Improvements to Static Probabilistic Timing Analysis for Systems with Random Cache Replacement Policies

Rob Davis

Real-Time Systems Research Group, Department of Computer Science, University of York, York, UK. rob.davis@york.ac.uk

Static Probabilistic Timing Analysis (SPTA)

- Aim is to show that the probability of timing failure falls below some threshold e.g. 10^{-9} failures per hour: pWCET v. budget

Inputs

Random replacement policy

pWCET distribution (1-CDF)

Simple model of execution

- Instructions are either:
- Cache hit or cache miss
- Misses take longer ($H=1$ cycle, $M=10$ cycles)
- Fully associative cache of N blocks
- Memory blocks can be loaded into any block in cache
- Each instruction resides in a memory block
- On a cache miss
- Random choice of cache block to evict
- Evict that block, load the requested block into the evicted location
- Probability of a cache hit:

$$
P_{h i t}(k)=\left(\frac{N-1}{N}\right)^{k} \quad(\text { when } k<N \text { otherwise } 0)
$$

- k is re-use distance $=$ number of intervening evictions since the memory block was last loaded into cache

Static Probabilistic Timing Analysis (for single path programs)

- Sequence of instructions represented by their memory blocks

$$
\mathrm{a}, \mathrm{~b}, \mathrm{a}^{1}, \mathrm{c}, \mathrm{~d}, \mathrm{~b}^{3}, \mathrm{c}^{2}, \mathrm{~d}^{2}, \mathrm{a}^{5}
$$

- Get a probability distribution (pWCET) for each instruction
- Depends only on re-use distance k
- Possible to model instructions as independent, hence we can convolve distributions for instructions to get a pWCET distribution for a sequence of instructions
E.g. two instructions with $P_{h i t}=0.8$ and 0.7

$$
\left(\begin{array}{cc}
1 & 10 \\
0.8 & 0.2
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & 10 \\
0.7 & 0.3
\end{array}\right)=\left(\begin{array}{ccc}
2 & 11 & 20 \\
0.56 & 0.38 & 0.06
\end{array}\right)
$$

pWCET distribution (1-CDF)

SPTA has some pessimism

- Sequence of instructions represented by their memory blocks $a, b, a^{1} c, d, b^{3}, c^{2}, d^{2}, a^{5}$
- Consider the a^{5}
- 5 because of the intervening instructions $c, d, b^{3}, c^{2}, d^{2}$
- c, d, are definitely misses
- b^{3}, c^{2}, d^{2} considered as misses when analysing a^{5}

Pessimistic because the probability that b^{3}, c^{2}, d^{2} are all misses is already $<7.1 \times 10^{-7}$ (with $N=256$)

How can we obtain a tighter pWCET that is still correct (not optimistic)?

Reducing the pessimism

- "A Cache Design for Probabilistic Real-time Systems", DATE 2013 [5]

$$
P_{h i t}=\left(\frac{N-1}{N}\right)^{\sum P_{m i s s}} \begin{aligned}
& \text { Sum of probabilities } \\
& \text { of cache misses of } \\
& \text { intervening instructions }
\end{aligned}
$$

- But is it correct?
consider $\mathrm{a}, \mathrm{b}, \mathrm{a}^{1}, \mathrm{~b}^{1}$ with $N=2$
for $b^{1} \quad P_{\text {hit }}=\left(\frac{1}{2}\right)^{1 / 2}=1 / \sqrt{2}$
Irrational value for a probability ?

Counter example: Analysis from [5]

Consider $\mathrm{a}, \mathrm{b}, \mathrm{a}^{1}, \mathrm{~b}^{1}$ with $N=4$

- Distributions for $\mathrm{a}, \mathrm{b}, \mathrm{a}^{1}\binom{10}{1}\binom{10}{1}\left(\begin{array}{cc}1 & 10 \\ 0.75 & 0.25\end{array}\right)$
- For $b^{1}\left(\frac{3}{4}\right)^{0.25}=0.9306$ according to [5]
- Hence

$$
\binom{10}{1} \otimes\binom{10}{1} \otimes\left(\begin{array}{cc}
1 & 10 \\
0.75 & 0.25
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & 10 \\
0.9306 & 0.0694
\end{array}\right)=\left(\begin{array}{ccc}
22 & 31 & 40 \\
0.69795 & 0.2847 & 0.01735
\end{array}\right)
$$

Counter example: Precise analysis

Consider $\mathrm{a}, \mathrm{b}, \mathrm{a}^{1}, \mathrm{~b}^{1}$ with $N=4$. Two cases:

- Case 0: a^{1} is a hit (probability of occurrence $=0.75$)
- Given that a^{1} is a hit then b^{1} is guaranteed to also be a hit

$$
\text { Partial pWCET }=\binom{10}{1} \otimes\binom{10}{1} \otimes\binom{1}{0.75} \otimes\binom{1}{1}=\binom{22}{0.75}
$$

- Case 1: a^{1} is a miss (probability of occurrence $=0.25$)
- Given that a^{1} is a miss then b^{1} has $P_{\text {hit }}=0.75$

$$
\text { Partial pWCET }=\binom{10}{1} \otimes\binom{10}{1} \otimes\binom{10}{0.25} \otimes\left(\begin{array}{cc}
1 & 10 \\
0.75 & 0.25
\end{array}\right)=\left(\begin{array}{cc}
31 & 40 \\
0.1875 & 0.0625
\end{array}\right)
$$

- Overall pWCET $=\left(\begin{array}{ccc}22 & 31 & 40 \\ 0.75 & 0.1875 & 0.0625\end{array}\right)$

This is precise - we covered all possibilities

Counter example: comparison

Consider $\mathrm{a}, \mathrm{b}, \mathrm{a}^{1}, \mathrm{~b}^{1}$ with $N=4$.

- Precise analysis:

$$
\left(\begin{array}{ccc}
22 & 31 & 40 \\
0.75 & 0.1875 & 0.0625
\end{array}\right) \begin{gathered}
\text { Exact but exponential } \\
\text { complexity }
\end{gathered}
$$

- Analysis from [5]:
- Simple analysis from [3]:

$$
\left(\begin{array}{ccc}
22 & 31 & 40 \\
0.5625 & 0.375 & 0.0625
\end{array}\right) \quad \text { Pessimistic but Ok }
$$

Open Problem: Can we tighten the pWCET (1-CDF) found by SPTA?

- Sequence of instructions represented by their memory blocks $a, b, a^{1}, c, d, b^{3}, c^{2}, d^{2}, a^{5}$
with re-use distances
- Probability of a hit for a single instruction (for $k<M$)

$$
P_{h i t}(k)=\left(\frac{N-1}{N}\right)^{k}
$$

- Convolve pWCET distributions for individual instructions to get overall pWCET distribution for the sequence
- Existing analysis is simple but somewhat pessimistic as intervening instructions are not necessarily certain to be misses
- Precise analysis is exponential in complexity

Can we find a tighter upper bound on the pWCET that can be computed efficiently?

Extent of the pessimism

