
Integrating Cache Related Pre-
emption Delay Analysis into EDF

Scheduling
Will Lunniss1 Sebastian Altmeyer2 Claire Maiza3 Robert I. Davis1

1Real-Time Systems Research Group, University of York, UK
{wl510, rob.davis}@york.ac.uk

2Department of Computer Science, Saarland University, Germany
altmeyer@cs.uni-sb.de

2Verimag, Grenoble INP, Grenoble, France
Claire.maiza@imag.fr

1

Outline

• EDF Scheduling
• CRPD
• Integrating CRPD analysis into EDF
• Comparison with existing approach
• Improved CRPD analysis
• Case study
• Synthetic taskset evaluation
• Conclusions

2

Earliest Deadline First (EDF)

• It is dynamic scheduling algorithm
• Schedules the job of the task with the earliest

absolute deadline first
• Proven to be optimal by Dertouzos on a single

core processor

3

Determining which job should run

4

Determining which job should run

• If two jobs have the same absolute deadline
– We assume that the job with the lowest task index is

chosen
– E.g. τ2 pre-empts τ3 in the above example

4

Determining which job should run

• If two jobs have the same absolute deadline
– Ensures that two tasks cannot pre-empt each other
– Ensures that after a pre-emption, the task that was

pre-empted last is resumed first
– E.g τ2 is resumed at t = 7

5

Determining which job should run

• If two jobs have the same absolute deadline
– Ensures that two tasks cannot pre-empt each other
– Ensures that after a pre-emption, the task that was

pre-empted last is resumed first
– E.g τ2 is resumed at t = 7

5

, rather than τ3

Determining which job should run

• Also applies for jobs with the same relative
deadline and release time
– E.g. τ2 is resumed at t = 3, rather than τ3 starting

6

Determining which job should run

• Also applies for jobs with the same relative
deadline and release time
– E.g. τ2 is resumed at t = 3, rather than τ3 starting

6

Determining which job should run

• Also applies for jobs with the same relative
deadline and release time
– E.g. τ2 is resumed at t = 3, rather than τ3 starting

7

Schedulability test

• If all tasks have implicit deadlines (Di =Ti),
schedulability test is

8

Schedulability test

• If all tasks have implicit deadlines (Di =Ti),
schedulability test is

8

1U

Schedulability test

• If all tasks have implicit deadlines (Di =Ti),
schedulability test is

• If Di ≠Ti then the test is still necessary, but is no
longer sufficient

8

1U

Schedulability test

• If all tasks have implicit deadlines (Di =Ti),
schedulability test is

• If Di ≠Ti then the test is still necessary, but is no
longer sufficient

• Need to do another test

8

1U

Processor demand bound function

9

1

1 ,0max)(
i

i
i

i C
T
Dtth

Processor demand bound function

9

1

1 ,0max)(
i

i
i

i C
T
Dtth

Sum over each task

Processor demand bound function

9

1

1 ,0max)(
i

i
i

i C
T
Dtth

Sum over each task
the number of jobs a task
has which are released and
have their deadlines in the
interval t

Processor demand bound function

9

1

1 ,0max)(
i

i
i

i C
T
Dtth

Sum over each task
the number of jobs a task
has which are released and
have their deadlines in the
interval t

multiplied by the
tasks’ execution time

Processor demand bound function

9

1

1 ,0max)(
i

i
i

i C
T
Dtth

Sum over each task
the number of jobs a task
has which are released and
have their deadlines in the
interval t

multiplied by the
tasks’ execution time

S. K. Baruah, L. E. Rosier, and R. R. Howell, "Algorithms and Complexity Concerning the Preemptive Scheduling of
Periodic Real-Time Tasks on One Processor," Real-Time Systems, vol. 2, no. 4, pp. 301-324, 1990

Schedulability test

• A taskset is schedulable iff h(t) ≤ t for all
values of t
– The execution time requirement must be less than

or equal to the available time

10

Schedulability test

• A taskset is schedulable iff h(t) ≤ t for all
values of t
– The execution time requirement must be less than

or equal to the available time
• h(t) can only change when t is equal to an

absolute deadline
• Bound the maximum value of t, L, using either

– Hyper-period: Least common multiple of task
periods

– Synchronous busy period
10

Schedulability test

• There are still a large number of values for t
that need to be checked

11

Schedulability test

• There are still a large number of values for t
that need to be checked

• Can be reduced by using the Quick
convergence Processor-demand Analysis (QPA)
algorithm by Zhang and Burns
– Starts with a value of t close to L
– Iterates back towards 0 checking a significantly

smaller number of values

11

Schedulability test

• There are still a large number of values for t
that need to be checked

• Can be reduced by using the Quick
convergence Processor-demand Analysis (QPA)
algorithm by Zhang and Burns
– Starts with a value of t close to L
– Iterates back towards 0 checking a significantly

smaller number of values

11

F. Zhang and A. Burns, "Schedulability Analysis for Real-Time Systems with EDF Scheduling," IEEE Transactions on
Computers, vol. 58, no. 9, pp. 1250-1258, September 2009

Pre-emptions and Cache
Related Pre-empt Delays (CRPD)

12

Pre-emptions and Cache
Related Pre-empt Delays (CRPD)

• Pre-empting task can evict blocks belonging to
the pre-empted task

• CRPD are introduced when the pre-empted
task has to reload some of those evicted cache
blocks after resuming

12

Cache block categorisation

• Evicting Cache Blocks (ECBs)
– Loaded into cache and can therefore evict other

blocks

13

Cache block categorisation

• Evicting Cache Blocks (ECBs)
– Loaded into cache and can therefore evict other

blocks
• Useful Cache Blocks (UCBs)

– Reused once they have been loaded into cache
before potentially being evict by the task

– If evicted by another task, they may have to be
reloaded which introduces CRPD

– UCBs are always ECBs

13

Cache block categorisation

• Example block classification

14

Cache block categorisation

• Example block classification

• Instructions inside loops are often UCBs as
they get reused

14

CRPD analysis

• Need to calculate the number of blocks
evicted during a pre-emption that must be
reloaded

• Multiply by the cost to reload each block, BRT

15

CRPD analysis

• Need to calculate the number of blocks
evicted during a pre-emption that must be
reloaded

• Multiply by the cost to reload each block, BRT
• Could take a simple approach and assume

every block evicted by a pre-empting task
must be re-loaded e.g.

15

jjt ECB BRT,

CRPD analysis

• Adapted a number of approaches for FP to
work with EDF

• Defined:
– the sets of tasks which can/cannot pre-empt each

other
– how often these pre-emptions can occur within

the interval t

16

CRPD analysis

• Adapted a number of approaches for FP to
work with EDF

• Defined:
– the sets of tasks which can/cannot pre-empt each

other
– how often these pre-emptions can occur within

the interval t
• Then include the CRPD into the h(t)

calculation

16

Integrating CRPD analysis
into the h(t) calculation

17

n

j
jtj

j

j C
T
Dtth

1
,1 ,0max)(

Integrating CRPD analysis
into the h(t) calculation

17

n

j
jtj

j

j C
T
Dtth

1
,1 ,0max)(

Calculate the CRPD caused
by one job of task τj in the
interval t

Integrating CRPD analysis
into the h(t) calculation

17

n

j
jtj

j

j C
T
Dtth

1
,1 ,0max)(

Calculate the CRPD caused
by one job of task τj in the
interval t

Then add it to the execution
time of that job of task τj

Effect of CRPD on task
utilisation and h(t) calculation

• The analysis effectively increases the
execution time of a task by the CRPD it causes

• Need to account for this when calculating the
utilisation of a task and taskset

• Also need to use this when calculating the
upper bound of t used for calculating h(t)

18

Set of pre-empting tasks

• Based on the tasks’ relative deadline
– Assume that any task τj with a relative deadline Dj < Di can

pre-empt task τi

19

Set of pre-empting tasks

• Based on the tasks’ relative deadline
– Assume that any task τj with a relative deadline Dj < Di can

pre-empt task τi

• The set of tasks that can pre-empt task τi is:

19

Set of pre-empting tasks

• Based on the tasks’ relative deadline
– Assume that any task τj with a relative deadline Dj < Di can

pre-empt task τi

• The set of tasks that can pre-empt task τi is:

19

}|{)(iDDihp jj

Set of pre-empted tasks

• Task τj can pre-empt any tasks whose relative
deadline is greater than it’s relative deadline

20

Set of pre-empted tasks

• Task τj can pre-empt any tasks whose relative
deadline is greater than it’s relative deadline

• Can exclude all tasks whose relative deadlines
are greater than t
– They do not need to be included when calculating h(t), see

paper for proof

20

Set of pre-empted tasks

• Task τj can pre-empt any tasks whose relative
deadline is greater than it’s relative deadline

• Can exclude all tasks whose relative deadlines
are greater than t
– They do not need to be included when calculating h(t), see

paper for proof

20

 jii DDtjt |,ffa

UCB-Union

• Based on approach by Tan and Mooney

21

j
jtk

k
uucb

jt ECBUCB BRT
),aff(

,

UCB-Union

• Based on approach by Tan and Mooney

21

j
jtk

k
uucb

jt ECBUCB BRT
),aff(

,

UCB-Union

• Based on approach by Tan and Mooney

21

j
jtk

k
uucb

jt ECBUCB BRT
),aff(

,

Calculate the union of the UCBs of all tasks that:
• can be evicted by the pre-empting task τj
• have a job with a release time and absolute

deadline within the interval t

UCB-Union

• Based on approach by Tan and Mooney

21

j
jtk

k
uucb

jt ECBUCB BRT
),aff(

,

intersected with
the ECBs of the
pre-empting task

Calculate the union of the UCBs of all tasks that:
• can be evicted by the pre-empting task τj
• have a job with a release time and absolute

deadline within the interval t

UCB-Union

• Based on approach by Tan and Mooney

21

j
jtk

k
uucb

jt ECBUCB BRT
),aff(

,

intersected with
the ECBs of the
pre-empting task

Calculate the union of the UCBs of all tasks that:
• can be evicted by the pre-empting task τj
• have a job with a release time and absolute

deadline within the interval t

Y. Tan and V. Mooney, "Timing Analysis for Preemptive Multitasking Real-Time Systems with Caches," ACM
Transactions on Embedded Computing Systems (TECS), vol. 6, no. 1, February 2007.

ECB-Union

• Based on the approach by Altmeyer et al.

22

 ECBUCBmax BRT
}{)(),aff(,
jjhph

hk
jtk

uecb
jt

ECB-Union

• Based on the approach by Altmeyer et al.

22

 ECBUCBmax BRT
}{)(),aff(,
jjhph

hk
jtk

uecb
jt

Assume that task τj has
already been pre-empted.
Include the union of ECBs
belonging to all tasks that can
pre-empt it

ECB-Union

• Based on the approach by Altmeyer et al.

22

 ECBUCBmax BRT
}{)(),aff(,
jjhph

hk
jtk

uecb
jt

Assume that task τj has
already been pre-empted.
Include the union of ECBs
belonging to all tasks that can
pre-empt it

ECB-Union

• Based on the approach by Altmeyer et al.

22

 ECBUCBmax BRT
}{)(),aff(,
jjhph

hk
jtk

uecb
jt

Assume that task τj has
already been pre-empted.
Include the union of ECBs
belonging to all tasks that can
pre-empt it

Calculate the maximum number
of UCBs that may need to be
reloaded by any task that is
directly pre-empted by task τj

ECB-Union

• Based on the approach by Altmeyer et al.

22

 ECBUCBmax BRT
}{)(),aff(,
jjhph

hk
jtk

uecb
jt

Assume that task τj has
already been pre-empted.
Include the union of ECBs
belonging to all tasks that can
pre-empt it

Calculate the maximum number
of UCBs that may need to be
reloaded by any task that is
directly pre-empted by task τj

S. Altmeyer, R.I. Davis, and C. Maiza, "Cache Related Pre-emption Delay Aware Response Time Analysis for Fixed
Priority Pre-emptive Systems," in Proceedings of the 32nd IEEE Real-Time Systems Symposium (RTSS), Vienna,
Austria, 2011, pp. 261-271.

Existing approach

• In 2007, Ju et al. presented an approach
– We refer to it as the JCR approach after their initials

23

)(

ECBUCB)(BRT
ihpj

jiij
jcr
i DP

Existing approach

• In 2007, Ju et al. presented an approach
– We refer to it as the JCR approach after their initials

23

)(

ECBUCB)(BRT
ihpj

jiij
jcr
i DP

Sum for every task τj
that can pre-empt
task τi

Existing approach

• In 2007, Ju et al. presented an approach
– We refer to it as the JCR approach after their initials

23

)(

ECBUCB)(BRT
ihpj

jiij
jcr
i DP

Sum for every task τj
that can pre-empt
task τi

the number of times task
τj can pre-empt a single
job of task τi

Existing approach

• In 2007, Ju et al. presented an approach
– We refer to it as the JCR approach after their initials

23

)(

ECBUCB)(BRT
ihpj

jiij
jcr
i DP

Sum for every task τj
that can pre-empt
task τi

the number of times task
τj can pre-empt a single
job of task τi

multiplied with the number
of task τi UCBs that could be
evicted task τj ECBs

Existing approach

• In 2007, Ju et al. presented an approach
– We refer to it as the JCR approach after their initials

23

)(

ECBUCB)(BRT
ihpj

jiij
jcr
i DP

Sum for every task τj
that can pre-empt
task τi

the number of times task
τj can pre-empt a single
job of task τi

multiplied with the number
of task τi UCBs that could be
evicted task τj ECBs

Ju, S. Chakraborty, and A. Roychoudhury, "Accounting for Cache-Related Preemption Delay in Dynamic Priority
Schedulability Analysis," in Design, Automation and Test in Europe Conference and Exposition (DATE), Nice,
France, 2007, pp. 1623-1628

Existing approach

• Can be pessimistic for nested pre-emptions
• Calculates the cost between each pair of tasks

24

Existing approach

• Can be pessimistic for nested pre-emptions
• Calculates the cost between each pair of tasks
• If pre-empting tasks have ECBs located in the

same cache sets, they will be counted multiple
times
– More likely when there the cache utilisation is

high

24

Existing approach

• Can be pessimistic for nested pre-emptions
• Calculates the cost between each pair of tasks
• If pre-empting tasks have ECBs located in the

same cache sets, they will be counted multiple
times
– More likely when there the cache utilisation is

high

• It is incomparable to the approaches we have
presented so far

24

Improved CRPD analysis

• The UCB-Union and ECB-Union approach can be
pessimistic

• They assume intermediate tasks are pre-empted
the same number of times as the pre-empted
task

25

Improved CRPD analysis

• E.g. the cost of τ2 pre-empting task τ3 is
counted three times rather than once

26

Improved CRPD analysis

• E.g. the cost of τ2 pre-empting task τ3 is
counted three times rather than once

26

Multiset approaches

27

• ECB-Union Multiset and UCB-Union Multiset
• Factor in the number of times that

intermediate tasks pre-empt the pre-empted
task to tighten the bound
– See paper for details

Comparison of approaches

28

Comparison of approaches

28

Comparison of approaches

28

Comparison of approaches

28

Comparison of approaches

28

Case study

• Based on a code from the Mälardalen
benchmark suite to create a 15 task taskset

• Setup to model an ARM7
– 10MHz CPU
– 2KB direct-mapped instruction cache
– Line size of 8 Bytes, 4 Byte instructions, 256

cache sets
– Block reload time of 8μs

29

Case study

30

Breakdown utilisation

No pre-emption cost 1

Combined Multiset 0.659

ECB-Union Multiset 0.659

UCB-Union Multiset 0.594

ECB-Union 0.612
UCB-Union 0.583
UCB-Only 0.462
ECB-Only 0.364

JCR 0.488

Synthetic tasksets

• 10 tasks per taskset
• 10,000 tasksets for baseline evaluation
• 512 cache sets
• Cache utilisation of 5
• Maximum UCB percentage of 30%

31

Baseline evaluation

32

Baseline evaluation

32

Baseline evaluation

32

Combined multiset approach
outperforms all other
approaches

Including the existing
approach

Baseline evaluation

33

Weighted
Schedulability

No pre-emption cost 1

Combined Multiset 0.528

ECB-Union Multiset 0.501

UCB-Union Multiset 0.455

ECB-Union 0.481

UCB-Union 0.427

UCB-Only 0.416

ECB-Only 0.236

JCR 0.333

Baseline evaluation

33

Weighted
Schedulability

No pre-emption cost 1

Combined Multiset 0.528

ECB-Union Multiset 0.501

UCB-Union Multiset 0.455

ECB-Union 0.481

UCB-Union 0.427

UCB-Only 0.416

ECB-Only 0.236

JCR 0.333

Varying Cache Utilisation

34

Varying Cache Utilisation

34

Varying Cache Utilisation

34

Varying Maximum UCB Percentage

35

Varying Maximum UCB Percentage

35

Varying Maximum UCB Percentage

35

Varying Number of Tasks

36

Conclusion

• Presented new CRPD aware analysis for EDF
• Combined multiset approach dominates the

existing approach by Ju et al.
– Confirmed via evaluation/simulation

• Detailed study shows the strengths and
weaknesses of the different approaches

• We plan to investigate which is better, FP or
EDF, when taking into account CRPD

37

Thank you for listening

Any Questions?

38

