
Quantifying the Sub-optimality of Uniprocessor Fixed Priority Non-Pre-emptive
Scheduling

Robert I. Davis
Real-Time Systems Research

Group,
Department of Computer Science,

University of York, York, UK.
rob.davis@cs.york.ac.uk

Laurent George
AOSTE Team, INRIA
Rocquencourt, BP 105,

Domaine de Voluceau, 78153,
Le Chesnay Cedex, France

lgeorge@ieee.org

Pierre Courbin
Ecole Centrale d'Electronique

de Paris (ECE), LACSC,
37 Quai de Grenelle,
75015 Paris, France

courbin@ece.fr

Abstract
This paper examines the relative effectiveness of

fixed priority non-pre-emptive scheduling (FP-NP) in a
uniprocessor system, compared to an optimal work-
conserving non-pre-emptive algorithm; Earliest
Deadline First (EDF-NP). The quantitative metric used
in this comparison is the processor speedup factor,
defined as the factor by which processor speed needs to
increase to ensure that any taskset that is schedulable
according to EDF-NP can be scheduled using FP-NP
scheduling. For sporadic tasksets with implicit,
constrained, or arbitrary deadlines, the speedup factor is
shown to be lower bounded by 76322.1/1 ≈Ω and
upper bounded by 2.

We also report the results of empirical investigations
into the speedup factor required to ensure schedulability
in the non-pre-emptive case.

1. Introduction
In this paper, we are interested in determining the

largest factor by which the processing speed of a
uniprocessor needs to be increased, to ensure that any
taskset that was previously schedulable according to an
optimal work-conserving (i.e. non-idling), non-pre-
emptive scheduling algorithm is schedulable according
to fixed priority non-pre-emptive (FP-NP) scheduling.
We refer to this resource augmentation factor as the
processor speedup factor [17].
1.1. Pre-emptive scheduling

In 1973, Liu and Layland [22] considered fixed
priority pre-emptive (FP-P) scheduling of synchronous1

tasksets comprising independent periodic tasks, with
bounded execution times, and deadlines equal to their
periods. We refer to such tasksets as implicit-deadline
tasksets. Liu and Layland showed that rate monotonic
priority ordering (RMPO) is the optimal fixed priority
assignment policy for implicit-deadline tasksets, and that
using rate monotonic priority ordering, FP-P can
schedule any implicit-deadline taskset that has a total
utilisation 693.0)2ln(≈≤U .

Liu and Layland [22] also showed that Earliest
Deadline First (EDF-P) is an optimal dynamic priority

1 A taskset is synchronous if all of its tasks share a common release
time.

pre-emptive scheduling algorithm for implicit-deadline
tasksets, and that EDF-P can schedule any such taskset
that has a total utilisation 1≤U .

In 1974, Dertouzos [9] showed that EDF-P is an
optimal uniprocessor scheduling algorithm, in the sense
that if a valid schedule exists for a taskset, then the
schedule produced by EDF-P will also meet all
deadlines.

Research into real-time scheduling during the 1980�s
and early 1990�s focussed on lifting many of the
restrictions of the Liu and Layland task model. Task
arrivals were permitted to be sporadic, with known
minimal inter-arrival times, (still referred to as periods),
and task deadlines were permitted to be less than or
equal to their periods (so called constrained deadlines)
or less than, equal to, or greater than their periods (so
called arbitrary deadlines).

In 1982, Leung and Whitehead [19] showed that
deadline monotonic2 priority ordering (DMPO) is the
optimal fixed priority ordering for constrained-deadline
tasksets. Exact schedulability tests for FP-P scheduling
of constrained-deadline tasksets were introduced by
Joseph and Pandya in 1986 [16], Lehoczky et al. in 1989
[21], and Audsley et al. in 1993 [1].

In 1990, Lehoczky [20] showed that DMPO is not
optimal for tasksets with arbitrary deadlines; however,
an optimal priority ordering for such tasksets can be
determined in at most 2/)1(+nn task schedulability
tests using Audsley�s optimal priority assignment (OPA)
algorithm3 [1], [2]. Exact schedulability tests for tasksets
with arbitrary deadlines were developed by Lehoczky
[20] in 1990 and Tindell et al. [23] in 1994.

Exact EDF-P schedulability tests for both constrained
and arbitrary-deadline tasksets were introduced by
Baruah et al. [3], [4] in 1990.
1.2. Non-pre-emptive scheduling

In 1980, Kim and Naghibdadeh [18], and in 1991,
Jeffay et al. [15], gave exact schedulability tests for
implicit-deadline tasksets under Earliest Deadline First
non-pre-emptive (EDF-NP) scheduling. These tests were

2 Deadline monotonic priority ordering assigns priorities in order of
task deadlines, such that the task with the shortest deadline is given the
highest priority.
3 This algorithm is optimal in the sense that it finds a schedulable
priority ordering whenever such an ordering exists.

extended by George et al. [12] in 1996, to the general
case of sporadic tasksets with arbitrary deadlines.

While EDF-P is an optimal uniprocessor scheduling
algorithm, in the non-pre-emptive case no work-
conserving algorithm is optimal. This is because in
general it is necessary to insert idle time to achieve a
feasible schedule. The interested reader is referred to
[12] for examples of this behaviour.

In 1995, Howell and Venkatrao [14] showed that for
non-concrete4 periodic tasksets, the problem of
determining a feasible non-pre-emptive schedule is NP
hard. Further they showed that for sporadic tasksets, no
optimal on-line inserted idle time algorithm can exist. In
other words, clairvoyance is needed to determine a
feasible non-pre-emptive schedule.

While no work-conserving algorithm is optimal in
the strong sense that it can schedule any taskset for
which a feasible non-pre-emptive schedule exists; in
1995, George et al. [13] showed that EDF-NP is optimal
in the weak sense that it can schedule any taskset for
which a feasible work-conserving, non-pre-emptive
schedule exists. Hence we can regard EDF-NP as an
optimal work-conserving, non-pre-emptive scheduling
algorithm, for non-concrete tasksets.

George et al. [12] derived an exact schedulability test
for fixed priority non-pre-emptive (FP-NP) scheduling of
arbitrary-deadline tasksets, based on the approach of
Tindell et al. [23] for the pre-emptive case. George et al.
showed that unlike in the pre-emptive case, deadline
monotonic priority ordering is not optimal for
constrained-deadline tasksets scheduled by FP-NP.
Further, they showed that Audsley�s optimal priority
assignment algorithm [2] is applicable, and can be used
to determine an optimal priority ordering for tasksets
with arbitrary-deadlines scheduled using FP-NP.

Subsequent research by Bril et al. [5] has refined
exact analysis of FP-NP, correcting issues of both
pessimism and optimism, and extending the
schedulability tests to co-operative scheduling where
each task is made up of a number of non-pre-emptive
sections.
1.3. Sub-optimality and speedup factors

Combining the result of Dertouzos [9] with the
results of Liu and Layland [22], shows that the processor
speedup factor required to guarantee that FP-P
scheduling can schedule any implicit-deadline taskset
schedulable by EDF-P is 44270.1)2ln(/1 ≈ .

In 2009, Davis et al. [7] derived the exact speedup
factor for FP-P scheduling of constrained-deadline
tasksets; 76322.1/1 ≈Ω (where Ω is the mathematical
constant defined by the transcendental equation

Ω=Ω)/1ln(, hence, 0.567143 ≈Ω). Also in 2009,
Davis et al. [8] showed that the speedup factor for FP-P
scheduling of arbitrary-deadline tasksets is lower
bounded by 76322.1/1 ≈Ω and upper bounded by 2.
Further, if deadline monotonic priority assignment is
assumed (which is not optimal for arbitrary-deadline
tasksets), then the exact speedup factor required is 2.

4 A periodic taskset is referred to as non-concrete if the times at which
each task is first released are unknown.

In this paper, we derive upper and lower bounds on
the speedup factor required such that any taskset that
was previously schedulable according to an optimal
work-conserving (i.e. non-idling) non-pre-emptive
scheduling algorithm (i.e. EDF-NP) can be guaranteed to
be schedulable according to fixed priority non-pre-
emptive (FP-NP) scheduling. These bounds are valid for
all three classes of non-concrete taskset; Implicit-
deadline, constrained-deadline, and arbitrary-deadline.
While these results are mainly theoretical, they also have
practical utility in enabling system designers to quantify
the maximum penalty for using fixed priority non-pre-
emptive scheduling in terms of the additional processing
capacity required. This performance penalty can then be
weighed against other factors such as implementation
overheads when considering which scheduling algorithm
to use.
1.4. Organisation

The remainder of this paper is organised as follows.
Section 2 describes the system model, notation and
analysis used. Section 3 illustrates the concept of
processor speedup factors via a simple example. Section
4 derives a lower bound on the processor speedup factor
required for FP-NP scheduling, while Section 5 derives
the corresponding upper bound. Section 6 reports on an
empirical investigation into the speedup factor required
for FP-NP scheduling, verifying the theoretical lower
bound. Section 7 concludes with a summary of the
results and suggestions for future work.

2. System model, notation, and analysis
In this section, we outline the scheduling model,

notation and terminology used in the rest of the paper.
We then recapitulate schedulability analysis for both FP-
NP and EDF-NP scheduling.
2.1. Scheduling model, terminology and notation

In this paper, we consider the non-pre-emptive
scheduling of a set of sporadic tasks (or taskset) on a
uniprocessor.

Each taskset comprises a static set of n tasks (nττ ..1),
where n is a positive integer. We assume that the index i
of task iτ also represents the task priority used in fixed
priority scheduling, hence 1τ has the highest fixed-
priority, and nτ the lowest.

Each task iτ is characterised by its bounded worst-
case execution time iC , minimum inter-arrival time or
period iT , and relative deadline iD . Each task iτ
therefore gives rise to a potentially infinite sequence of
invocations (or jobs), each of which has an execution
time upper bounded by iC , an arrival time at least iT
after the arrival of its previous invocation, and an
absolute deadline iD time units after its arrival.

In an implicit-deadline taskset, all tasks have
ii TD = . In a constrained-deadline taskset, all tasks

have ii TD ≤ , while in an arbitrary-deadline taskset, task
deadlines are independent of their periods, thus each task
may have a deadline that is less than, equal to, or greater
than, its period. The set of arbitrary-deadline tasksets is
therefore a superset of the set of constrained-deadline
tasksets, which is itself a superset of the set of implicit
deadline tasksets.

The utilisation iU , of a task is given by its execution
time divided by its period (iU = iC / iT). The total
utilisation U, of a taskset is the sum of the utilisations of
all of its tasks:

∑
=

=
n

i
iUU

1
 (1)

The following assumptions are made about the
behaviour of the tasks:

o The arrival times of the tasks are independent
and unknown a priori (non-concrete), hence the
tasks may share a common release time.
o Each task is released (i.e. becomes ready to
execute) as soon as it arrives.
o The tasks are independent and so cannot block
each other from executing by accessing mutually
exclusive shared resources, with the exception of the
processor.
o The tasks do not voluntarily suspend
themselves.

A task is said to be ready if it has outstanding
computation awaiting execution by the processor.

A taskset is said to be schedulable with respect to
some scheduling algorithm and some system, if all valid
sequences of task invocations (or jobs) that may be
generated by the taskset can be scheduled on the system
by the scheduling algorithm without any deadlines being
missed.

Under EDF-NP scheduling, whenever a job
completes execution, or when the processor is idle and a
job becomes ready to execute, the ready job with the
earliest absolute deadline is selected to execute. By
contrast, under FP-NP the highest priority ready job is
selected.

When a taskset is scheduled according to FP-NP, task
priorities need to be assigned according to some
algorithm. Audsley�s Optimal Priority Assignment
(OPA) algorithm [1], [2], (see Figure 1 below) provides
the optimal policy for sporadic tasksets with implicit-
deadlines, constrained-deadlines or arbitrary-deadlines.

Optimal Priority Assignment Algorithm
for each priority level k, lowest first {
 for each unassigned task τ {
 if(τ is schedulable at priority k with
all other unassigned tasks assumed
to have higher priorities) {
 assign τ to priority k
 break (continue outer loop)
 }
 }
 return unschedulable
}
return schedulable

Figure 1: OPA algorithm
A priority assignment policy P is said to be optimal

with respect to some class of tasksets, and a fixed
priority scheduling algorithm FP-X if there are no
tasksets in the class that are schedulable according to FP-
X using any other priority ordering policy that are not
also schedulable using the priority assignment
determined by policy P.

A taskset is said to be feasible with respect to a given

system model if there exists some scheduling algorithm
that can schedule all possible sequences of task
activations that may be generated by the taskset on that
system without missing any deadlines.

A scheduling algorithm is said to be optimal with
respect to a system model and a tasking model if it can
schedule all of the tasksets that comply with the tasking
model and are feasible on the system.

We note that EDF-NP is optimal in the weak sense
that it can schedule any sporadic taskset for which
feasible work-conserving, non-pre-emptive schedules
exist [13].

A schedulability test is termed sufficient, with respect
to a scheduling algorithm and system model, if all of the
tasksets that are deemed schedulable according to the
test are in fact schedulable on the system under the
scheduling algorithm. Similarly, a schedulability test is
termed necessary, if all of the tasksets that are deemed
unschedulable according to the test are in fact
unschedulable on the system under the scheduling
algorithm. A schedulability test that is both sufficient
and necessary is referred to as exact.
2.2. Schedulability analysis for FP-NP

Exact schedulability analysis for an arbitrary-
deadline sporadic taskset under FP-NP was given by
George et al. [12] and Bril et al. [5]. Below, we provide a
simple sufficient schedulability test for FP-NP
scheduling, derived from these exact tests. This
sufficient test is used in the derivation of an upper bound
on the speedup factor for FP-NP scheduling given in
Section 5. First, we introduce the concepts of worst-case
response time, priority level-i active period, and ∆-
critical instant, which are fundamental to analysis of FP-
NP scheduling.

For a taskset scheduled under FP-NP scheduling, the
worst-case response time iR of a task iτ is given by the
longest possible time from release of the task until it
completes execution. Thus task iτ is schedulable if and
only if ii DR ≤ , and the taskset is schedulable if and
only if ii DRi ≤∀ .

The term priority level-i active period refers to a
continuous period of time),[21 tt during which tasks, of
priority i or higher, that were released at the start of the
active period at 1t , or during the active period but
strictly before its end at 2t , are either executing or ready
to execute.

A ∆-critical instant for a task iτ refers to a pattern of
task arrivals such that task iτ is released simultaneously
with all tasks of higher priority than i, and then
subsequent releases of task iτ and the higher priority
tasks occur as early as possible given the constraints on
minimum inter-arrival times. Further, some infinitesimal
amount of time ∆ prior to this simultaneous release, a
lower priority task kτ is released, and this task has the
longest execution time of any such lower priority task.
Thus the longest time that task iτ and higher priority
tasks can be blocked from executing by lower priority
tasks is given by :

⎪⎩

⎪
⎨
⎧

=

<Δ−
= ∈∀

ni

niC
B kilpki

0

)(max
)((2)

where lp(i) is the set of tasks with priorities lower than i.
Bril et al. [5] showed that for FP-NP scheduling, the

longest response time of a task iτ occurs for some
invocation of the task within the priority level-i active
period starting at the ∆-critical instant for task iτ .
Lemma 3 in [5] states that the worst-case length of a
priority level-i active period iA is given by the
minimum solution to the following fixed point iteration:

j
ihepj j

m
i

i
m
i C

T
A

BA ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

)(

1 (3)

where hep(i) is the set of tasks with priorities higher than
or equal to i. Iteration starts with an initial value 0

iA
guaranteed to be no larger than the minimum solution,
for example ii CA =0 , and ends when m

i
m
i AA =+1 .

From Equation (3), we can form the following simple
sufficient test for FP-NP scheduling of arbitrary-deadline
tasksets. Each task iτ is schedulable provided that:

k
ihepk k

i
ii C

T
D

BD ∑
∈∀ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡
+≥

)(
 (4)

If Equation (4) holds, then this indicates that the solution
to the fixed point iteration of Equation (3) must be iD≤ .
As the worst-case length of a priority level-i active
period is then iD≤ , it follows that the worst-case
response time iR of task iτ must also be iD≤ , and
hence the task must be schedulable. If all of the tasks are
schedulable according to Equation (4), then the taskset is
schedulable. (For an exact schedulability test for FP-NP,
see [5]).
2.3. Schedulability analysis for EDF-NP

Baruah et al [3], [4] gave an exact schedulability test
for EDF-P based on the concept of the processor demand
bound function h(t). George et al. [12] extended this test
to EDF-NP via the addition of a blocking factor B(t).

i

n

i i

i C
T

Dtth ∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −
=

1
1,0max)((5)

⎪⎩

⎪
⎨
⎧

≥

<Δ−
=

∀

∀>∀

)(max0

)(max)(max
)(:

i
i

iiitDi
Dt

DtC
tB i (6)

George et al. [12] showed that an arbitrary-deadline
taskset is schedulable under EDF-NP if and only if

1≤U and a quantity referred to as the processor LOAD
is 1≤ , where the processor LOAD is given by:

LOAD ⎟
⎠
⎞

⎜
⎝
⎛ +

=
∀ t

tBth
t

)()(max (7)

Further, if 1≤U and the value of ttBth /))()((+ is 1≤
for all values of t in the interval],0(L , (where L is the
length of the synchronous priority level-n active period,
given by the minimum solution to Equation (3)), then
LOAD 1≤ . Thus the only values of t that need to be
checked are those in the interval],0(L that correspond
to times when)()(tBth + can change, i.e.

ii DkTti +=∀ for integer values of k. We note that
recently significant developments have been made,
reducing the number of values of t that need to be
checked [11]; however, this simple description of the
analysis is sufficient for the purposes of this paper. (We

note that for schedulable tasksets, the maximum value of
ttBth /))()((+ does not necessarily occur in the interval

],0(L , but does occur in the interval],[min HD where
minD is the shortest task deadline and H is the taskset

hyperperiod or Least Common Multiple of task periods
[10]).
2.4. Definitions
Definition 1: Let)(ΨOPTf be the lowest processor
speed such that taskset Ψ is schedulable according to an
optimal scheduling algorithm. Assume that)(ΨAf is
similarly the lowest processor speed that will schedule
taskset Ψ using scheduling algorithm A. The processor
speedup factor Af for algorithm A is given by the
maximum increase in processor speed required over an
optimal algorithm for any taskset Ψ .

())(/)(max ΨΨ=
Ψ∀

OPTAA fff (8)

For any scheduling algorithm A, we have 1≥Af , with
smaller values of Af indicative of a more effective
scheduling algorithm, and 1=Af implying that A is an
optimal algorithm.

In the remainder of the paper, unless otherwise
stated, when we refer to the processor speedup factor, we
mean the processor speedup factor for FP-NP scheduling
using an optimal priority assignment policy, as compared
to EDF-NP, an optimal (in the weak sense [13]), work-
conserving non-pre-emptive scheduling algorithm.
Definition 2: A taskset is said to be speedup-optimal if it
requires the processor to be speeded up by the processor
speedup factor in order to be schedulable using FP-NP
scheduling. Hence for a speedup-optimal taskset Ψ ,

AOPTA fff =ΨΨ)(/)(.
Definition 3: Let S be some arbitrary taskset, now
assume that)(SNPFP−α is the maximum factor by
which the execution times of all of the tasks in S can be
scaled, such that the taskset is schedulable under FP-NP.
Similarly, let)(SNPEDF−α be the maximum scaling
factor under EDF-NP. The speedup factor

)(Sf NPFP− for the taskset is given by:
)(/)()(SSSf NPFPNPEDFNPFP −−− = αα (9)

3. Example
The concept of a speedup factor for a given taskset S

can be illustrated by means of the following example.
Consider the taskset S comprising the tasks defined in
Table 1, with priorities assigned in the order that the
tasks appear in the table (i.e. Aτ has the highest priority,
and Dτ the lowest).

Table 1
Task iC ii TD =

Aτ 1 6
Bτ 1 7
Cτ 1 8
Dτ Δ+3

The worst-case arrival pattern for tasks Aτ , Bτ , and Cτ
under FP-NP scheduling is shown in Figure 2. Note the
1st job of each task is shaded in grey, while the 2nd job of
each task is un-shaded.

Figure 2: FP-NP schedule
Now consider the maximum factor by which the

execution times of the tasks can be scaled and the taskset
remain schedulable according to FP-NP. This factor is

−− =)5/6()(SNPFPα (i.e. a value infinitesimally less
than 6/5).

Figure 3: FP-NP schedule, maximal scaling
Figure 3 shows the FP-NP schedule for the scaled

taskset. Scaling by any larger factor, for example, a
factor equal to 6/5 would result in the first job of task

Cτ being unable to start executing before the 2nd job of
task Aτ is released at time t = 6. It would then be further
delayed by the 2nd job of task Bτ , and hence fail to met
its deadline at time t = 8. In fact, there is no priority
ordering which results in taskset S, scaled by a factor of
6/5, being schedulable. This can be seen by considering
the behaviour of the OPA algorithm. While task Dτ is
schedulable at the lowest priority, and can therefore be
assigned priority 4, none of the other tasks are
schedulable at priority 3.

Figure 4: EDF-NP schedule, maximal scaling
With EDF-NP scheduling, the maximum scaling

factor commensurate with taskset S remaining
schedulable is 6/8)(=− SNPEDFα . Under EDF-NP, the
first job of task Cτ has a later absolute deadline than the
first jobs of tasks Aτ and Bτ , and therefore executes
after those jobs and after the first job of Dτ which is
released at time Δ−=t . The first job of task Cτ is not
however delayed by the 2nd jobs of tasks Aτ and Bτ , as
these jobs have later absolute deadlines. With a scaling
factor of 8/6, the first job of task Cτ just completes by
its deadline (see Figure 4). Further analysis is required to
prove that the scaled taskset is schedulable under EDF-
NP; however, as the priority level 3 active period ends at

12=t , we need only check all deadlines in the interval

[0, 12] to show schedulability. Note, Figure 4 shows the
∆-critical instant for tasks Aτ , Bτ , Cτ , and all deadlines
are met in the interval [0, 12]. Further, task Dτ is
trivially schedulable as it has an infinite deadline, and
the taskset utilisation is less than 1.

Using Equation (9), the speedup factor for the taskset
given in Table 1 is)(Sf NPFP− = (8/6)/(6/5) − =

+)36/40(= +)9/10((i.e. a value infinitesimally larger
than 10/9). In the next section, we generalise this
example and show how tasksets with a similar structure
but with a large number of tasks require a much larger
speedup factor.

4. Lower bound speedup factor for FP-NP
In this section, we derive a lower bound on the

processor speedup factor required for FP-NP scheduling
using optimal priority assignment [1], [2]. This lower
bound is valid for sporadic and non-concrete periodic
tasksets with implicit-, constrained-, and arbitrary-
deadlines. In Section 5, we derive an upper bound with
the same scope.

To derive a lower bound, we need only select a single
taskset and determine the required speedup factor for
that taskset. The taskset S that we use is a generalisation
of the taskset used as an example in Section 3. In this
case, there are n tasks, with the parameters given in
Table 2. Tasks 1τ to 1−nτ are represented by iτ in the
first row of the table. All of these tasks have the same
small execution time X<<ε , and related
periods/deadlines. Further, all of the tasks have periods
equal to their deadlines, so this is an implicit-deadline
taskset. Task nτ has an execution time of Δ+X , where
X is a free variable that we can alter to maximise the
required speedup factor.

Table 2
Task iC ii TD =

iτ
)1(

1
−

=
n

ε
)1(
)1(1

−
−

++
n
iX

nτ Δ+X
The execution of taskset S under FP-NP is depicted in
Figure 5 below. Note, jobs of task 1−nτ are marked with
an ε .

Figure 5: FP-NP schedule

Figure 6: FP-NP schedule, maximal scaling
Lemma 1: The maximum factor)(SNPFP−α by which
the execution times of the tasks in taskset S (Table 2) can
be scaled and the taskset remain schedulable according
to FP-NP. is given by:

+

→

−
− =⎟

⎠
⎞

⎜
⎝
⎛

−+
+

= 1
1

1)(
0εε

α
X

XSNPFP

 (10)
Figure 6 depicts the FP-NP schedule for the scaled
taskset.
Proof: Scaling by a factor equal to)1/()1(ε+++ XX
would result in the first job of task 1−nτ being unable to
start executing before the 2nd job of task 1τ is released at
time Xt += 1 It would then be further delayed by the
2nd jobs of tasks 1τ to 2−nτ , and hence fail to met its
deadline at time ε−+= Xt 2 . In fact, there is no
priority ordering which results in taskset S, scaled by a
factor of)1/()1(ε+++ XX , being schedulable. This
can be seen by considering the behaviour of the OPA
algorithm, given the scaled taskset: Task nτ is
schedulable at the lowest priority, and can therefore be
assigned that priority. However, considering the
remaining tasks in turn, none of them are schedulable at
priority n-1. Task 1τ is not schedulable at priority n-1, as
its 1st job would miss its deadline at Xt += 1 . Task 2τ
is not schedulable at priority n-1, as its 1st job is then
unable to start before the 2nd job of task 1τ arrives, and
so misses its deadline at ε++= Xt 1 . In general, with a
scaling factor of)1/()1(ε+++ XX , for each task with
index i from 2 to n-1, assuming that task iτ is assigned
priority n-1, ensures that the 1st job of task iτ is unable
to start before the 2nd job of task 1−iτ arrives, and so the
1st job of task iτ misses its deadline.

By contrast, with a scaling factor of
−+++)1/()1(εXX , task 1−nτ is schedulable at priority

n-1, as it is able to start executing just prior to the arrival
of the 2nd job of 1τ at Xt += 1 . Further, with this
scaling factor, all of the other tasks are schedulable with
priorities assigned according to their indices (i.e. in
Deadline Monotonic priority order). This can be seen by
checking the deadlines of all jobs up to the end of the
priority level n-1 active period, which occurs at:

−

⎟
⎠
⎞

⎜
⎝
⎛

++
+

+=
εX

XXt A

1
)1()2((11)

As 12)1(2 DXt A =+< , the priority level n-1 active
period comprises the 1st job of task nτ and the 1st and 2nd

jobs of tasks 1τ to 1−nτ . All of these are schedulable
(see Figure 6). The priority level-n active period is of
similar length, and hence task nτ is trivially schedulable
given its infinite deadline
Lemma 2: The maximum factor)(SNPEDF−α by which

the execution times of the tasks in taskset S (Table 2) can
be scaled and the taskset remain schedulable according
to EDF-NP. is given by:

−− Ω=)/1()(SNPEDFα (12)

Proof: There are two key conditions which limit the
maximum scaling factor under EDF-FP (otherwise the
taskset would become unschedulable):

1. The 1st jobs of all tasks must be complete by the
deadline of task 1−nτ , ε−+=− XDn 21 .
2. Utilisation of the scaled taskset must not exceed
100%.

Considering the first condition, we have:

X
XSNPEDF

+
−+

≤−

1
2)(εα (13)

The utilisation of the un-scaled taskset is given by the
sum of the utilisation of each task:

)
1
11(

1
)1(

11

1
−
−

++−
= ∑

−

=
n
iXn

U
n

i
 (14)

The RHS of Equation (14) is recognisable as the left
Riemann sum of the function 1/z, over the interval

)2,1[XX ++ , hence:

⎟
⎠
⎞

⎜
⎝
⎛

+
+

== ∫
+

+

∞→

X
Xdz

z
U

X

X

n

1
2ln12

1

 (15)

Thus, considering the second condition, we have:

⎟
⎠
⎞

⎜
⎝
⎛

+
+

≤−

X
XSNPEDF

1
2ln/1)(α (16)

As Equation (13) is monotonically non-increasing in X
and tends to 2 for small X, and Equation (16) is
monotonically non-decreasing in X and tends to 1/ln(2)
for small X, then the maximum value is obtained when
the RHSs of Equations (13) and (16) are equal, i.e.
when:

=
+

−+
=−

X
XSNPEDF

1
2)(εα ⎟

⎠
⎞

⎜
⎝
⎛

+
+

X
X

1
2ln/1 (17)

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X

Sc
al

in
g

fa
ct

or

a1(X)
a2(X)

Figure 7: Constraints on the scaling factor as a
function of X

Figure 7 plots Equations (13) and (16) (labelled a1(X)
and a2(X) respectively) against X. As ∞→n , 0→ε ,

the solution to Equation (17) is given by the intersection
of the lines plotted in Figure 7, thus

76322.1)/1()(≈Ω= −− SNPEDFα , (where Ω is the
mathematical constant defined by the transcendental
equation Ω=Ω)/1ln(, hence, 0.567143 ≈Ω). Further,

310232.0
1

12
≈

Ω−
−−Ω

=
εX (18)

We now show that taskset S (Table 2) is schedulable
under EDF-NP, when scaled by a factor of

−− Ω=)/1()(SNPEDFα . Proof is made significantly
easier by the commonality between taskset S and the
speedup-optimal taskset V for the constrained-deadline
case of FP-P scheduling, described in Theorem 2 of [7].
In fact, tasks 1τ to 1−nτ are identical in these two
tasksets, only task nτ differs. In taskset V, the
parameters of task nτ are: XCn = , XDn += 2 , and

∞=nT , whereas in taskset S, the parameters of task nτ
are: Δ+= XCn , and ∞== nn TD Theorem 4 in [7]
proves that taskset V is schedulable under EDF-P when
scaled by a factor of Ω/1 . Hence for taskset V,

1)(max ≤⎟
⎠
⎞

⎜
⎝
⎛=

∀ t
thLOAD

t

P (19)

We make use of this result to show that taskset S,
scaled by a factor of −Ω)/1(is schedulable under EDF-
NP. As tasks 1τ to 1−nτ are identical, their contribution
to the processor demand bound)(th is the same for any
time t. We now compare the contribution from task nτ
in each case. In the pre-emptive case, (taskset V), nτ
contributes to)(th as follows:

⎩
⎨
⎧

+≥Ω
+<≤

=
)2(/

)2(00
)(

XtX
Xt

thP
n (20)

whereas, in the non-pre-emptive case, (taskset S), nτ
contributes only to the blocking factor:

0)/()(≥Ω= − tXtB
 (21)

Recall that in the non-pre-emptive case, a taskset is
schedulable provided that 1≤U and:

1)()(max ≤⎟
⎠
⎞

⎜
⎝
⎛ +

=
∀ t

tBthLOAD
t

NP (22)

Comparing Equations (19) and (22), and the
contributions of task nτ in each case (Equations (20) and
(21)), it follows that Equation (22) holds for all values of

)2(Xt +≥ for taskset S scaled by a factor of −Ω)/1(.
This is because, for all values of)2(Xt +≥ the value of

ttBth /))()((+ is the same as that for taskset V,
assuming both tasksets are scaled by the same factor. To
prove the schedulability of taskset S scaled by a factor of

−Ω)/1(, it remains only to show that 1/))()((≤+ ttBth
for all values of t in the interval))2(,0[X+ . Here, we
need only check values of t that correspond to task
deadlines. As 122 DX >+ , this amounts to checking the
1st deadline of each of the n-1 highest priority tasks. At
each of these deadlines iD , we have:

1
11,0max1)(

1

1 −⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −
⎟
⎠
⎞

⎜
⎝
⎛
Ω

= ∑
−

=

−

nT
DDDh

n

k k

ki
i

 (23)
as ii TDki =∀ , and ki DD 2< it follows that:

1
1)(

−
⎟
⎠
⎞

⎜
⎝
⎛
Ω

=
−

n
iDh i

 (24)
Hence the scaled taskset is schedulable provided that,

i∀ from 1 to n-1,)()(iii DBDhD +≥

⎟
⎠
⎞

⎜
⎝
⎛

−
+⎟

⎠
⎞

⎜
⎝
⎛
Ω

≥
−
−

++
−

1
1

1
11

n
iX

n
iX

 (25)
Substituting for)1/()2()/1(XX +−+=Ω − ε and

)1/(1 −= nε , and rearranging, we have:

⎟
⎠
⎞

⎜
⎝
⎛

−
+⎟

⎠
⎞

⎜
⎝
⎛

−
−+≥+⎟

⎠
⎞

⎜
⎝
⎛

−
−

++
11

12)1(
1
11

n
iX

n
XX

n
iX

(26)
which simplifies to:

0
)1(1

2
1
11 2 ≥

−
+

−
−

−
−

+
n

i
n

i
n
i (27)

and then to:

0
)1(1

2
2 ≥

−
+

−
−−

n
i

n
in (28)

For 2≥n , the first term in inequality (28) is non-
negative i∀ from 1 to n-2, while the second term is
always positive. Further, for i = n-1, the first and second
terms cancel out, thus the inequality holds i∀ from 1 to
n-1. Taskset S is therefore schedulable according to
EDF-NP when scaled by a factor of −Ω)/1(
Theorem 1: A lower bound on the speedup factor
required for FP-NP scheduling of an implicit-deadline
taskset is:

−
+

−

−

−
− Ω=

Ω
==)/1(

1
)/1(

)(
)(

S
Sf NPFP

NPEDF
NPFP

α
α (29)

Proof: Follows from Lemmas 1 and 2 and the definition
of the speedup factor
Corollary 1: We observe that as taskset S is an implicit-
deadline taskset, and all implicit-deadline tasksets are
also constrained-deadline and arbitrary-deadline tasksets,
the lower bound of Theorem 1 applies to all three classes
of taskset.
 It remains an open question whether or not the lower
bound given in Theorem 1 is tight. While the taskset
used to derive the bound is valid, whether or not it is a
speedup optimal taskset (see Definition 2) remains to be
proved / disproved. If the bound is not tight, then there
exists a different taskset construction that requires a
larger speedup factor.

5. Upper bound speedup factor for FP-NP
In this section, we derive an upper bound on the

speedup factor required for FP-NP scheduling of
arbitrary-deadline sporadic and non-concrete periodic
tasksets.
Theorem 2: An upper bound on the processor speedup
factor required such that FP-NP scheduling, using
optimal priority assignment can schedule any arbitrary-
deadline sporadic or non-concrete periodic taskset
schedulable under EDF-NP according to Equation (7), is
2.

Proof: Let S be any taskset that is schedulable according
to Equation (7) on a processor of unit speed under EDF-
NP. For each task kτ , in S, consider the processor
demand bound and blocking factor for an interval of
length kD2 . As taskset S is schedulable according to
EDF-NP, it follows that:

ki

n

i i

ik
k DC

T
DD

DB 21
2

,0max)2(
1

≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −
+∑

=

 (30)
Next, consider taskset S scheduled according to FP-NP
scheduling on a processor of speed 2 using Deadline
Monotonic priority assignment (rather than OPA).
DMPO implies that ki DDki ≤≤∀ .

From Equation (30) above, assuming speed 2, and
separating out the contribution from all tasks of lower or
equal priority to k we have:

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −
+ ∑

∈
i

klepi i

ik
k C

T
DD

DB
)(

1
2

,0max)2(

ki
khpi i

ik DC
T

DD
≤⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −∑
∈)(

1
2

,0max (31)

where)(klep is the set of tasks with priorities lower
than or equal to k. As the tasks are in DMPO, we note
that all of the tasks in)(klep have deadlines kD≥ .

We now consider just the first and second terms in
Equation (31). Observe that the contribution to the
second term from every task iτ in)(klep
with ki DD 2> is zero. Further, there is a contribution
from each task iτ with kik DDD 2≤≤ of at least iC .
From the definition of)(tB (Equation (6)), the
definition of kB (Equation (2)), and the fact that the
tasks are in DMPO, it follows that the sum of the first
two terms in Equation (31) are kB≥ , the blocking factor
for FP-NP scheduling:

k
DDDi
i

i
i

k

iikiDDi BC
DD

DDC

kik

ki ≥+
⎪⎭

⎪
⎬
⎫

≥

<Δ−
∑

≤≤∀∀

∀>∀

2:

2:
)(max20

)(max2)(max

where
⎪⎩

⎪
⎨
⎧

=

<Δ−
= ∈∀

nk

nkC
B iklpik

0

)(max
)(

 (32)
Substituting kB for the first two terms in Equation

(31) and transforming the third term by noting that
⎣ ⎦ ⎡ ⎤xx ≥+1 and ki DDkhpi ≤∈∀)(we have:

ki
khpi i

k
k DC

T
D

B ≤⎥
⎥

⎤
⎢
⎢

⎡
+ ∑

∈)(
 (33)

Equation (33) is identical to Equation (4); the sufficient
schedulability test for task kτ in an arbitrary-deadline
taskset S, scheduled under FP-NP. Repeating the above
argument for each task kτ in S therefore proves that the
taskset is schedulable on a processor of speed 2 under
FP-NP, with Deadline Monotonic priority assignment.
As optimal priority assignment for FP-NP can schedule
any taskset that is schedulable using FP-NP with
Deadline Monotonic priority ordering
Corollary 2: We observe that as the upper bound in

Theorem 2 holds for arbitrary-deadline tasksets, it must
also hold for implicit-deadline, and constrained-deadline
tasksets.

6. Empirical results
In this section, we confirm by experiment the results

presented in Section 4 concerning the lower bound
speedup factor for FP-NP. We consider the task set
proposed in Table 2 where 1−n tasks have worst-case
execution times equal to)1/(1 −n , and task nτ has a
worst-case execution time equal to Δ+X and an infinite
period and deadline.

Our experiments indicate that a value of 31.0≈X
results in the maximum speedup factor for a given
number of tasks. Based on this value, we verify the
lower bound given in this paper for a large number of
tasks.

Taskset S investigated in this section is based on the
task model presented in Table 2. This model is
theoretical, while our empirical assumptions are as
follows:

o Δ is equal to 0.001.
o The infinite values of period and deadline for

task nτ are replaced in the experiments by
values such that nτ does not interfere with other
tasks.

Finally, to avoid the problem of rounding, we have used
integer values, thus given that Δ is the time granularity,
each task parameter },,{ iii TDC is normalized according
to Δ . For example, with three tasks and X = 1, Table 3
gives the task set studied.

Table 3: Example of taskset studied with
001.0=Δ and 1=X

Task iC ii TD =

1τ 500 2000
2τ 500 2500
3τ 1001 ∞

In order to determine the speedup factor)(Sf NPFP− ,
we compute the maximum factors)(SNPEDF−α and

)(SNPFP−α via an approach based on binary search
(dichotomy). Algorithm 1 describes this approach, as
used in our experiments. To check the schedulability of
task set S, the function checkFeasibility() uses following
exact tests:
• For EDF-NP [12]:

1)()(max
],0[

≤⎟
⎠
⎞

⎜
⎝
⎛ +

∈∀ t
tBth

Lt
 (34)

• For FP-NP [6]:
iiiqi

Qq
i DqTCWRi

i

<−+=∀
∈

)(max, ,
],0[max

 (35)

where ⎡ ⎤ 1/max −= iii TAQ , iA is computed according to
Equation (3) and qiW , is given by the minimum solution
to the following fixed point iteration:

ii
i

m
qim

qi BC
T

W
W +

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ Δ+
=+ ,1

, (36)

with iB determined by Equation (2) and iqi qTW =0
, .

Finally, the speedup factor is computed via Equation
(9))(/)()(SSSf NPFPNPEDFNPFP −−− = αα .

Algorithm 1: Determines the maximum scaling
factor of a taskset S with a precision Δ via

binary search (dichotomy).
Figure 8 shows the maximum speedup factor

obtained for 5=n tasks. It shows the value of X for
which the speedup factor was empirically found to be a
maximum i.e. 31.0=X .

Figure 9 represents, for this optimum value
31.0=X , the speedup factor obtained as a function of

the number of tasks (from 10 to 400 tasks). We observe
that the maximum speedup factor for FP-NP tends
towards 1.76322, the lower bound of)(Sf NPFP−

characterized in Section 4, as the number of tasks
increases. Note that the saw tooth appearance of the
curve is an artefact of the quantisation of the execution
time values used in the experiment. When the number of
tasks is large, this causes a noticeable quantisation of the
scaling factors that can be explored.

Figure 8: Constraints on the scaling factor as a
function of X for 5=n

1.76322

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 100 200 300 400
Number of tasks

Sp
ee

du
p

fa
ct

or
 fo

r F
P-

NP

Lower Bound

Speedup factor
(Empirical value)

Figure 9: Speedup factor for 31.0=X as a
function of the number of tasks

7. Conclusions and future work
In this paper, we examined the relative effectiveness

of fixed priority non-pre-emptive scheduling. Our metric
for measuring the effectiveness of this scheduling
algorithm is a resource augmentation factor known as the
processor speedup factor. In this case, the processor
speedup factor is defined as the minimum amount by
which the processor needs to be speeded up so that any
taskset that is schedulable by an optimal work-
conserving non-pre-emptive scheduling algorithm (e.g.
EDF-NP) can be guaranteed to be schedulable under FP-
NP scheduling. Recall that EDF-NP is optimal in the
weak sense [13], in that it can schedule all sporadic or
non-concrete periodic tasksets for which a feasible non-
pre-emptive, work-conserving schedule exists. It is not
optimal in the strong sense as it cannot schedule all
tasksets for which a feasible non-work-conserving, non-
pre-emptive schedulable exists. The speedup factors
derived in this paper are with respect to this weak form
of optimality.

Table 4: FP scheduling speedup factors
 Pre-emptive Non-pre-emptive

Taskset
constraints

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

Implicit-
deadline

≈)2ln(/1
1.44269

≈Ω −)/1(
1.76322 2

Constrained-
deadline

≈Ω/1
1.76322

≈Ω −)/1(
1.76322 2

Arbitrary-
deadline

≈Ω/1
1.76322 2

≈Ω −)/1(
1.76322 2

Table 4 shows the processor speedup factor needed
for fixed priority scheduling with optimal priority
assignment, for both the pre-emptive case (FP-P v. EDF-
P), see Davis et al. [7], [8], and for the non-pre-emptive
case (FP-NP v. EDF-NP), derived in this paper.

The major contribution of this paper is in proving
that the processor speedup factor for fixed priority non-
pre-emptive scheduling of sporadic or non-concrete
periodic tasksets with optimal priority assignment, is
upper bounded by 2, and lower bounded by −Ω)/1(=
1.76322. We note that these bounds hold for tasksets
with implicit-, constrained-, and arbitrary-deadlines.

The seminal work of Liu and Layland [22]
characterises the maximum performance penalty
incurred when an implicit-deadline taskset is scheduled
using Rate-Monotonic, fixed priority pre-emptive
scheduling instead of an optimal algorithm such as EDF-
P. The research in this paper provides an analogous
characterisation of the maximum performance penalty
incurred when tasksets are scheduled using fixed priority
non-pre-emptive scheduling instead of an optimal work-
conserving non-pre-emptive scheduling algorithm e.g.
EDF-NP.

We note that the two cases in Table 4 where a tight
bound is known correspond to the only cases where
optimal priority assignment can be achieved
independently of schedulability testing. In the arbitrary-
deadline case for FP-P scheduling and all cases of FP-
NP scheduling, Audsley�s OPA algorithm is required to
find the optimal priority ordering. This dependence of
priority ordering on schedulability testing makes it more
difficult to reason about the properties of a theoretical
speedup-optimal taskset that requires the exact speedup
factor to be schedulable. In these cases, the exact sub-
optimality of fixed priority scheduling remains an open
question.
7.1. Acknowledgements

This work was funded in part by the EPSRC project
TEMPO (EP/G055548/1) and the EU funded
ArtistDesign Network of Excellence. The authors would
like to thank Alan Burns for his insightful comments on
an earlier draft.

References
[1] Audsley N.C., "Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times", Technical Report
YCS 164, Dept. Computer Science, University of York, UK, 1991.
[2] Audsley N.C. �On priority assignment in fixed priority
scheduling�, Information Processing Letters, 79(1): 39-44, May
2001.

[3] Baruah S.K., Mok A.K., Rosier L.E., �Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One Processor�. In
Proc. RTSS, pages182-190, 1990.
[4] Baruah S.K., Rosier L.E., Howell R.R., �Algorithms and
Complexity Concerning the Preemptive Scheduling of Periodic
Real-Time Tasks on one Processor�. Real-Time Systems, 2(4),
pages 301-324, 1990.
[5] Bril, R.J., Lukkien, J.J., and Verhaegh, W.F., �Worst-case
response time analysis of real-time tasks under fixed-priority
scheduling with deferred pre-emption�. Real-Time Systems. 42, 1-
3 (Aug. 2009), 63-119.
[6] Davis, R. I., Burns, A., �Controller area network (CAN)
schedulability analysis: Refuted, revisited and revised,� Real-Time
Systems, vol. 35, pp. 239�272, 2007.
[7] Davis R.I., Rothvoß T., Baruah S.K., Burns A., �Exact
Quantification of the Sub-optimality of Uniprocessor Fixed
Priority Pre-emptive Scheduling.� Real-Time Systems, Volume 43,
Number 3, pages 211-258, November 2009.
[8] Davis, R.I., Rothvoß, T., Baruah, S.K., Burns, A.,
�Quantifying the Sub-optimality of Uniprocessor Fixed Priority
Pre-emptive Scheduling for Sporadic Tasksets with Arbitrary
Deadlines�. In proceedings of Real-Time and Network Systems
(RTNS'09), pages 23-31, October 26-27th, 2009.
[9] Dertouzos M.L., �Control Robotics: The Procedural Control
of Physical Processes�. In Proc. of the IFIP congress, pages 807-
813, 1974.
[10] Fisher, N., Baker, T. P., Baruah, S. �Algorithms for
Determining the Demand-Based Load of a Sporadic Task System�.
In Proceedings of the 12th IEEE international Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 135-146, 2006.
[11] George, L., Hermant, J., �A norm approach for the Partitioned
EDF Scheduling of Sporadic Task Systems.� In Proc. ECRTS,
2009.
[12] George, L., Rivierre, N., Spuri, M., �Preemptive and Non-
Preemptive Real-Time UniProcessor Scheduling�, INRIA
Research Report, No. 2966, September 1996.
[13] George, L., Muhlethaler, P., Rivierre, N., �Optimality and
Non-Preemptive Real-Time Scheduling Revisited,� Rapport de
Recherche RR-2516, INRIA, Le Chesnay Cedex, France, 1995.
[14] Howell, R.R., Venkatrao, M.K., �On non-preemptive
scheduling of recurring tasks using inserted idle time�, Information
and computation Journal, Vol. 117, Number 1, Feb. 15, 1995.
[15] K. Jeffay, D. F. Stanat, C. U. Martel, �On Non-Preemptive
Scheduling of Periodic and Sporadic Tasks�, In Proc. RTSS, pages
129-139, 1991.
[16] Joseph M., Pandya P.K., �Finding Response Times in a Real-
time System�. The Computer Journal, 29(5), pages 390�395, 1986.
[17] Kalyanasundaram B., Pruhs K., �Speed is as powerful as
clairvoyance�. In Proceedings of the 36th Symposium on
Foundations of Computer Science, pages 214-221, 1995.
[18] Kim, Naghibdadeh, �Prevention of task overruns in real-time
non-preemptive multiprogramming systems�, Proc. of Perf.,
Assoc. Comp. Mach., 1980, pp 267-276.
[19] Leung J.Y.-T., Whitehead J., "On the complexity of fixed-
priority scheduling of periodic real-time tasks". Performance
Evaluation, 2(4), pages 237-250, 1982.
[20] Lehoczky J., �Fixed priority scheduling of periodic task sets
with arbitrary deadlines�. In Proc. RTSS, pages 201�209, 1990.
[21] Lehoczky J.P., Sha L., Ding Y., �The rate monotonic
scheduling algorithm: Exact characterization and average case
behaviour�. In Proc. RTSS, pages 166�171, 1989.
[22] Liu C.L., Layland J.W., "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Journal of
the ACM, 20(1) pages 46-61, 1973.
[23] Tindell K.W., Burns A., Wellings A.J., �An extendible
approach for analyzing fixed priority hard real-time tasks�. Real-
Time Systems. Volume 6, Number 2, pages 133-151, 1994.

