
Priority Assignment for Global
Fixed Priority Pre-emptive

Scheduling in Multiprocessor
Real-Time Systems

Robert Davis and Alan Burns

Real-Time Systems Research Group, University of York

Research scope
 Homogeneous Multiprocessor Real-Time Systems

 Global scheduling
 Single global run-queue
 Pre-emption and migration

 Fixed priority scheduling
 All jobs of a task have the same fixed priority

 How should priorities be assigned?

Motivation
 Aim to close the gap between existing sufficient

schedulability tests for sporadic tasksets with
constrained deadlines and what may be possible as
indicated by infeasibility tests
 RTA test for global FP scheduling (DMPO) shown to be

more effective than state-of-the-art tests for global EDF
and EDZL (Bertogna [17])

 Deadline Monotonic Priority Ordering (DMPO) can have
poor performance in the multiprocessor case (Dhall [25])

 Hypothesis:
 Priority assignment is key to the effectiveness of FP

scheduling
 Possible to improve schedulability test performance by

using more effective priority assignment policies

Outline of presentation
 System model, terminology, and definitions
 Recap on schedulability tests for global FP scheduling
 Optimal Priority Assignment (OPA) algorithm

 Which schedulability tests are OPA-compatible?
 Heuristic priority assignment policies
 Taskset generation

 Parameter independence, UUnifast-Discard algorithm
 Empirical results
 Summary and conclusions

System model
 Multiprocessor system

 m identical processors
 Global fixed priority pre-emptive scheduling
 Migration is permitted, but a job can only execute on one

processor at a time
 Sporadic task model

 Static set of n tasks τi with priorities 1..n
 Bounded worst-case execution time Ci

 Sporadic/periodic arrivals: minimum inter-arrival time Ti

 Relative deadline Di (Constrained deadlines ≤ Ti)
 Independent

Definitions
 Feasibility and Optimality

 A taskset is said to be feasible on a multiprocessor
system if there exists some scheduling algorithm that can
schedule the taskset without missing a deadline

 A scheduling algorithm is said to be optimal if it can
schedule all feasible tasksets

 Schedulability tests
 Sufficient � if all tasksets / priority ordering combinations

deemed schedulable are in fact schedulable
 Necessary � if all tasksets / priority ordering

combinations deemed unschedulable are in fact
unschedulable

 Exact � both sufficient and necessary
 No exact tests are known for global FP scheduling of

sporadic tasksets

Sufficient schedulability tests
 Fundamental approach

(Baker [8])
 Problem window in which

deadline is missed (e.g. Dk)
 Necessary condition for

deadline miss:
m processors all occupied
for more than Dk - Ck

 Derive upper bound on
interference IUB

 Negate the un-schedulability
condition to form a sufficient
schedulability test

Sufficient schedulability tests
 Polynomial time test: Deadline Analysis (�DA test�)

(Bertogna et al. [18])

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+≥ ∑

∈∀)(
)(1

khpi
k

D
ikk DI

m
CD

)1),(min()(+−= kkk
D

ik
D
i CDDWDI

))(,min()()(ikiiikiikik
D

i TDNCDDCCDNDW −−++=

⎥
⎦

⎥
⎢
⎣

⎢ −+
=

i

iik
ki T

CDDDN)(

Ci

Ti
Di

Dk

Sufficient schedulability tests
 Pseudo-polynomial time Response Time Analysis

(�RTA test�) (Bertogna and Cirinei [16])

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+← ∑

∈∀)(
)(1

khpi

UB
kik

UB
k RI

m
CR

)1),(min()(+−= k
UB
k

UB
k

R
i

UB
ki CRRWRI

))(,min()()(i
R
ii

UB
iii

R
i

R
i TLNCRLCCLNLW −−++=

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −+
=

i

i
UB

R
i T

CRL
LN i)(

Optimal Priority Assignment
 Definition of Optimal Priority Assignment

 In FP scheduling, a priority assignment policy P is referred
to as optimal with respect to some schedulability test S if
there are no tasksets that are deemed schedulable by the
test using any other priority assignment policy Q, that are
not also deemed schedulable using policy P.

 Definition applicable to sufficient tests as well as
exact tests
 Sufficient test + optimal priority assignment cannot

schedule all tasksets that are feasible under global FP
 Exact test + optimal priority assignment can schedule all

tasksets that are feasible under global FP, but not all
feasible tasksets (global FP is not an optimal
multiprocessor scheduling algorithm)

Optimal Priority Assignment
 Single processor:

 Constrained-deadline tasksets: DMPO is optimal
 Arbitrary-deadline tasksets / tasks with offsets � Audsley�s

Optimal Priority Assignment algorithm [6], [7] is optimal

Optimal Priority Assignment (OPA) Algorithm
for (each priority level k, lowest first){

for (each unassigned task ττ){
if (ττ

is schedulable at priority k
according to schedulability test S){

assign ττ

to priority k
break (continue outer loop)

}
}
return unschedulable

}
return schedulable

Optimal Priority Assignment
 Multiprocessor:

 B. Andersson and Jonsson [1] observed that for periodic
tasksets scheduled using global FP scheduling
�There exist task sets for which the response time of a
task depends not only on Ci and Ti of its higher-priority
tasks, but also on the relative priority ordering of those
tasks�
Conclusion
It isn�t possible to use Audsley�s OPA algorithm to
determine the optimal priority ordering for periodic tasks
when using an exact schedulability test

Possibly led to a general misconception
OPA algorithm cannot be used for priority assignment in
multiprocessor global FP scheduling

Optimal Priority Assignment
 OPA algorithm provides optimal priority assignment

w.r.t. any schedulability test S for global FP
scheduling provided that 3 conditions are met�

Condition 1: Schedulability of a task may, according to the test, be
dependent on the set of higher priority tasks, but not on their relative
priority ordering

Condition 2: Schedulability of a task may, according to the test, be
dependent on the set of lower priority tasks, but not on their relative
priority ordering

Condition 3: When the priorities of any two tasks of adjacent priority
are swapped, the task being assigned the higher priority cannot
become unschedulable according to the test, if it was previously
deemed schedulable at the lower priority

Tests meeting these conditions referred to as OPA-compatible

Optimal Priority Assignment
 OPA-Compatible tests

 Deadline Analysis (DA test) of Bertogna et al. [18]
 Simple Response Time test of B. Andersson and Jonsson [1]

 OPA-Incompatible tests
 Any exact schedulability test for periodic tasksets (e.g. Cucu

and Goossens [20], [21])
 Response time analysis (RTA test) of Bertogna and Cirinei

[16]
 Improved RTA test of Guan et al. that limits carry-in

interference

∑
∈∀

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+←

)(

1

khpi
ii

i

ub
k

k
ub
k CC

T
R

m
CR

Heuristic Priority Assignment
Policies
 Deadline Monotonic Priority Ordering (DMPO)

 Optimal for single processor case when tasks have
constrained deadlines (Leung & Whitehead [31])

 Assumed in the majority of research on global FP
scheduling

 Suffers from the �Dhall effect� (Utilisation bound close to
1 for m processors)

 Deadline minus Computation time Monotonic Priority
Ordering (DCMPO)

RHS increases slowly for large m suggesting that DCMPO
might be an effective heuristic priority assignment policy

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
≥− ∑

∈∀)(
)(1

khpi
k

D
ikk DI

m
CD

Heuristic Priority Assignment
Policies
 TkC policy (B. Andersson and Jonsson [2])

 Devised for tasksets with implicit deadlines
 Aimed at circumventing the Dhall effect
 Priority based on Ti - k Ci

 k varies from 1 to ≈1.62
 DkC policy

 Simple extension of TkC to the constrained deadline case
 Priority based on Di - k Ci

m
mmmk

2
1651 2 +−+−

=

Taskset Generation
 Randomly generated tasksets used to examine

schedulability test and priority assignment policy
effectiveness

 Requirements for Taskset generation:
 Unbiased distribution of task utilisation values
 Able to generate tasksets with different parameter

settings (e.g. number of tasks, total utilisation)
independent of one another

 Fast � able to generate many tasksets in a reasonable
time frame

 UUnifast algorithm (Bini & Buttazzo [19])
 Achieves this for single processor case
 De-facto standard for empirical investigation of

uniprocessor schedulability tests

Taskset Generation
 UUnifast algorithm (Bini & Buttazzo [19])

 UUnifast is scale invariant
 Can be used to generate tasksets with total utilisation > 1
 BUT some tasks may be given a utilisation > 1

UUnifast(n,Ut)
{

SumU = Ut;
for (i = 1 to n-1) {

nextSumU = SumU * pow(rand(), 1/(n-i));
U[i] = SumU – nextSumU;
sumU = nextSumU;

}
U[n] = SumU;

}

Taskset Generation
 UUnifast-Discard

 Use UUnifast and simply discard any taskset generated
with an invalid task (utilisation > 1)

 Set a pragmatic discard limit on how many tasksets we are
willing to discard per valid taskset generated (e.g. 1000)

 Advantages of UUnifast-Discard
 Unbiased distribution of utilisation values
 Can vary number of tasks and taskset utilisation

independently � avoids problem of confounding variables
 Disadvantages of UUnifast-Discard

 Does not cover all of the problem space
In practice UUnifast-Discard covers enough of the problem
space for some useful experiments

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50
Number of tasks

M
ax

 to
ta

l u
til

is
at

io
n

Taskset Generation
 UUnifast-Discard

 Graph assumes a
discard limit of 1000

 Algorithm is
effective for wide
range of parameters
used in most
experiments

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50
Number of tasks

M
ax

 to
ta

l u
til

is
at

io
n

Empirical Investigation
 Taskset parameters

 Task utilisations generated via UUnifast-Discard
 Task periods chosen from a log-uniform distribution with a

range from min to max period of 1000 (e.g. 1ms to 1 sec)
 Execution times set from task utilisation and period values
 Task deadlines chosen from a uniform distribution between

execution time and period
 Total utilisation varied from 0.025m to 0.975m in steps of

0.025m
 1000 tasksets generated for each total utilisation level
 Graphs plot the percentage of tasksets that are schedulable

according to each schedulability test / priority assignment
policy, against total utilisation

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

Expt 1: Priority Assignment
4 Processors
20 tasks

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

Expt 1: Priority Assignment
8 Processors
40 tasks

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

OPA v. DMPO
50% of tasksets
schedulable at:
U = 0.28m DMPO
U = 0.59m OPA

Effectively
increased usable
processing
capacity by
> 100%

Expt 1: Priority Assignment

Total number of
schedulable
tasksets increased
from ≈10,000 with
DMPO to ≈23,000
with OPA

>100% more

16 Processors
80 tasks

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10.0 10.8 11.6 12.4 13.2 14.0 14.8 15.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA (OPA)
RTA (DKC)
DA (DKC)
 RTA (DCMPO)
DA (DCMPO)
RTA (DMPO)
DA (DMPO)

Expt 2: Number of tasks
 8 processor system

 Note UUnifast-Discard
can�t generate tasksets
with n = 9, U > 6.6

 Becomes harder to
schedule tasksets as the
number of tasks
increases from 9 to 40

 With a small number of
tasks, each high
utilisation task effectively
occupies a single
processor and can be
scheduled

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA (OPA) 9
DA (OPA) 10
DA (OPA) 12
DA (OPA) 16
DA (OPA) 24
DA (OPA) 40

Expt 2: Number of tasks
 8 processor system

 Becomes easier to
schedule tasksets as
number of tasks
increases from 40 to 200

 With a large number of
tasks, average task
utilisation is small,
reducing the pessimism
in the assumption that all
other processors are idle
when the task of interest
executes0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA (OPA) 200

DA (OPA) 160

DA (OPA) 120

DA (OPA) 80

DA (OPA) 40

Summary
 Motivation

 To improve on current state-of-the-art in terms of
practical techniques that enable the efficient use of
processing capacity in hard real-time systems based on
multiprocessors.

 Drawn to this area of research by the results of Bertogna
et al. [18] showing that schedulability tests for global FP
scheduling using DMPO outperformed those for global
EDF and EDZL

 Hypothesis
 Priority assignment is of fundamental importance in

global FP scheduling
 Possible to improve schedulability test performance by

using more effective priority assignment policies

Summary
 Contribution

 Proof that the OPA algorithm (Audsley [6], [7]) provides
optimal priority assignment for global FP scheduling tests
that meet 3 simple conditions: OPA-compatible tests

 DkC priority assignment policy for constrained deadline
tasksets

 Trivial extension of TkC
 Effective policy to use with OPA-incompatible tests

 UUnifast-Discard
 Adaptation of UUnifast algorithm to multiprocessor case
 Generates unbiased distribution of task utilisation values and

avoids the problem of confounding variables
 Area of future work: covering all of the problem space

Conclusions
 Empirical Evaluation

 Shows that the OPA algorithm and DkC priority
assignment are highly effective at improving the
schedulability of constrained-deadline tasksets under
global FP scheduling

 In the 16 processor case using OPA rather than DMPO
More than doubled the number of schedulable tasksets
Effectively more than doubled the processor capacity

that could be used by hard real-time tasks
 Made a significant contribution to closing the gap

between sufficient schedulability tests for global FP
scheduling and what might be possible as indicated by
infeasibility tests

Questions ?

Expt1: EDF and LOAD*
16 Processors
80 tasks

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10.0 10.8 11.6 12.4 13.2 14.0 14.8 15.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA (OPA)
DA (DKC)
DA (DCMPO)
DA (DMPO)
LOAD* infeasible
EDF (RTA)

Survey paper

�A Survey of Hard Real-Time Scheduling Algorithms
and Schedulability Analysis Techniques for

Multiprocessor Systems�
Now available as Technical Report YCS-2009-443

	 Priority Assignment for Global Fixed Priority Pre-emptive Scheduling in Multiprocessor Real-Time Systems
	Research scope
	Motivation
	Outline of presentation
	System model
	Definitions
	Sufficient schedulability tests
	Sufficient schedulability tests
	Sufficient schedulability tests
	Optimal Priority Assignment
	Optimal Priority Assignment
	Optimal Priority Assignment
	Optimal Priority Assignment
	Optimal Priority Assignment
	Heuristic Priority Assignment Policies
	Heuristic Priority Assignment Policies
	Taskset Generation
	Taskset Generation
	Taskset Generation
	Taskset Generation
	Empirical Investigation
	Expt 1: Priority Assignment
	Expt 1: Priority Assignment
	Expt 1: Priority Assignment
	Expt 2: Number of tasks
	Expt 2: Number of tasks
	Summary
	Summary
	Conclusions
	Questions ?
	Expt1: EDF and LOAD*
	Survey paper

