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Overview: Problem

= Focus of this Research
= Perception in autonomous mobile Cyber-Physical Systems which is typically
performed using classifiers that are based on Deep Learning (Deep Neural Networks)
= Motivation

= Problems where the system must check that a designated area ahead is free of hazards
Must identify any hazard within a specified latency constraint

= Example from UK driving test hazard perception scenarios
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Overview: Problem

= Functional uncertainty
= Classifiers are imperfect — in the majority of cases a classifier will determine
correctly whether there is a hazard present or the area is clear
= BUT it may produce false positives, 1.e. indicate hazard when the area is clear

= and false negatives, i.¢. indicate clear when there is in fact a hazard

= Problem
s Correctly identify hazards
= Within a latency constraint as late identification can be as bad as no identification

s False positives are undesirable as they reduce quality of service, e.g., unnecessarily
slowing the vehicle wastes energy and lengthens journey times

s False negatives are a potential safety concern, ¢.g2. an emergency braking system
have to take over, hence a hard constraint is placed on the maximum permitted
probability of false negatives
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Overview: Solution

= One classifier is typically not enough

= No single classifier alone may be effective enough to meet the constraint on the
maximum permitted probability of false negatives

= Use multiple classifiers and logically-OR together their outputs (1 = hazard, 0 = clear)
» If any classifier indicates hazard then we assume hazard
» Only if all classifiers that are run indicate clear do we assume clear

m Trade-off

= Using multiple classifiers:
= This can reduce the probability of false negatives
= But inevitably increases the probability of false positives

= Also increases the overall execution time
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Overview: Solution

m This research

= Provides a method for characterizing the (arbitrary) statistical dependences between
the functional behaviours of different classifiers that occur in practice

= Enables the calculation of the probabilities of false negatives and false positives

= Derives a Typical-Case Optimal Algorithm
= For scheduling classifiers that:
=« minimizes the probability of false positives
= meets the constraint on the maximum permitted probability of false negatives
= meets the latency constraint

= Solution is optimal assuming that the classifiers execute for their typical-case
execution times, but crucially are not guaranteed to do so

» if some classifier exceeds its typical-case execution time, e.g. takes its worst-case
execution time then the algorithm still ensures the constraints are met by making
use of other classifiers
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Overview: Solution

= Typical-case optimal algorithm
= Determines:

Preferred sequence of classifiers to run

Trigger times and escape sets giving the subsets of classifiers to run if a
preferred classifier does not complete by its trigger time

Trigger times are computed with respect to typical-case execution times, so if
these are observed the preferred sequence of classifiers will run

The escape sets guarantee that the constraint on the maximum permitted
probability of false negatives will be met even if some or all of the classifiers
take their worst-case execution times

Control switches to an escape set if a classifier does not complete by its trigger
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Detail: System Model

m Classifiers

n classifiers K1, Ko, ..., K, designed to solve the same problem
Output either 1 = hazard or 0 = clear
Outputs of multiple classifiers are OR-ed together

S represents a subset of the classifiers, with n classifiers there are 2” such subsets
FN(S) probability of the classifiers in S returning a false negative

FP(S) probability of the classifiers in S returning a false positive

WCET(S) worst-case execution time of the classifiers in S

TCET(S) typical-case execution time of the classifiers in §

ACET(S) actual-case execution time of the classifiers in S for a specific run-time
instance

H maximum permitted probability of false negatives
L latency constraint

ESCAP(S) 1s the subset V' with the smallest WCET(V) such that FN(SUV) <H
If FN(S) < H then ESCAP(S) = {} 7
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i Method

= Profiling

= Collects representative data necessary to characterized the behaviour of the classifiers
and their dependences

= Processes this data into a form usable by the algorithm
= Offline part of the algorithm

= Uses a Directed Acyclic Graph (DAG) representation of the problem to determine the
preferred sequence of classifiers to run

s Takes exponential time which 1s Ok in practice as at most 10 to 12 classifiers might
be used for this type of problem and the method can cater for up to 20 (in around 20
minutes on a laptop)

= Online part of the algorithm
= Makes decisions between pre-computed choices

RTS /5«

s Takes linear time at each scheduling point (classifier completion)
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i Multi-Modal Case Study

= Data from a previous project

= Seeks to autonomously detect the presence of a potentially hostile enemy vehicle in a
battlefield environment

s Electronic tripwire functionality: aim is to determine if a vehicle of the designated
type is present in the detection area and generate an alert, but ignore other traffic

= Vehicle types used in the case study were: Polaris ATV (All Terrain Vehicle),
Warthog UGV (Unmanned Ground Vehicle), and Chevrolet Silverado

= Warthog UGV designated as a hazard
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i Multi-Modal Case Study

m Classifiers used

= That analyse camera images, acoustic, and seismic data

RTS /o«

= Initially five classifiers A-E were studied so the profile table could be illustrated

A deepsense both

B deepsense both_contras
C deepsense_acoustic

D deepsense seismic

E cnn_both

F cnn_acoustic

G cnn_seismic

= Up to seven classifiers A-G were used in all, with different combinations of acoustic
and seismic data, different neural network architectures, and contrastive learning

= Used 1800 randomly selected input samples, 600 with a hazard (Warthog UGV) and

1200 without (Polaris ATV and Chevrolet Silerado)
= Classifiers were run on one core of a Raspberry Pi 4

= (Yolo classifiers using visual data were not considered due to much longer execution
times)
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Profile Table

Multi-Modal Case Study: Profile Table

m  Profile Table records Binary ClassifiersS GT1 GTO FP(S) FN(S) WCET(S)
_ _ 00000 @ 36 1107 0.0000 1.0000 0

s GTI number of times that the binary 00001 A 3.2 00075 01183 0.025121
. 00010 B 1 1 00042 0.1383  0.023854

pattem in column 1 occurred when 00011 AB 0 0 00100 0.0933  0.048975

. 00100 C 3 18 00200 03600 0.017554

all classifiers were run and the 00101 AC 9 1 00250 00933 0.042675
ground truth was hazard = 1 00110 BC 2 0 00242 01067 0.041408

) ) 00111 ABC 5 0 00275 0.0850  0.066529

= GTO number of times that the blnary 01000 D 9 36 00358 02083 0.01618
. 01001 AD 4 1 00417 0.0883  0.0413

pattern 1n column 1 occurred when 01010 BD 1 1 00383 0.1067 0.040033
all classifiers were run and the 01011 ABD 22 1 00433 00750  0.065154
01100 cD 0 2 00542 0.0850  0.033734

ground truth was clear =0 01101 ACD 1 0 00575 00700 0.058854

. 01110 BCD 2 0 00567 0.0767 0.057587

= From this data calculate: 01111  ABCD 13 0 00592 00667 0.082708
o o 10000 E 4 22 00250 01850  0.0053

= FP(S) probablhty of false positives 10001 AE 31 00292 00900 0030421
. . . 10010 BE 1 1 00275 0.1083  0.029154

when running the classifiers in 10011 ABE 3 1 00308 00800 0.054274
10100 CE 2 1 00425 01267 0.022854

subset S 10101 ACE 4 2 00458 0.0783  0.047975

13 : 10110 BCE 4 0 00450 0.0867  0.046708

- FN(S) p rol?ablhty of fa,lse ne_gatlves 10111 ABCE 45 0 00475 00750 0.071828
when running the ClaSSIfierS mn 11000 DE 2 2 00592 0.0983 0.021479
11001 ADE 3 0 00617 00700  0.0466

subset S 11010 BDE 2 0 00600 0.0850 0.045333
11011 ABDE 122 0 00625 0.0650 0.070454

= Also record WCET(S) for the subset 11100 CDE 0 0 00750 0.0667  0.039033
of classifiers S 11101 ACDE 0 0 00767 00617 0.064154
11110 BCDE 2 0 00758 0.0650  0.062887

11111  ABCDE 292 0 00775 0.0600  0.088008

Sum 600 1200 12
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Optimal Algorithms

Multi-Modal Case Study: Profile Table

11110 BCDE
11111 ABCDE 292
Sum 600

[a%]

0.0758 0.0650  0.062887
0.0775 0.0600  0.088008

- Statically Optima] A]gorithm Binary ClassifiersS GT1 GTO FP(S) FN(S) WCET(S)
) 00000 ) 36 1107 00000 1.0000 0
= Select the subset S of classifiers (row 00001 A P2 00075 011s3 0025121
1n the table) with the lowest FP(S) 00011 AB 0 0 00100 00933 0048975
00100 C 3 18 00200 03600 0.017554
such that FN(S) <H and _ 00101 AC 9 1 00250 0.0933  0.042675
WCET(S) <L and run the classifiers 00110 BC 2 0 00242 01067 0041408
i any or der 00111 ABC 5 0 00275 00850 0.066529
01000 D 9 36 00358 02083 001618
. . . 01001 AD 4 1 00417 00883  0.0413
[ | Clalrvoyant Opt]mal Alg()r]thm 01010 BD 1 1 0.0383 01067  0.040033
_ 01011 ABD 22 1 00433 00750 0.065154
= Assumed to know the actual execution 01100 €D 0 2 00542 00850  0.033734
. . 01101 ACD 1 0 00575 00700 0.058854
times of the classifiers for each run- 01110 BCD 2 0 00567 00767 0.057587
. . . . 01111 ABCD 13 0 00592 00667 0082708
time instance, but not their behaviour 5000 : L ome o OO
: 10001 AE 3 1 00292 0090 0.030421
m Select the subspt S of classifiers (row oo o P o oo oo
1n the table) with the lowest FP(S) 10011 ABE 3 1 00308 00800 0.054274
10100 CE 2 1 00425 01267 0.022854
such that FN(S) <H and ACET(S) <L 10101 ACE 4 2 0.0458 00783  0.047975
and run the cla331ﬁers 1n any order 10110 BCE 4 0  0.0450 0.0867  0.046708
10111 ABCE 45 0 00475 00750 0.071828
11000 DE 2 2 00592 00983 0.021479
11001 ADE 3 0 00617 00700  0.0466
11010 BDE 2 0 00600 00850 0045333
11011 ABDE 122 0 00625 00650 0.070454
11100 CDE 0 0 00750 00667 0.039033
11101 ACDE 0 0 00767 00617 0064154
0
0
20

14

—_
[=]



THE UNIVERSITYW

= Dependences

Examine the profiling data
directly to assess the level of
dependences and correlations
between the different classifiers

Ilustrated via Pearson’s
correlation coefficient

Classifier behaviour is strongly
positively correlated, coefficient

between 0.433 and 0.931 for each
pair of classifiers

Must therefore account for
arbitrary dependences between
classifier behaviours

Classifier execution times are
very weakly correlated,
abs(coefficient) < 0.08, meaning
that independence of execution
times 1s a reasonable assumption

J@RTS/M

Profiling: Dependences

Pearson’s correlation coefficient: Behaviour
A B C D E F G

OHmEHOO W

Pearson’s correlation coefficient: Execution

times
| A B C D E F G
A
B
C
D
E
F
G
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Typical-Case Optimal Algorithm

Multi-Modal: Augmented Profile Table

n Specific Problem Instance Binary ClassifiersS FP(S) FN(S) WCET(S) TCET(S) ESCAP(S)
_ ) 00000 Z 0.0000  1.0000 0 0 CD
= Latency L = 50ms, maximum permitted 00001 A 0.0075 01183  0.025121  0.018166 DE
1 . _ 00010 B 0.0042 0.1383 0023854 0017788 DE
probability of false negatives H = 0.085 00011 AB 0.0100 0.0933 0048975 0035954 E
00100 C 0.0200 03600 0017554  0.012263 D
u Augment the profile table 00101 AC 0.0250 0.0933  0.042675  0.030429 E
00110 BC 00242 0.1067 0041408  0.030051 D
s Add TCET (S).’ sum of the values of the 00111 ABC 0.0275 0.0850  0.066529  0.048217 )
: : : 01000 D 0.0358 02083  0.01618  0.011878 C
C}_los,en percentlle of the e)_(ecut_lon time 01001 AD 0.0417 0.0883 00413  0.030044 E
distribution for each classifier in S 01010 BD 0.0383 0.1067 0040033  0.029666 E
SR . : . 01011 ABD 00433 00750 0065154  0.047832 o
(Summation is V_ahd as execution times 01100 cD 00542 0.0850 0033734 0024141 o
can be assumed independent) 01101 ~ ACD 00575 00700 0058854 0042307  ©
) 01110 BCD 00567 00767 0.057587  0.041929 o
= Use 70-percentlle as an example — 01111 ABCD  0.0592 0.0667 0.082708  0.060095 2
. . 10000 E 00250 0.1850 00053 0004112  CD
return to this choice later 10001 AE 00292 0.0900 0030421 0022277 D
= Add ESCAP(S): equates to the subset [0 5 (00 (o oosims aoass o
V with the smallest WCET(V) such 10100 CE 0.0425 01267 0022854 0016374 D
10101 ACE 00458 00783 0047975  0.03454 @
that FN(SUV) <H 10110 BCE 00450 00867 0046708  0.034162 D
If FN(S) < H then ESCAP(S) = {} 10111 ABCE 00475 00750 0071828 0052328 o
i 11000 DE 0.0592 0.0983 0021479  0.01599 C
L] Computlng ESCAP(S) for all 2" subsets 11001 ADE 0.0617 0.0700  0.0466  0.034156 o
Y\ 4 11010 BDE 00600 00850 0.045333  0.033778 o
takes O(4") time 11011 ABDE 00625 00650 0070454 0.051944 @
11100 CDE 00750 0.0667 0039033  0.028252 @
11101 ACDE 00767 00617 0064154 0046418 o
11110  BCDE 00758 0.0650 0.062887  0.046041 o
11111 ABCDE 00775 00600 0088008 0064206 o
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= DAG-based representation

Example for classifiers A-E

Each vertex corresponds to a unique subset
of classifiers

An edge connects each vertex P with
another Q extended by adding one classifier

An edge from P to Q is valid if:

TCET(P) + WCET(Q-P) + WCET(ESCAP(Q)) <L

(invalid edges removed)

Need only consider the incoming edge with
the maximum slack time (solid arrows)
Optimal solution derives from the vertex
with the lowest FP(S) of any vertex that
meets the constraint FN(S) < H and is
reachable from the start (solid boundary and
shaded)

Path A — AB — ABE i1s optimal (shown in
red), 1.e. classifiers A, B, and E in that order

| RTS/ox«

Typical-Case Optimal Algorithm
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Typical-Case Optimal Algorithm

= Run-time solution

= To make best use of slack at run-time the trigger points are set as late as possible

= The typical-case optimal solution is ((A, 0.0034, CD), (B, 0.02085, DE), (E, 0.0447, E))
for the concrete problem considered

= Each triplet indicates the preferred classifier to run, the latest permitted start time for
that classifier, and the escape set to switch to if that start time i1s not met

=  Offline complexity

= Overall complexity of the off-line part of the typical-case optimal algorithm is O(4")
dominated by the construction of the extended profile table

=  DAG-based component of the algorithm has O(n2") complexity, since there are 2"
vertices and at most n outgoing edges per vertex

19
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Comparison

= Typical-case optimal vs. Static optimal vs. Clairvoyant optimal

=  Assume ACET(S) = TCET(S) for clairvoyant algorithm
Static: ACE (any order):
FP(S) = 0.0458, WCET(S) = 0.047975, TCET(S) = 0.03454.
Typical: ABE (specific order):
FP(S) = 0.0308, WCET(S) = 0.054274, TCET(S) = 0.040066.
Clairvoyant: ABC (any order):
FP(S) = 0.0275, WCET(S) = 0.066529, TCET(S) = 0.048217.

20
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Evaluation

= Extended Multi-Modal case study

= All seven classifiers considered so profile table has 27=128 rows
= Experiment involved 1000 runs:
= Latency constraint was randomly selected in the range [0.03333, 0.06667], i.¢.
33ms to 67ms, typically achievable using three classifiers.
» Constraint on the maximum probability of false negatives was randomly selected
in the range [0.06667, 0.08333], again typically achievable using three classifiers
= Only pairs of constraints on latency and the probability of false negatives that
admitted a static solution were used

= Actual execution times for the classifiers were selected at random from the sets of
execution times obtained processing the 1800 input samples used during profiling
s Compared solutions from:
= Static optimal algorithm
= Clairvoyant optimal algorithm

= Typical-case optimal algorithm using 25-, 50-, and 75-percentiles for typical-case execution
times

22
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Evaluation

Expt 1:

Plot shows the CDF of the
probability of false positives for the
chosen solutions

Smallest value i1s 0.0308 for ABE
largest was 0.104 for DEFG

Static optimal outperformed
typical-case optimal in 3.3%, 4.1%
and 9.4% of cases (75-, 50-, and 25-
percentile settings)

Optimizing for the typical case
doesn’t necessarily optimize for the
worst case

Cumulative Distribution Function
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Multi-Modal: Seven classifiers

==(Clairvoyant

==Typical (75)
—Typical(50)
=—=Typical (25)
=S tatic
Typical-case optimal
more than halves the
gap between static and
clairvoyant optimal
\_solutions v
0.02 0.04 0.06 0.08 0.1 0.12

Probability of False Positives
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Conclusions

= Summary

This research addressed the problem of real-time classification-based machine
perception, specifically the “hazard detection classifier sequencing problem”

Our main contribution was the derivation of optimal algorithms for the scheduling of
classifiers that minimize the probability of false positives, while meeting a latency
constraint and a constraint on the maximum permitted probability of false negatives

The classifiers can have practical attributes: arbitrary statistical dependences between
their functional behaviours and variability in their execution times

The solutions proposed were applicable to real-world scenarios and are practical with
O(1) run-time overheads (up to 20 classifiers could be considered for the same
problem)

Evaluation showed that the typical-case optimal algorithm provides a significant
improvement over statically optimal solutions, more than halving the performance gap
to a hypothetical clairvoyant algorithm

27
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Discussion and Questions?

Binary ClassifiersS FP(S) FN(S) WCET(S) TCET(S) ESCAP(S)

0.4 00000 2] 0.0000  1.0000 0 0
1 1 @ 1 classifier 00001 A 00075 0.1183 0025121 0018166
Trlgger times 0.35 o ® 2 classifiers 00010 B 00042 0.1383 0023854  0.017788
00011 AB 00100 0.0933 0048975  0.035954
w 03 @ 3 classifiers 00100 c 00200 03600 0017554 0012263
.“a‘ 0.25 4 classifiers 00101 AC 00250 0.0933 0042675  0.030429
s Y @5 classifiers 00110 BC 00242 0.1067 0041408  0.030051
¥ 02 [ 00111 ABC 00275 0.0850 0066520 0048217
z [ 01000 D 00358 02083 001618 0011878
@ 0.15 01001 AD 00417 00883 00413 0030044
= 01010 BD 00383 0.1067 0040033  0.029666
w

0.0575 0.0700  0.058854  0.042307
01110 BCD 0.0567 0.0767  0.057587  0.041929

0.1 ‘u 01011 ABD 00433 00750 0065154  0.047832
~ ‘ 01100 cD 00542 0.0850 0033734 0024141
0.05 L 01101 ACD

1] 01111 ABCD 00592 0.0667 0082708  0.060095
0 0.02 0.04 0.06 0.08 0.1 10000 B 00250 0850 00053 0004112
10001 AR 00292 00900 0030421 0022277
Worst-case execution time 10010 BE 00275 01083 0029154  0.0219
10011 ABE 00308 00800 0054274  0.040066
10100 CE 00425 01267 0022854 0016374
10101 ACE 00458 0.0783 0047975  0.03454
° 10110 BCE 00450 0.0867 0046708  0.034162
rOb daVls Ork ac uk 10111 ABCE 00475 00750 0071828  0.052328
L4 o ° 11000 DE 00592 0.0983 0021479  0.01599
11001 ADE 00617 00700 00466  0.034156
11010 BDE 00600 0.0850 0045333  0.033778
11011 ABDE 00625 00650 0070454 0051944
11100 CDE 00750 0.0667 0039033  0.028252

11101 ACDE 0.0767 0.0617 0064154  0.046418
11110 BCDE 0.0758 0.0650  0.062887  0.046041
11111 ABCDE 0.0775 0.0600  0.088008  0.064206

ssssessNeUsUeU0 s s mmneomom gY 3

1
==Clairvoyant
0.9 ==Typical (75)
0s —Typical(50)

=——Typical (25)
0.7 =—Static

0.6

0.5

0.4

0.3

OO

0.1

Cumulative Distribution Function

OmmgoOwe

0 0.02 0.04 0.06 0.08 0.1 0.12
Probability of False Positives

£0



