SA algorithm vs SeqPO 
– Overall, more UCBs in conflict 
– However, UCBs of lower priority tasks are evicted 

less often 
– This shifts the CRPD from low to high priority tasks 
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Synthetic Tasksets 

• 10 tasks per taskset 
• 1000 tasksets for baseline experiments 
• 512 cache sets 
• Cache utilisation of 5 
• Maximum UCB percentage of 30% 
• Grouped UCBs into five groups spread out 

throughout the task 
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Baseline Experiment 
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Weighted Schedulability 

• Combines the data across the full range of 
utilisation levels into a single value 

• Individual results are weighted by taskset 
utilisation 

• We use 100 tasksets for weighted 
schedulability experiments 
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Baseline Experiment 
Weighted 

schedulability

No pre-emption 
cost 0.859

SA 0.465

SeqPO 0.377

Random 0.379

CS[i]=0 0.347
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Varying the  
Maximum Number of UCB Groups 



Varying the  
Cache Utilisation 
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Varying the 
Maximum UCB Percentage 
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Varying the 
Number of Tasks 
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Does adding gaps 
between tasks help? 

• Not significantly 
– Varied allowed space from 0%-100% 
– Weighted measure varied from 0.463 to 0.469 

• High cache utilisations and scattered UCBs 
means there will always be conflicts 

• Reduces problem to finding the optimum 
permutation of task ordering 

• Good for embedded systems, do not want to 
waste memory 
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Brute force comparison 
• Tried all 5040 (7!) 

orderings for 7 tasks 
• Feasible for 7 tasks, 

but not for higher 
numbers 

• SA got very close 
using just 377 
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Conclusion 
• Task layout has a significant effect on CRPD and 

schedulability 
• Our SA algorithm was able to find near optimal 

layouts that significantly increased the 
breakdown utilisation of tasksets 

• Found that allowing space between tasks made 
little difference 

• Uses include: 
– Optimising an unschedulable task 
– Allowing a low power system to clocked at a lower 

frequency 
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Thank you for listening 

Any Questions? 
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