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n Focus of this Research
n Perception in autonomous mobile Cyber-Physical Systems which is typically 

performed using classifiers that are based on Deep Learning (Deep Neural Networks)

n Motivation
n Problems where the system must check that a designated area ahead is free of hazards 

Must identify any hazard within a specified latency constraint
n Example from UK driving test hazard perception scenarios
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Overview: Problem

Too late!



n Functional uncertainty
n Classifiers are imperfect – in the majority of cases a classifier will determine

correctly whether there is a hazard present or the area is clear
n BUT it may produce false positives, i.e. indicate hazard when the area is clear
n and false negatives, i.e. indicate clear when there is in fact a hazard

n Problem
n Correctly identify hazards
n Within a latency constraint as late identification can be as bad as no identification
n False positives are undesirable as they reduce quality of service, e.g., unnecessarily 

slowing the vehicle wastes energy and lengthens journey times
n False negatives are a potential safety concern, e.g. an emergency braking system 

have to take over, hence a hard constraint is placed on the maximum permitted 
probability of false negatives
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Overview: Problem



n One classifier is typically not enough
n No single classifier alone may be effective enough to meet the constraint on the 

maximum permitted probability of false negatives
n Use multiple classifiers and logically-OR together their outputs (1 = hazard, 0 = clear)

n If any classifier indicates hazard then we assume hazard
n Only if all classifiers that are run indicate clear do we assume clear

n Trade-off
n Using multiple classifiers:

n This can reduce the probability of false negatives
n But inevitably increases the probability of false positives
n Also increases the overall execution time
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Overview: Solution



n This research
n Provides a method for characterizing the (arbitrary) statistical dependences between 

the functional behaviours of different classifiers that occur in practice
n Enables the calculation of the probabilities of false negatives and false positives

n Derives a Typical-Case Optimal Algorithm
n For scheduling classifiers that:

n minimizes the probability of false positives
n meets the constraint on the maximum permitted probability of false negatives
n meets the latency constraint

n Solution is optimal assuming that the classifiers execute for their typical-case 
execution times, but crucially are not guaranteed to do so

n if some classifier exceeds its typical-case execution time, e.g. takes its worst-case 
execution time then the algorithm still ensures the constraints are met by making 
use of other classifiers
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Overview: Solution
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n Typical-case optimal algorithm
n Determines:

n Preferred sequence of classifiers to run
n Trigger times and escape sets giving the subsets of classifiers to run if a 

preferred classifier does not complete by its trigger time
n Trigger times are computed with respect to typical-case execution times, so if 

these are observed the preferred sequence of classifiers will run
n The escape sets guarantee that the constraint on the maximum permitted 

probability of false negatives will be met even if some or all of the classifiers 
take their worst-case execution times

n Control switches to an escape set if a classifier does not complete by its trigger 
time

Overview: Solution

A B CPreferred sequence

A B

D

Escaped sequence 
Latency constraint

Trigger times Enough time for
WCET of C



n Classifiers
n n classifiers                         designed to solve the same problem
n Output either 1 = hazard or 0 = clear
n Outputs of multiple classifiers are OR-ed together

n S represents a subset of the classifiers, with n classifiers there are 2n such subsets
n FN(S) probability of the classifiers in S returning a false negative 
n FP(S) probability of the classifiers in S returning a false positive
n WCET(S) worst-case execution time of the classifiers in S
n TCET(S) typical-case execution time of the classifiers in S
n ACET(S) actual-case execution time of the classifiers in S for a specific run-time 

instance

n H maximum permitted probability of false negatives
n L latency constraint

n ESCAP(S) is the subset V with the smallest WCET(V) such that FN(SUV) ≤ H
If FN(S) ≤ H then ESCAP(S) = {} 7

Detail: System Model



n Profiling
n Collects representative data necessary to characterized the behaviour of the classifiers 

and their dependences
n Processes this data into a form usable by the algorithm

n Offline part of the algorithm
n Uses a Directed Acyclic Graph (DAG) representation of the problem to determine the 

preferred sequence of classifiers to run
n Takes exponential time which is Ok in practice as at most 10 to 12 classifiers might 

be used for this type of problem and the method can cater for up to 20 (in around 20 
minutes on a laptop)

n Online part of the algorithm
n Makes decisions between pre-computed choices
n Takes linear time at each scheduling point (classifier completion)
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Method



n Data from a previous project
n Seeks to autonomously detect the presence of a potentially hostile enemy vehicle in a 

battlefield environment
n Electronic tripwire functionality: aim is to determine if a vehicle of the designated 

type is present in the detection area and generate an alert, but ignore other traffic
n Vehicle types used in the case study were: Polaris ATV (All Terrain Vehicle), 

Warthog UGV (Unmanned Ground Vehicle), and Chevrolet Silverado
n Warthog UGV designated as a hazard
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Multi-Modal Case Study

HAZARD



n Classifiers used
n That analyse camera images, acoustic, and seismic data
n Initially five classifiers A-E were studied so the profile table could be illustrated

n A deepsense_both
n B deepsense_both_contras
n C deepsense_acoustic
n D deepsense_seismic
n E cnn_both
n F cnn_acoustic
n G cnn_seismic

n Up to seven classifiers A-G were used in all, with different combinations of acoustic 
and seismic data, different neural network architectures, and contrastive learning

n Used 1800 randomly selected input samples, 600 with a hazard (Warthog UGV) and 
1200 without (Polaris ATV and Chevrolet Silerado)

n Classifiers were run on one core of a Raspberry Pi 4
n (Yolo classifiers using visual data were not considered due to much longer execution 

times) 11

Multi-Modal Case Study



n Profile Table records
n GT1 number of times that the binary 

pattern in column 1 occurred when 
all classifiers were run and the 
ground truth was hazard = 1

n GT0 number of times that the binary 
pattern in column 1 occurred when 
all classifiers were run and the 
ground truth was clear = 0

n From this data calculate:
n FP(S) probability of false positives 

when running the classifiers in 
subset S

n FN(S) probability of false negatives 
when running the classifiers in 
subset S

n Also record WCET(S) for the subset 
of classifiers S
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Profile Table
Multi-Modal Case Study: Profile Table



n Statically Optimal Algorithm
n Select the subset S of classifiers (row 

in the table) with the lowest FP(S) 
such that FN(S) ≤ H and
WCET(S) ≤ L and run the classifiers 
in any order

n Clairvoyant Optimal Algorithm
n Assumed to know the actual execution 

times of the classifiers for each run-
time instance, but not their behaviour

n Select the subset S of classifiers (row 
in the table) with the lowest FP(S) 
such that FN(S) ≤ H and ACET(S) ≤ L 
and run the classifiers in any order
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Optimal Algorithms
Multi-Modal Case Study: Profile Table



n Dependences
n Examine the profiling data 

directly to assess the level of 
dependences and correlations 
between the different classifiers

n Illustrated via Pearson’s 
correlation coefficient

n Classifier behaviour is strongly 
positively correlated, coefficient 
between 0.433 and 0.931 for each 
pair of classifiers

n Must therefore account for 
arbitrary dependences between 
classifier behaviours

n Classifier execution times are 
very weakly correlated, 
abs(coefficient) < 0.08, meaning 
that independence of execution 
times is a reasonable assumption
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Profiling: Dependences
Pearson’s correlation coefficient: Behaviour

Pearson’s correlation coefficient: Execution 
times



n Specific Problem Instance
n Latency L = 50ms, maximum permitted 

probability of false negatives H = 0.085
n Augment the profile table

n Add TCET(S): sum of the values of the 
chosen percentile of the execution time 
distribution for each classifier in S
(Summation is valid as execution times 
can be assumed independent)

n Use 70-percentile as an example –
return to this choice later

n Add ESCAP(S): equates to the subset 
V with the smallest WCET(V) such 
that FN(SUV) ≤ H
If FN(S) ≤ H then ESCAP(S) = {}

n Computing ESCAP(S) for all 2n subsets 
takes O(4n) time
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Typical-Case Optimal Algorithm
Multi-Modal: Augmented Profile Table



n DAG-based representation
n Example for classifiers A-E
n Each vertex corresponds to a unique subset 

of classifiers
n An edge connects each vertex P with 

another Q extended by adding one classifier
n An edge from P to Q is valid if:

(invalid edges removed)
n Need only consider the incoming edge with 

the maximum slack time (solid arrows)
n Optimal solution derives from the vertex 

with the lowest FP(S) of any vertex that 
meets the constraint FN(S) ≤ H and is 
reachable from the start (solid boundary and 
shaded)

n Path A → AB → ABE is optimal (shown in 
red), i.e. classifiers A, B, and E in that order 17

Typical-Case Optimal Algorithm

TCET(P) + WCET(Q-P) + WCET(ESCAP(Q)) ≤ L
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n Run-time solution
n To make best use of slack at run-time the trigger points are set as late as possible
n The typical-case optimal solution is ((A, 0.0034, CD), (B, 0.02085, DE), (E, 0.0447, E)) 

for the concrete problem considered
n Each triplet indicates the preferred classifier to run, the latest permitted start time for 

that classifier, and the escape set to switch to if that start time is not met

n Offline complexity
n Overall complexity of the off-line part of the typical-case optimal algorithm is O(4n) 

dominated by the construction of the extended profile table
n DAG-based component of the algorithm has O(n2n) complexity, since there are 2n

vertices and at most n outgoing edges per vertex

Typical-Case Optimal Algorithm
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n Typical-case optimal vs. Static optimal vs. Clairvoyant optimal
n Assume ACET(S) = TCET(S) for clairvoyant algorithm

Comparison
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n Extended Multi-Modal case study
n All seven classifiers considered so profile table has 27=128 rows 
n Experiment involved 1000 runs:

n Latency constraint was randomly selected in the range [0.03333, 0.06667], i.e. 
33ms to 67ms, typically achievable using three classifiers.

n Constraint on the maximum probability of false negatives was randomly selected 
in the range [0.06667, 0.08333], again typically achievable using three classifiers

n Only pairs of constraints on latency and the probability of false negatives that 
admitted a static solution were used

n Actual execution times for the classifiers were selected at random from the sets of 
execution times obtained processing the 1800 input samples used during profiling

n Compared solutions from:
n Static optimal algorithm
n Clairvoyant optimal algorithm
n Typical-case optimal algorithm using 25-, 50-, and 75-percentiles for typical-case execution 

times

Evaluation
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Evaluation
n Expt 1:

n Plot shows the CDF of the 
probability of false positives for the 
chosen solutions

n Smallest value is 0.0308 for ABE 
largest was 0.104 for DEFG

n Static optimal outperformed 
typical-case optimal in 3.3%, 4.1% 
and 9.4% of cases (75-, 50-, and 25-
percentile settings)

n Optimizing for the typical case 
doesn’t necessarily optimize for the 
worst case

Multi-Modal: Seven classifiers

Typical-case optimal
more than halves the
gap between static and
clairvoyant optimal
solutions



n Summary
n This research addressed the problem of real-time classification-based machine 

perception, specifically the “hazard detection classifier sequencing problem”
n Our main contribution was the derivation of optimal algorithms for the scheduling of 

classifiers that minimize the probability of false positives, while meeting a latency 
constraint and a constraint on the maximum permitted probability of false negatives 

n The classifiers can have practical attributes: arbitrary statistical dependences between 
their functional behaviours and variability in their execution times

n The solutions proposed were applicable to real-world scenarios and are practical with 
𝑂(1) run-time overheads (up to 20 classifiers could be considered for the same 
problem)

n Evaluation showed that the typical-case optimal algorithm provides a significant 
improvement over statically optimal solutions, more than halving the performance gap 
to a hypothetical clairvoyant algorithm
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Conclusions
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