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Abstract 
This paper examines the relative effectiveness of 

fixed priority non-pre-emptive scheduling (FP-NP) in a 
uniprocessor system, compared to an optimal work-
conserving non-pre-emptive algorithm; Earliest 
Deadline First (EDF-NP). The quantitative metric used 
in this comparison is the processor speedup factor, 
defined as the factor by which processor speed needs to 
increase to ensure that any taskset that is schedulable 
according to EDF-NP can be scheduled using FP-NP 
scheduling. For sporadic tasksets with implicit, 
constrained, or arbitrary deadlines, the speedup factor is 
shown to be lower bounded by 76322.1/1 ≈Ω  and 
upper bounded by 2. 

We also report the results of empirical investigations 
into the speedup factor required to ensure schedulability 
in the non-pre-emptive case. 

1. Introduction 
In this paper, we are interested in determining the 

largest factor by which the processing speed of a 
uniprocessor needs to be increased, to ensure that any 
taskset that was previously schedulable according to an 
optimal work-conserving (i.e. non-idling), non-pre-
emptive scheduling algorithm is schedulable according 
to fixed priority non-pre-emptive (FP-NP) scheduling. 
We refer to this resource augmentation factor as the 
processor speedup factor [17]. 
1.1. Pre-emptive scheduling 

In 1973, Liu and Layland [22] considered fixed 
priority pre-emptive (FP-P) scheduling of synchronous1

tasksets comprising independent periodic tasks, with 
bounded execution times, and deadlines equal to their 
periods. We refer to such tasksets as implicit-deadline
tasksets. Liu and Layland showed that rate monotonic
priority ordering (RMPO) is the optimal fixed priority 
assignment policy for implicit-deadline tasksets, and that 
using rate monotonic priority ordering, FP-P can 
schedule any implicit-deadline taskset that has a total 
utilisation 693.0)2ln( ≈≤U . 

Liu and Layland [22] also showed that Earliest 
Deadline First (EDF-P) is an optimal dynamic priority 

1 A taskset is synchronous if all of its tasks share a common release 
time.

pre-emptive scheduling algorithm for implicit-deadline 
tasksets, and that EDF-P can schedule any such taskset 
that has a total utilisation 1≤U . 

In 1974, Dertouzos [9] showed that EDF-P is an 
optimal uniprocessor scheduling algorithm, in the sense 
that if a valid schedule exists for a taskset, then the 
schedule produced by EDF-P will also meet all 
deadlines. 

Research into real-time scheduling during the 1980�s 
and early 1990�s focussed on lifting many of the 
restrictions of the Liu and Layland task model. Task 
arrivals were permitted to be sporadic, with known 
minimal inter-arrival times, (still referred to as periods), 
and task deadlines were permitted to be less than or 
equal to their periods (so called constrained deadlines) 
or less than, equal to, or greater than their periods (so 
called arbitrary deadlines). 

In 1982, Leung and Whitehead [19] showed that 
deadline monotonic2 priority ordering (DMPO) is the 
optimal fixed priority ordering for constrained-deadline 
tasksets. Exact schedulability tests for FP-P scheduling 
of constrained-deadline tasksets were introduced by 
Joseph and Pandya in 1986 [16], Lehoczky et al. in 1989 
[21], and Audsley et al. in 1993 [1]. 

In 1990, Lehoczky [20] showed that DMPO is not 
optimal for tasksets with arbitrary deadlines; however, 
an optimal priority ordering for such tasksets can be 
determined in at most 2/)1( +nn  task schedulability 
tests using Audsley�s optimal priority assignment (OPA) 
algorithm3 [1], [2]. Exact schedulability tests for tasksets 
with arbitrary deadlines were developed by Lehoczky 
[20] in 1990 and Tindell et al. [23] in 1994. 

Exact EDF-P schedulability tests for both constrained 
and arbitrary-deadline tasksets were introduced by 
Baruah et al. [3], [4] in 1990. 
1.2. Non-pre-emptive scheduling 

In 1980, Kim and Naghibdadeh [18], and in 1991, 
Jeffay et al. [15], gave exact schedulability tests for 
implicit-deadline tasksets under Earliest Deadline First 
non-pre-emptive (EDF-NP) scheduling. These tests were 

2 Deadline monotonic priority ordering assigns priorities in order of 
task deadlines, such that the task with the shortest deadline is given the 
highest priority.
3 This algorithm is optimal in the sense that it finds a schedulable 
priority ordering whenever such an ordering exists.



extended by George et al. [12] in 1996, to the general 
case of sporadic tasksets with arbitrary deadlines. 

While EDF-P is an optimal uniprocessor scheduling 
algorithm, in the non-pre-emptive case no work-
conserving algorithm is optimal. This is because in 
general it is necessary to insert idle time to achieve a 
feasible schedule. The interested reader is referred to 
[12] for examples of this behaviour. 

In 1995, Howell and Venkatrao [14] showed that for 
non-concrete4 periodic tasksets, the problem of 
determining a feasible non-pre-emptive schedule is NP 
hard. Further they showed that for sporadic tasksets, no 
optimal on-line inserted idle time algorithm can exist. In 
other words, clairvoyance is needed to determine a 
feasible non-pre-emptive schedule. 

While no work-conserving algorithm is optimal in 
the strong sense that it can schedule any taskset for 
which a feasible non-pre-emptive schedule exists; in 
1995, George et al. [13] showed that EDF-NP is optimal 
in the weak sense that it can schedule any taskset for 
which a feasible work-conserving, non-pre-emptive 
schedule exists. Hence we can regard EDF-NP as an 
optimal work-conserving, non-pre-emptive scheduling 
algorithm, for non-concrete tasksets. 

George et al. [12] derived an exact schedulability test 
for fixed priority non-pre-emptive (FP-NP) scheduling of 
arbitrary-deadline tasksets, based on the approach of 
Tindell et al. [23] for the pre-emptive case. George et al. 
showed that unlike in the pre-emptive case, deadline 
monotonic priority ordering is not optimal for 
constrained-deadline tasksets scheduled by FP-NP. 
Further, they showed that Audsley�s optimal priority 
assignment algorithm [2] is applicable, and can be used 
to determine an optimal priority ordering for tasksets 
with arbitrary-deadlines scheduled using FP-NP. 

Subsequent research by Bril et al. [5] has refined 
exact analysis of FP-NP, correcting issues of both 
pessimism and optimism, and extending the 
schedulability tests to co-operative scheduling where 
each task is made up of a number of non-pre-emptive 
sections. 
1.3. Sub-optimality and speedup factors 

Combining the result of Dertouzos [9] with the 
results of Liu and Layland [22], shows that the processor 
speedup factor required to guarantee that FP-P 
scheduling can schedule any implicit-deadline taskset 
schedulable by EDF-P is 44270.1)2ln(/1 ≈ . 

In 2009, Davis et al. [7] derived the exact speedup 
factor for FP-P scheduling of constrained-deadline 
tasksets; 76322.1/1 ≈Ω (where Ω  is the mathematical 
constant defined by the transcendental equation 

Ω=Ω)/1ln( , hence, 0.567143 ≈Ω ). Also in 2009, 
Davis et al. [8] showed that the speedup factor for FP-P 
scheduling of arbitrary-deadline tasksets is lower 
bounded by 76322.1/1 ≈Ω and upper bounded by 2. 
Further, if deadline monotonic priority assignment is 
assumed (which is not optimal for arbitrary-deadline 
tasksets), then the exact speedup factor required is 2. 

4 A periodic taskset is referred to as non-concrete if the times at which 
each task is first released are unknown.  

In this paper, we derive upper and lower bounds on 
the speedup factor required such that any taskset that 
was previously schedulable according to an optimal 
work-conserving (i.e. non-idling) non-pre-emptive 
scheduling algorithm (i.e. EDF-NP) can be guaranteed to 
be schedulable according to fixed priority non-pre-
emptive (FP-NP) scheduling. These bounds are valid for 
all three classes of non-concrete taskset; Implicit-
deadline, constrained-deadline, and arbitrary-deadline. 
While these results are mainly theoretical, they also have 
practical utility in enabling system designers to quantify 
the maximum penalty for using fixed priority non-pre-
emptive scheduling in terms of the additional processing 
capacity required. This performance penalty can then be 
weighed against other factors such as implementation 
overheads when considering which scheduling algorithm 
to use. 
1.4. Organisation 

The remainder of this paper is organised as follows. 
Section 2 describes the system model, notation and 
analysis used. Section 3 illustrates the concept of 
processor speedup factors via a simple example. Section 
4 derives a lower bound on the processor speedup factor 
required for FP-NP scheduling, while Section 5 derives 
the corresponding upper bound. Section 6 reports on an 
empirical investigation into the speedup factor required 
for FP-NP scheduling, verifying the theoretical lower 
bound. Section 7 concludes with a summary of the 
results and suggestions for future work. 

2. System model, notation, and analysis 
In this section, we outline the scheduling model, 

notation and terminology used in the rest of the paper. 
We then recapitulate schedulability analysis for both FP-
NP and EDF-NP scheduling. 
2.1. Scheduling model, terminology and notation 

In this paper, we consider the non-pre-emptive 
scheduling of a set of sporadic tasks (or taskset) on a 
uniprocessor. 

Each taskset comprises a static set of n tasks ( nττ ..1 ), 
where n is a positive integer. We assume that the index i
of task iτ  also represents the task priority used in fixed 
priority scheduling, hence 1τ  has the highest fixed-
priority, and nτ  the lowest. 

Each task iτ  is characterised by its bounded worst-
case execution time iC , minimum inter-arrival time or 
period iT , and relative deadline iD . Each task iτ
therefore gives rise to a potentially infinite sequence of 
invocations (or jobs), each of which has an execution 
time upper bounded by iC , an arrival time at least iT
after the arrival of its previous invocation, and an 
absolute deadline iD  time units after its arrival.  

In an implicit-deadline taskset, all tasks have 
ii TD = . In a constrained-deadline taskset, all tasks 

have ii TD ≤ , while in an arbitrary-deadline taskset, task 
deadlines are independent of their periods, thus each task 
may have a deadline that is less than, equal to, or greater 
than, its period. The set of arbitrary-deadline tasksets is 
therefore a superset of the set of constrained-deadline 
tasksets, which is itself a superset of the set of implicit 
deadline tasksets. 



The utilisation iU , of a task is given by its execution 
time divided by its period ( iU = iC / iT ). The total 
utilisation U, of a taskset is the sum of the utilisations of 
all of its tasks: 

∑
=

=
n

i
iUU

1
        (1) 

The following assumptions are made about the 
behaviour of the tasks: 

o The arrival times of the tasks are independent 
and unknown a priori (non-concrete), hence the 
tasks may share a common release time. 
o Each task is released (i.e. becomes ready to 
execute) as soon as it arrives. 
o The tasks are independent and so cannot block 
each other from executing by accessing mutually 
exclusive shared resources, with the exception of the 
processor. 
o The tasks do not voluntarily suspend 
themselves. 

A task is said to be ready if it has outstanding 
computation awaiting execution by the processor. 

A taskset is said to be schedulable with respect to 
some scheduling algorithm and some system, if all valid 
sequences of task invocations (or jobs) that may be 
generated by the taskset can be scheduled on the system 
by the scheduling algorithm without any deadlines being 
missed. 

Under EDF-NP scheduling, whenever a job 
completes execution, or when the processor is idle and a 
job becomes ready to execute, the ready job with the 
earliest absolute deadline is selected to execute. By 
contrast, under FP-NP the highest priority ready job is 
selected. 

When a taskset is scheduled according to FP-NP, task 
priorities need to be assigned according to some 
algorithm. Audsley�s Optimal Priority Assignment 
(OPA) algorithm [1], [2], (see Figure 1 below) provides 
the optimal policy for sporadic tasksets with implicit-
deadlines, constrained-deadlines or arbitrary-deadlines. 

Optimal Priority Assignment Algorithm 
for each priority level k, lowest first { 
 for each unassigned task τ { 
  if(τ is schedulable at priority k with 
all    other unassigned tasks assumed 
to have    higher priorities) { 
   assign τ to priority k
   break (continue outer loop) 
  } 
 } 
 return unschedulable 
} 
return schedulable

Figure 1: OPA algorithm 
A priority assignment policy P is said to be optimal

with respect to some class of tasksets, and a fixed 
priority scheduling algorithm FP-X if there are no 
tasksets in the class that are schedulable according to FP-
X using any other priority ordering policy that are not 
also schedulable using the priority assignment 
determined by policy P. 

A taskset is said to be feasible with respect to a given 

system model if there exists some scheduling algorithm 
that can schedule all possible sequences of task 
activations that may be generated by the taskset on that 
system without missing any deadlines. 

A scheduling algorithm is said to be optimal with 
respect to a system model and a tasking model if it can 
schedule all of the tasksets that comply with the tasking 
model and are feasible on the system. 

We note that EDF-NP is optimal in the weak sense 
that it can schedule any sporadic taskset for which 
feasible work-conserving, non-pre-emptive schedules 
exist [13]. 

A schedulability test is termed sufficient, with respect 
to a scheduling algorithm and system model, if all of the 
tasksets that are deemed schedulable according to the 
test are in fact schedulable on the system under the 
scheduling algorithm. Similarly, a schedulability test is 
termed necessary, if all of the tasksets that are deemed 
unschedulable according to the test are in fact 
unschedulable on the system under the scheduling 
algorithm. A schedulability test that is both sufficient 
and necessary is referred to as exact. 
2.2. Schedulability analysis for FP-NP 

Exact schedulability analysis for an arbitrary-
deadline sporadic taskset under FP-NP was given by 
George et al. [12] and Bril et al. [5]. Below, we provide a 
simple sufficient schedulability test for FP-NP 
scheduling, derived from these exact tests. This 
sufficient test is used in the derivation of an upper bound 
on the speedup factor for FP-NP scheduling given in 
Section 5. First, we introduce the concepts of worst-case 
response time, priority level-i active period, and ∆-
critical instant, which are fundamental to analysis of FP-
NP scheduling. 

For a taskset scheduled under FP-NP scheduling, the 
worst-case response time iR  of a task iτ is given by the 
longest possible time from release of the task until it 
completes execution. Thus task iτ  is schedulable if and 
only if ii DR ≤ , and the taskset is schedulable if and 
only if ii DRi ≤∀ . 

The term priority level-i active period refers to a 
continuous period of time ),[ 21 tt  during which tasks, of 
priority i or higher, that were released at the start of the 
active period at 1t , or during the active period but 
strictly before its end at 2t , are either executing or ready 
to execute. 

A ∆-critical instant for a task iτ  refers to a pattern of 
task arrivals such that task iτ  is released simultaneously 
with all tasks of higher priority than i, and then 
subsequent releases of task iτ  and the higher priority 
tasks occur as early as possible given the constraints on 
minimum inter-arrival times. Further, some infinitesimal 
amount of time ∆ prior to this simultaneous release, a 
lower priority task kτ  is released, and this task has the 
longest execution time of any such lower priority task. 
Thus the longest time that task iτ  and higher priority 
tasks can be blocked from executing by lower priority 
tasks is given by : 

⎪⎩

⎪
⎨
⎧

=
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)(      (2) 



where lp(i) is the set of tasks with priorities lower than i. 
Bril et al. [5] showed that for FP-NP scheduling, the 

longest response time of a task iτ  occurs for some 
invocation of the task within the priority level-i active 
period starting at the ∆-critical instant for task iτ . 
Lemma 3 in [5] states that the worst-case length of a 
priority level-i active period iA  is given by the 
minimum solution to the following fixed point iteration:  

j
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where hep(i) is the set of tasks with priorities higher than 
or equal to i. Iteration starts with an initial value 0

iA
guaranteed to be no larger than the minimum solution, 
for example ii CA =0 , and ends when m

i
m
i AA =+1 . 

From Equation (3), we can form the following simple 
sufficient test for FP-NP scheduling of arbitrary-deadline 
tasksets. Each task iτ  is schedulable provided that: 
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If Equation (4) holds, then this indicates that the solution 
to the fixed point iteration of Equation (3) must be iD≤ . 
As the worst-case length of a priority level-i active 
period is then iD≤ , it follows that the worst-case 
response time iR  of task iτ  must also be iD≤ , and 
hence the task must be schedulable. If all of the tasks are 
schedulable according to Equation (4), then the taskset is 
schedulable. (For an exact schedulability test for FP-NP, 
see [5]). 
2.3. Schedulability analysis for EDF-NP 

Baruah et al [3], [4] gave an exact schedulability test 
for EDF-P based on the concept of the processor demand 
bound function h(t). George et al. [12] extended this test 
to EDF-NP via the addition of a blocking factor B(t). 
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George et al. [12] showed that an arbitrary-deadline 
taskset is schedulable under EDF-NP if and only if 

1≤U  and a quantity referred to as the processor LOAD 
is 1≤ , where the processor LOAD is given by: 

LOAD ⎟
⎠
⎞

⎜
⎝
⎛ +

=
∀ t

tBth
t

)()(max      (7) 

Further, if 1≤U  and the value of ttBth /))()(( +  is 1≤
for all values of t in the interval ],0( L , (where L is the 
length of the synchronous priority level-n active period, 
given by the minimum solution to Equation (3)), then 
LOAD 1≤ . Thus the only values of t that need to be 
checked are those in the interval ],0( L  that correspond 
to times when )()( tBth +  can change, i.e. 

ii DkTti +=∀  for integer values of k. We note that 
recently significant developments have been made, 
reducing the number of values of t that need to be 
checked [11]; however, this simple description of the 
analysis is sufficient for the purposes of this paper. (We 

note that for schedulable tasksets, the maximum value of 
ttBth /))()(( +  does not necessarily occur in the interval 

],0( L , but does occur in the interval ],[ min HD  where 
minD  is the shortest task deadline and H is the taskset 

hyperperiod or Least Common Multiple of task periods 
[10]). 
2.4. Definitions 
Definition 1: Let )(ΨOPTf  be the lowest processor 
speed such that taskset Ψ  is schedulable according to an 
optimal scheduling algorithm. Assume that )(ΨAf  is 
similarly the lowest processor speed that will schedule 
taskset Ψ  using scheduling algorithm A. The processor
speedup factor Af  for algorithm A is given by the 
maximum increase in processor speed required over an 
optimal algorithm for any taskset Ψ . 

( ))(/)(max ΨΨ=
Ψ∀

OPTAA fff     (8) 

For any scheduling algorithm A, we have 1≥Af , with 
smaller values of Af  indicative of a more effective 
scheduling algorithm, and 1=Af  implying that A is an 
optimal algorithm. 

In the remainder of the paper, unless otherwise 
stated, when we refer to the processor speedup factor, we 
mean the processor speedup factor for FP-NP scheduling 
using an optimal priority assignment policy, as compared 
to EDF-NP, an optimal (in the weak sense [13]), work-
conserving non-pre-emptive scheduling algorithm. 
Definition 2: A taskset is said to be speedup-optimal if it 
requires the processor to be speeded up by the processor 
speedup factor in order to be schedulable using FP-NP 
scheduling. Hence for a speedup-optimal taskset Ψ , 

AOPTA fff =ΨΨ )(/)( . 
Definition 3: Let S be some arbitrary taskset, now 
assume that )(SNPFP−α  is the maximum factor by 
which the execution times of all of the tasks in S can be 
scaled, such that the taskset is schedulable under FP-NP. 
Similarly, let )(SNPEDF−α  be the maximum scaling 
factor under EDF-NP. The speedup factor 

)(Sf NPFP− for the taskset is given by: 
)(/)()( SSSf NPFPNPEDFNPFP −−− = αα   (9) 

3. Example 
The concept of a speedup factor for a given taskset S

can be illustrated by means of the following example. 
Consider the taskset S comprising the tasks defined in 
Table 1, with priorities assigned in the order that the 
tasks appear in the table (i.e. Aτ  has the highest priority, 
and Dτ  the lowest).  

Table 1 
Task iC ii TD =

Aτ  1 6 
Bτ  1 7 
Cτ  1 8 
Dτ Δ+3 

The worst-case arrival pattern for tasks Aτ , Bτ , and Cτ
under FP-NP scheduling is shown in Figure 2. Note the 
1st job of each task is shaded in grey, while the 2nd job of 
each task is un-shaded. 



Figure 2: FP-NP schedule 
Now consider the maximum factor by which the 

execution times of the tasks can be scaled and the taskset 
remain schedulable according to FP-NP. This factor is 

−− = )5/6()(SNPFPα  (i.e. a value infinitesimally less 
than 6/5). 

Figure 3: FP-NP schedule, maximal scaling
Figure 3 shows the FP-NP schedule for the scaled 

taskset. Scaling by any larger factor, for example, a 
factor equal to 6/5 would result in the first job of task 

Cτ  being unable to start executing before the 2nd job of 
task Aτ  is released at time t = 6. It would then be further 
delayed by the 2nd job of task Bτ , and hence fail to met 
its deadline at time t = 8. In fact, there is no priority 
ordering which results in taskset S, scaled by a factor of 
6/5, being schedulable. This can be seen by considering 
the behaviour of the OPA algorithm. While task Dτ  is 
schedulable at the lowest priority, and can therefore be 
assigned priority 4, none of the other tasks are 
schedulable at priority 3. 

Figure 4: EDF-NP schedule, maximal scaling  
With EDF-NP scheduling, the maximum scaling 

factor commensurate with taskset S remaining 
schedulable is 6/8)( =− SNPEDFα . Under EDF-NP, the 
first job of task Cτ  has a later absolute deadline than the 
first jobs of tasks Aτ  and Bτ , and therefore executes 
after those jobs and after the first job of Dτ  which is 
released at time Δ−=t . The first job of task Cτ  is not 
however delayed by the 2nd jobs of tasks Aτ  and Bτ , as 
these jobs have later absolute deadlines. With a scaling 
factor of 8/6, the first job of task Cτ  just completes by 
its deadline (see Figure 4). Further analysis is required to 
prove that the scaled taskset is schedulable under EDF-
NP; however, as the priority level 3 active period ends at 

12=t , we need only check all deadlines in the interval 

[0, 12] to show schedulability. Note, Figure 4 shows the 
∆-critical instant for tasks Aτ , Bτ , Cτ , and all deadlines 
are met in the interval [0, 12]. Further, task Dτ  is 
trivially schedulable as it has an infinite deadline, and 
the taskset utilisation is less than 1. 

Using Equation (9), the speedup factor for the taskset 
given in Table 1 is )(Sf NPFP−  = (8/6)/(6/5) −  = 

+)36/40(  = +)9/10(  (i.e. a value infinitesimally larger 
than 10/9). In the next section, we generalise this 
example and show how tasksets with a similar structure 
but with a large number of tasks require a much larger 
speedup factor. 

4. Lower bound speedup factor for FP-NP 
In this section, we derive a lower bound on the 

processor speedup factor required for FP-NP scheduling 
using optimal priority assignment [1], [2]. This lower 
bound is valid for sporadic and non-concrete periodic 
tasksets with implicit-, constrained-, and arbitrary-
deadlines. In Section 5, we derive an upper bound with 
the same scope. 

To derive a lower bound, we need only select a single 
taskset and determine the required speedup factor for 
that taskset. The taskset S that we use is a generalisation 
of the taskset used as an example in Section 3. In this 
case, there are n tasks, with the parameters given in 
Table 2. Tasks 1τ  to 1−nτ  are represented by iτ  in the 
first row of the table. All of these tasks have the same 
small execution time X<<ε , and related 
periods/deadlines. Further, all of the tasks have periods 
equal to their deadlines, so this is an implicit-deadline 
taskset. Task nτ  has an execution time of Δ+X , where 
X is a free variable that we can alter to maximise the 
required speedup factor. 

Table 2 
Task iC ii TD =

iτ
)1(

1
−

=
n

ε
)1(
)1(1

−
−

++
n
iX

nτ Δ+X 
The execution of taskset S under FP-NP is depicted in 
Figure 5 below. Note, jobs of task 1−nτ  are marked with 
an ε . 

Figure 5: FP-NP schedule  



Figure 6: FP-NP schedule, maximal scaling
Lemma 1: The maximum factor )(SNPFP−α  by which 
the execution times of the tasks in taskset S (Table 2) can 
be scaled and the taskset remain schedulable according 
to FP-NP. is given by: 

+

→

−
− =⎟

⎠
⎞

⎜
⎝
⎛

−+
+

= 1
1

1)(
0εε

α
X

XSNPFP

 (10) 
Figure 6 depicts the FP-NP schedule for the scaled 
taskset. 
Proof: Scaling by a factor equal to )1/()1( ε+++ XX
would result in the first job of task 1−nτ  being unable to 
start executing before the 2nd job of task 1τ  is released at 
time Xt += 1  It would then be further delayed by the 
2nd jobs of tasks 1τ  to 2−nτ , and hence fail to met its 
deadline at time ε−+= Xt 2 . In fact, there is no 
priority ordering which results in taskset S, scaled by a 
factor of )1/()1( ε+++ XX , being schedulable. This 
can be seen by considering the behaviour of the OPA 
algorithm, given the scaled taskset: Task nτ  is 
schedulable at the lowest priority, and can therefore be 
assigned that priority. However, considering the 
remaining tasks in turn, none of them are schedulable at 
priority n-1. Task 1τ  is not schedulable at priority n-1, as 
its 1st job would miss its deadline at Xt += 1 . Task 2τ
is not schedulable at priority n-1, as its 1st job is then 
unable to start before the 2nd job of task 1τ  arrives, and 
so misses its deadline at ε++= Xt 1 . In general, with a 
scaling factor of )1/()1( ε+++ XX , for each task with 
index i from 2 to n-1, assuming that task iτ  is assigned 
priority n-1, ensures that the 1st job of task iτ  is unable 
to start before the 2nd job of task 1−iτ  arrives, and so the 
1st job of task iτ  misses its deadline. 

By contrast, with a scaling factor of 
−+++ )1/()1( εXX , task 1−nτ  is schedulable at priority 

n-1, as it is able to start executing just prior to the arrival 
of the 2nd job of 1τ  at Xt += 1 . Further, with this 
scaling factor, all of the other tasks are schedulable with 
priorities assigned according to their indices (i.e. in 
Deadline Monotonic priority order). This can be seen by 
checking the deadlines of all jobs up to the end of the 
priority level n-1 active period, which occurs at: 
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XXt A
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As 12)1(2 DXt A =+< , the priority level n-1 active 
period comprises the 1st job of task nτ  and the 1st and 2nd

jobs of tasks 1τ  to 1−nτ . All of these are schedulable 
(see Figure 6). The priority level-n active period is of 
similar length, and hence task nτ  is trivially schedulable 
given its infinite deadline 
Lemma 2: The maximum factor )(SNPEDF−α  by which 

the execution times of the tasks in taskset S (Table 2) can 
be scaled and the taskset remain schedulable according 
to EDF-NP. is given by: 

−− Ω= )/1()(SNPEDFα      (12) 

Proof: There are two key conditions which limit the 
maximum scaling factor under EDF-FP (otherwise the 
taskset would become unschedulable): 

1. The 1st jobs of all tasks must be complete by the 
deadline of task 1−nτ , ε−+=− XDn 21 . 
2. Utilisation of the scaled taskset must not exceed 
100%. 

Considering the first condition, we have: 
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The utilisation of the un-scaled taskset is given by the 
sum of the utilisation of each task: 
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The RHS of Equation (14) is recognisable as the left 
Riemann sum of the function 1/z, over the interval 

)2,1[ XX ++ , hence: 
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Thus, considering the second condition, we have: 
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As Equation (13) is monotonically non-increasing in X
and tends to 2 for small X, and Equation (16) is 
monotonically non-decreasing in X and tends to 1/ln(2) 
for small X, then the maximum value is obtained when 
the RHSs of Equations (13) and (16) are equal, i.e. 
when: 
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Figure 7: Constraints on the scaling factor as a 
function of X

Figure 7 plots Equations (13) and (16) (labelled a1(X) 
and a2(X) respectively) against X. As ∞→n , 0→ε , 



the solution to Equation (17) is given by the intersection 
of the lines plotted in Figure 7, thus 

76322.1)/1()( ≈Ω= −− SNPEDFα , (where Ω  is the 
mathematical constant defined by the transcendental 
equation Ω=Ω)/1ln( , hence, 0.567143 ≈Ω ). Further, 

310232.0
1

12
≈

Ω−
−−Ω

=
εX       (18) 

We now show that taskset S (Table 2) is schedulable 
under EDF-NP, when scaled by a factor of 

−− Ω= )/1()(SNPEDFα . Proof is made significantly 
easier by the commonality between taskset S and the 
speedup-optimal taskset V for the constrained-deadline 
case of FP-P scheduling, described in Theorem 2 of [7]. 
In fact, tasks 1τ  to 1−nτ  are identical in these two 
tasksets, only task nτ  differs. In taskset V, the 
parameters of task nτ  are: XCn = , XDn += 2 , and 

∞=nT , whereas in taskset S, the parameters of task nτ
are: Δ+= XCn , and ∞== nn TD  Theorem 4 in [7] 
proves that taskset V is schedulable under EDF-P when 
scaled by a factor of Ω/1 . Hence for taskset V, 
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We make use of this result to show that taskset S, 
scaled by a factor of −Ω)/1(  is schedulable under EDF-
NP. As tasks 1τ  to 1−nτ  are identical, their contribution 
to the processor demand bound )(th  is the same for any 
time t. We now compare the contribution from task nτ
in each case. In the pre-emptive case, (taskset V), nτ
contributes to )(th  as follows: 
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whereas, in the non-pre-emptive case, (taskset S), nτ
contributes only to the blocking factor: 

0)/()( ≥Ω= − tXtB
 (21) 

Recall that in the non-pre-emptive case, a taskset is 
schedulable provided that 1≤U  and: 
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Comparing Equations (19) and (22), and the 
contributions of task nτ  in each case (Equations (20) and 
(21)), it follows that Equation (22) holds for all values of 

)2( Xt +≥  for taskset S scaled by a factor of −Ω)/1( . 
This is because, for all values of )2( Xt +≥  the value of 

ttBth /))()(( +  is the same as that for taskset V, 
assuming both tasksets are scaled by the same factor. To 
prove the schedulability of taskset S scaled by a factor of 

−Ω)/1( , it remains only to show that 1/))()(( ≤+ ttBth
for all values of t in the interval ))2(,0[ X+ . Here, we 
need only check values of t that correspond to task 
deadlines. As 122 DX >+ , this amounts to checking the 
1st deadline of each of the n-1 highest priority tasks. At 
each of these deadlines iD , we have: 
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as ii TDki =∀ ,  and ki DD 2< it follows that: 
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Hence the scaled taskset is schedulable provided that, 

i∀  from 1 to n-1, )()( iii DBDhD +≥
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Substituting for )1/()2()/1( XX +−+=Ω − ε  and 

)1/(1 −= nε , and rearranging, we have: 

⎟
⎠
⎞

⎜
⎝
⎛

−
+⎟

⎠
⎞

⎜
⎝
⎛

−
−+≥+⎟

⎠
⎞

⎜
⎝
⎛

−
−

++
11

12)1(
1
11

n
iX

n
XX

n
iX

(26) 
which simplifies to: 
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and then to: 
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For 2≥n , the first term in inequality (28) is non-
negative i∀  from 1 to n-2, while the second term is 
always positive. Further, for i = n-1, the first and second 
terms cancel out, thus the inequality holds i∀  from 1 to 
n-1. Taskset S is therefore schedulable according to 
EDF-NP when scaled by a factor of −Ω)/1( 
Theorem 1: A lower bound on the speedup factor 
required for FP-NP scheduling of an implicit-deadline 
taskset is: 
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Proof: Follows from Lemmas 1 and 2 and the definition 
of the speedup factor 
Corollary 1: We observe that as taskset S is an implicit-
deadline taskset, and all implicit-deadline tasksets are 
also constrained-deadline and arbitrary-deadline tasksets, 
the lower bound of Theorem 1 applies to all three classes 
of taskset. 
 It remains an open question whether or not the lower 
bound given in Theorem 1 is tight. While the taskset 
used to derive the bound is valid, whether or not it is a 
speedup optimal taskset (see Definition 2) remains to be 
proved / disproved. If the bound is not tight, then there 
exists a different taskset construction that requires a 
larger speedup factor. 

5. Upper bound speedup factor for FP-NP 
In this section, we derive an upper bound on the 

speedup factor required for FP-NP scheduling of 
arbitrary-deadline sporadic and non-concrete periodic 
tasksets. 
Theorem 2: An upper bound on the processor speedup 
factor required such that FP-NP scheduling, using 
optimal priority assignment can schedule any arbitrary-
deadline sporadic or non-concrete periodic taskset 
schedulable under EDF-NP according to Equation (7), is 
2. 



Proof: Let S be any taskset that is schedulable according 
to Equation (7) on a processor of unit speed under EDF-
NP. For each task kτ , in S, consider the processor 
demand bound and blocking factor for an interval of 
length kD2 . As taskset S is schedulable according to 
EDF-NP, it follows that:  
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 (30) 
Next, consider taskset S scheduled according to FP-NP 
scheduling on a processor of speed 2 using Deadline 
Monotonic priority assignment (rather than OPA). 
DMPO implies that ki DDki ≤≤∀ . 

From Equation (30) above, assuming speed 2, and 
separating out the contribution from all tasks of lower or 
equal priority to k we have: 
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where )(klep  is the set of tasks with priorities lower 
than or equal to k. As the tasks are in DMPO, we note 
that all of the tasks in )(klep  have deadlines kD≥ . 

We now consider just the first and second terms in 
Equation (31). Observe that the contribution to the 
second term from every task iτ  in )(klep
with ki DD 2>  is zero. Further, there is a contribution 
from each task iτ  with kik DDD 2≤≤  of at least iC . 
From the definition of )(tB  (Equation (6)), the 
definition of kB  (Equation (2)), and the fact that the 
tasks are in DMPO, it follows that the sum of the first 
two terms in Equation (31) are kB≥ , the blocking factor 
for FP-NP scheduling: 
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Substituting kB  for the first two terms in Equation 

(31) and transforming the third term by noting that 
⎣ ⎦ ⎡ ⎤xx ≥+1  and ki DDkhpi ≤∈∀ )(  we have: 
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Equation (33) is identical to Equation (4); the sufficient 
schedulability test for task kτ  in an arbitrary-deadline 
taskset S, scheduled under FP-NP. Repeating the above 
argument for each task kτ  in S therefore proves that the 
taskset is schedulable on a processor of speed 2 under 
FP-NP, with Deadline Monotonic priority assignment. 
As optimal priority assignment for FP-NP can schedule 
any taskset that is schedulable using FP-NP with 
Deadline Monotonic priority ordering 
Corollary 2: We observe that as the upper bound in 

Theorem 2 holds for arbitrary-deadline tasksets, it must 
also hold for implicit-deadline, and constrained-deadline 
tasksets. 

6. Empirical results 
In this section, we confirm by experiment the results 

presented in Section 4 concerning the lower bound 
speedup factor for FP-NP. We consider the task set 
proposed in Table 2 where 1−n  tasks have worst-case 
execution times equal to )1/(1 −n , and task nτ  has a 
worst-case execution time equal to Δ+X  and an infinite 
period and deadline. 

Our experiments indicate that a value of 31.0≈X
results in the maximum speedup factor for a given 
number of tasks. Based on this value, we verify the 
lower bound given in this paper for a large number of 
tasks. 

Taskset S investigated in this section is based on the 
task model presented in Table 2. This model is 
theoretical, while our empirical assumptions are as 
follows: 

o Δ  is equal to 0.001. 
o The infinite values of period and deadline for 

task nτ  are replaced in the experiments by 
values such that nτ does not interfere with other 
tasks. 

Finally, to avoid the problem of rounding, we have used 
integer values, thus given that Δ  is the time granularity, 
each task parameter },,{ iii TDC  is normalized according 
to Δ . For example, with three tasks and X = 1, Table 3 
gives the task set studied. 

Table 3: Example of taskset studied with 
001.0=Δ  and 1=X

Task iC ii TD =

1τ  500 2000 
2τ  500 2500 
3τ  1001 ∞

In order to determine the speedup factor )(Sf NPFP− , 
we compute the maximum factors )(SNPEDF−α  and 

)(SNPFP−α  via an approach based on binary search 
(dichotomy). Algorithm 1 describes this approach, as 
used in our experiments. To check the schedulability of 
task set S, the function checkFeasibility() uses following 
exact tests: 
• For EDF-NP [12]: 
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• For FP-NP [6]: 
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where ⎡ ⎤ 1/max −= iii TAQ , iA  is computed according to 
Equation (3) and qiW ,  is given by the minimum solution 
to the following fixed point iteration: 
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with iB  determined by Equation (2) and iqi qTW =0
, . 

Finally, the speedup factor is computed via Equation 
(9) )(/)()( SSSf NPFPNPEDFNPFP −−− = αα . 



Algorithm 1: Determines the maximum scaling 
factor of a taskset S  with a precision Δ  via 

binary search (dichotomy). 
Figure 8 shows the maximum speedup factor 

obtained for 5=n  tasks. It shows the value of X for 
which the speedup factor was empirically found to be a 
maximum i.e. 31.0=X . 

Figure 9 represents, for this optimum value 
31.0=X , the speedup factor obtained as a function of 

the number of tasks (from 10 to 400 tasks). We observe 
that the maximum speedup factor for FP-NP tends 
towards 1.76322, the lower bound of )(Sf NPFP−

characterized in Section 4, as the number of tasks 
increases. Note that the saw tooth appearance of the 
curve is an artefact of the quantisation of the execution 
time values used in the experiment. When the number of 
tasks is large, this causes a noticeable quantisation of the 
scaling factors that can be explored.  

Figure 8: Constraints on the scaling factor as a 
function of X for 5=n
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Figure 9: Speedup factor for 31.0=X  as a 
function of the number of tasks

7. Conclusions and future work 
In this paper, we examined the relative effectiveness 

of fixed priority non-pre-emptive scheduling. Our metric 
for measuring the effectiveness of this scheduling 
algorithm is a resource augmentation factor known as the 
processor speedup factor. In this case, the processor 
speedup factor is defined as the minimum amount by 
which the processor needs to be speeded up so that any 
taskset that is schedulable by an optimal work-
conserving non-pre-emptive scheduling algorithm (e.g. 
EDF-NP) can be guaranteed to be schedulable under FP-
NP scheduling. Recall that EDF-NP is optimal in the 
weak sense [13], in that it can schedule all sporadic or 
non-concrete periodic tasksets for which a feasible non-
pre-emptive, work-conserving schedule exists. It is not 
optimal in the strong sense as it cannot schedule all 
tasksets for which a feasible non-work-conserving, non-
pre-emptive schedulable exists. The speedup factors 
derived in this paper are with respect to this weak form 
of optimality. 



Table 4: FP scheduling speedup factors 
 Pre-emptive Non-pre-emptive 

Taskset 
constraints 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Implicit-
deadline 

≈)2ln(/1
1.44269 

≈Ω −)/1(
1.76322 2 

Constrained-
deadline  

≈Ω/1
1.76322 

≈Ω −)/1(
1.76322 2 

Arbitrary-
deadline 

≈Ω/1
1.76322 2 

≈Ω −)/1(
1.76322 2 

Table 4 shows the processor speedup factor needed 
for fixed priority scheduling with optimal priority 
assignment, for both the pre-emptive case (FP-P v. EDF-
P), see Davis et al. [7], [8], and for the non-pre-emptive 
case (FP-NP v. EDF-NP), derived in this paper. 

The major contribution of this paper is in proving 
that the processor speedup factor for fixed priority non-
pre-emptive scheduling of sporadic or non-concrete 
periodic tasksets with optimal priority assignment, is 
upper bounded by 2, and lower bounded by −Ω)/1(  = 
1.76322. We note that these bounds hold for tasksets 
with implicit-, constrained-, and arbitrary-deadlines. 

The seminal work of Liu and Layland [22] 
characterises the maximum performance penalty 
incurred when an implicit-deadline taskset is scheduled 
using Rate-Monotonic, fixed priority pre-emptive 
scheduling instead of an optimal algorithm such as EDF-
P. The research in this paper provides an analogous 
characterisation of the maximum performance penalty 
incurred when tasksets are scheduled using fixed priority 
non-pre-emptive scheduling instead of an optimal work-
conserving non-pre-emptive scheduling algorithm e.g. 
EDF-NP.  

We note that the two cases in Table 4 where a tight 
bound is known correspond to the only cases where 
optimal priority assignment can be achieved 
independently of schedulability testing. In the arbitrary-
deadline case for FP-P scheduling and all cases of FP-
NP scheduling, Audsley�s OPA algorithm is required to 
find the optimal priority ordering. This dependence of 
priority ordering on schedulability testing makes it more 
difficult to reason about the properties of a theoretical 
speedup-optimal taskset that requires the exact speedup 
factor to be schedulable. In these cases, the exact sub-
optimality of fixed priority scheduling remains an open 
question. 
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