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Earliest Deadline First (EDF)

• It is dynamic scheduling algorithm 
• Schedules the job of the task with the earliest 

absolute deadline first 
• Proven to be optimal by Dertouzos on a single 

core processor 
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Determining which job should run 

4 



Determining which job should run 

• If two jobs have the same absolute deadline 
– We assume that the job with the lowest task index is 

chosen 
– E.g. τ2 pre-empts τ3 in the above example
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Determining which job should run 

• If two jobs have the same absolute deadline 
– Ensures that two tasks cannot pre-empt each other 
– Ensures that after a pre-emption, the task that was 

pre-empted last is resumed first 
– E.g τ2 is resumed at t = 7
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Determining which job should run 

• Also applies for jobs with the same relative 
deadline and release time 
– E.g. τ2 is resumed at t = 3, rather than τ3 starting 
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Schedulability test 

• If all tasks have implicit deadlines (Di =Ti), 
schedulability test is 
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Schedulability test 

• If all tasks have implicit deadlines (Di =Ti), 
schedulability test is 

• If Di ≠Ti then the test is still necessary, but is no 
longer sufficient 
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Schedulability test 

• If all tasks have implicit deadlines (Di =Ti), 
schedulability test is 

• If Di ≠Ti then the test is still necessary, but is no 
longer sufficient 

• Need to do another test 
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Processor demand bound function 
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S. K. Baruah, L. E. Rosier, and R. R. Howell, "Algorithms and Complexity Concerning the Preemptive Scheduling of 
Periodic Real-Time Tasks on One Processor," Real-Time Systems, vol. 2, no. 4, pp. 301-324, 1990 



Schedulability test 

• A taskset is schedulable iff h(t) ≤ t for all 
values of t 
– The execution time requirement must be less than 

or equal to the available time 
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Schedulability test 

• A taskset is schedulable iff h(t) ≤ t for all 
values of t 
– The execution time requirement must be less than 

or equal to the available time 
• h(t) can only change when t is equal to an 

absolute deadline 
• Bound the maximum value of t, L, using either 

– Hyper-period: Least common multiple of task 
periods 

– Synchronous busy period 
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Schedulability test 

• There are still a large number of values for t
that need to be checked 
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Schedulability test 

• There are still a large number of values for t
that need to be checked 

• Can be reduced by using the Quick 
convergence Processor-demand Analysis (QPA) 
algorithm by Zhang and Burns 
– Starts with a value of t close to L 
– Iterates back towards 0 checking a significantly 

smaller number of values 
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Pre-emptions and Cache 
Related Pre-empt Delays (CRPD)
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Pre-emptions and Cache 
Related Pre-empt Delays (CRPD)

• Pre-empting task can evict blocks belonging to 
the pre-empted task 

• CRPD are introduced when the pre-empted 
task has to reload some of those evicted cache 
blocks after resuming 
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Cache block categorisation 

• Evicting Cache Blocks (ECBs) 
– Loaded into cache and can therefore evict other 

blocks 
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Cache block categorisation 

• Evicting Cache Blocks (ECBs) 
– Loaded into cache and can therefore evict other 

blocks 
• Useful Cache Blocks (UCBs) 

– Reused once they have been loaded into cache 
before potentially being evict by the task 

– If evicted by another task, they may have to be 
reloaded which introduces CRPD 

– UCBs are always ECBs 
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Cache block categorisation 

• Example block classification 
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Cache block categorisation 

• Example block classification 

• Instructions inside loops are often UCBs as 
they get reused 
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CRPD analysis 

• Need to calculate the number of blocks 
evicted during a pre-emption that must be 
reloaded 

• Multiply by the cost to reload each block, BRT 
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CRPD analysis 

• Need to calculate the number of blocks 
evicted during a pre-emption that must be 
reloaded 

• Multiply by the cost to reload each block, BRT 
• Could take a simple approach and assume 

every block evicted by a pre-empting task 
must be re-loaded e.g. 
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CRPD analysis 

• Adapted a number of approaches for FP to 
work with EDF 

• Defined: 
– the sets of tasks which can/cannot pre-empt each 

other 
– how often these pre-emptions can occur within 

the interval t
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CRPD analysis 

• Adapted a number of approaches for FP to 
work with EDF 

• Defined: 
– the sets of tasks which can/cannot pre-empt each 

other 
– how often these pre-emptions can occur within 

the interval t
• Then include the CRPD into the h(t) 

calculation 
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Integrating CRPD analysis  
into the h(t) calculation
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Effect of CRPD on task  
utilisation and h(t) calculation 

• The analysis effectively increases the 
execution time of a task by the CRPD it causes 

• Need to account for this when calculating the 
utilisation of a task and taskset 

• Also need to use this when calculating the 
upper bound of t used for calculating h(t) 
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Set of pre-empting tasks 

• Based on the tasks’ relative deadline
– Assume that any task τj with a relative deadline  Dj < Di can 

pre-empt task τi

19 



Set of pre-empting tasks 

• Based on the tasks’ relative deadline
– Assume that any task τj with a relative deadline  Dj < Di can 

pre-empt task τi

• The set of tasks that can pre-empt task τi is:

19 



Set of pre-empting tasks 

• Based on the tasks’ relative deadline
– Assume that any task τj with a relative deadline  Dj < Di can 

pre-empt task τi

• The set of tasks that can pre-empt task τi is:

19 

}|{)( iDDihp jj  



Set of pre-empted tasks 

• Task τj can pre-empt any tasks whose relative 
deadline is greater than it’s relative deadline
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Set of pre-empted tasks 

• Task τj can pre-empt any tasks whose relative 
deadline is greater than it’s relative deadline

• Can exclude all tasks whose relative deadlines 
are greater than t
– They do not need to be included when calculating h(t), see 

paper for proof 
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UCB-Union 

• Based on approach by Tan and Mooney 
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Y. Tan and V. Mooney, "Timing Analysis for Preemptive Multitasking Real-Time Systems with Caches," ACM 
Transactions on Embedded Computing Systems (TECS), vol. 6, no. 1, February 2007. 



ECB-Union 

• Based on the approach by Altmeyer et al.
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S. Altmeyer, R.I. Davis, and C. Maiza, "Cache Related Pre-emption Delay Aware Response Time Analysis for Fixed 
Priority Pre-emptive Systems," in Proceedings of the 32nd IEEE Real-Time Systems Symposium (RTSS), Vienna, 
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Existing approach 

• In 2007, Ju et al. presented an approach 
– We refer to it as the JCR approach after their initials 
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Existing approach 

• Can be pessimistic for nested pre-emptions 
• Calculates the cost between each pair of tasks 
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same cache sets, they will be counted multiple 
times 
– More likely when there the cache utilisation is 

high 
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Existing approach 

• Can be pessimistic for nested pre-emptions 
• Calculates the cost between each pair of tasks 
• If pre-empting tasks have ECBs located in the 

same cache sets, they will be counted multiple 
times 
– More likely when there the cache utilisation is 

high 

• It is incomparable to the approaches we have 
presented so far 
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Improved CRPD analysis 

• The UCB-Union and ECB-Union approach can be 
pessimistic 

• They assume intermediate tasks are pre-empted 
the same number of times as the pre-empted 
task 
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Improved CRPD analysis 

• E.g. the cost of τ2 pre-empting task τ3 is 
counted three times rather than once 
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Multiset approaches 

27 

• ECB-Union Multiset and UCB-Union Multiset 
• Factor in the number of times that 

intermediate tasks pre-empt the pre-empted 
task to tighten the bound 
– See paper for details 



Comparison of approaches 
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Case study 

• Based on a code from the Mälardalen 
benchmark suite to create a 15 task taskset 

• Setup to model an ARM7 
– 10MHz CPU 
– 2KB direct-mapped instruction cache 
– Line size of 8 Bytes, 4 Byte instructions, 256 

cache sets 
– Block reload time of 8μs
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Case study 
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Breakdown utilisation 

No pre-emption cost 1 

Combined Multiset 0.659 

ECB-Union Multiset 0.659 

UCB-Union Multiset 0.594 

ECB-Union 0.612 
UCB-Union 0.583 
UCB-Only 0.462 
ECB-Only 0.364 

JCR 0.488 



Synthetic tasksets 

• 10 tasks per taskset 
• 10,000 tasksets for baseline evaluation 
• 512 cache sets 
• Cache utilisation of 5 
• Maximum UCB percentage of 30% 
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Baseline evaluation 
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Baseline evaluation 

32 

Combined multiset approach 
outperforms all other 
approaches 

Including the existing 
approach 



Baseline evaluation 
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Schedulability 

No pre-emption cost 1 

Combined Multiset 0.528 

ECB-Union Multiset 0.501 

UCB-Union Multiset 0.455 

ECB-Union 0.481 

UCB-Union 0.427 

UCB-Only 0.416 

ECB-Only 0.236 

JCR 0.333 
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Varying Cache Utilisation 
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Varying Cache Utilisation 
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Varying Maximum UCB Percentage 
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Varying Maximum UCB Percentage 
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Varying Number of Tasks 
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Conclusion 

• Presented new CRPD aware analysis for EDF 
• Combined multiset approach dominates the 

existing approach by Ju et al. 
– Confirmed via evaluation/simulation 

• Detailed study shows the strengths and 
weaknesses of the different approaches 

• We plan to investigate which is better, FP or 
EDF, when taking into account CRPD 
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Thank you for listening 

Any Questions? 
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