
Fixed Priority until Zero Laxity
(FPZL)

Schedulability Analysis

Robert Davis and Alan Burns

Real-Time Systems Research Group, University of York

Research scope
 Homogeneous Multiprocessor Real-Time Systems

 Global scheduling
 Single global run-queue
 Pre-emption and migration

 Based on fixed task-priority scheduling
 All jobs of a task have the same fixed priority

 Add minimally dynamic priorities
 Promote the priority of any job that would otherwise

inevitably miss its deadline (zero-laxity)

Motivation
 Improve upon the effectiveness of global FP scheduling

 Dynamic priority algorithms
 Potentially much more effective than fixed task-priority

algorithms in terms of the tasksets that can be scheduled
 But can have significantly larger overheads e.g. theoretically

optimal algorithms with n -1 context switches per job release
 Avoid significant increase in complexity or number of

context switches
 FPZL: Zero-Laxity rule applied to global FP scheduling

 When remaining execution time equals time to deadline, task
must run or the deadline will be missed - so priority promoted

 At most one change in priority per job release
 At most two pre-emptions per job release

Outline
 System model, terminology, and definitions
 Recap on schedulability tests for global FP scheduling
 Schedulability tests for FPZL
 Improving the tests by bounding execution time in

the zero-laxity state
 Empirical results

 Schedulability test performance
 Algorithm performance (simulation)

 Comparison with previous work on RMZL
 Summary and conclusions

System model
 Multiprocessor system

 m identical processors
 FPZL scheduling (global FP pre-emptive scheduling +

priority promotion at zero-laxity)
 Migration is permitted, but a job can only execute on one

processor at a time
 Sporadic task model

 Static set of n tasks τi with priorities 1..n
 Bounded worst-case execution time Ci

 Sporadic/periodic arrivals: minimum inter-arrival time Ti

 Relative deadline Di (Constrained deadlines ≤ Ti)
 Independent

Global FP: Sufficient
schedulability tests

 Fundamental approach
(Baker [2])
 Problem window in which

deadline is missed (e.g. Dk)
 Necessary condition for

deadline miss:
m processors all occupied for
more than Dk - Ck

 Derive upper bound on
interference IUB from other
tasks

 Negate the un-schedulability
condition to form a sufficient
schedulability test for task τk

Deadline analysis for global FP
 Worst-case scenario for task τk

(Davis & Burns [16], Guan et al. [20])
 At most (m -1) higher priority tasks contribute carry-in

interference

 Other tasks contribute no carry-in interference

Ci

Ti
Di

Dk

)1),(min(),(+−= k
NC

ik
NC
i CLLWCLI

))(,min()()(i
NC
iii

NC
i

NC
i TLNLCCLNLW −+=

)1),(min(),(+−= k
D

ik
D
i CLLWCLI

))(,min()()(i
D
iiiii

D
i

D
i TLNCDLCCLNLW −−++=

⎣ ⎦iii
D
i TCDLLN /)()(−+=

⎣ ⎦i
NC
i TLLN /) (=

Deadline analysis for global FP
 Polynomial time test: Deadline Analysis (“DA-LC test”)

(Davis & Burns [16] based on Bertogna et al. [9], Guan
et al [20])
 Difference between carry-in and no carry-in interference

 Include extra interference from (m – 1) tasks with largest
difference between carry-in and no carry-in interference

 Schedulability test for each task τk

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++≥ ∑∑

−∈

−

∈∀)1,()(
),(),(1

mkMDi
kk

DDIFF
i

khpi
kk

NC
ikk CDICDI

m
CD

),(),(),(k
NC
ik

D
ik

DDIFF
i CLICLICLI −=−

Response Time analysis
for global FP
 Worst-case scenario for task τk

(Guan et al. [20])
 At most (m -1) tasks contribute carry-in interference

 Others contribute no carry-in interference (as before)
)1),(min(),(+−= k

NC
ik

NC
i CLLWCLI

))(,min()()(i
NC
iii

NC
i

NC
i TLNLCCLNLW −+=

⎣ ⎦i
NC
i TLLN /) (=

)1),(min(),(+−= k
R

ik
R
i CLLWCLI

))(,min()()(i
R
ii

UB
iii

R
i

R
i TLNCRLCCLNLW −−++=

⎣ ⎦ii
UBR

i TCRLLN
i

/)()(−+=

Response Time analysis
for global FP
 Pseudo-polynomial time test: Response Time Analysis

(“RTA-LC test”) (Guan et al [20], based on Bertogna &
Cirinei [8])
 Difference between carry-in and no carry-in interference

 Include extra interference from (m – 1) tasks with largest
difference between carry-in and no carry-in interference

Recall dependency on response time upper bounds of higher priority tasks –
need to evaluate schedulability in priority order – highest priority first

),(),(),(k
NC
ik

R
ik

RDIFF
i CLICLICLI −=−

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++← ∑∑

−∈

−

∈∀)1,()(
),(),(1

mkMRi
k

UB
k

RDIFF
i

khpi
k

UB
k

NC
ik

UB
k CRICRI

m
CR

FPZL Schedulability analysis
 Differences w.r.t. analysis for global FP

 Up to m tasks may be deemed unschedulable but still
meet their deadlines due to the zero-laxity rule

 Tasks executing in the zero-laxity state have an impact on
the schedulability of other tasks (assume)

 Zero-laxity execution immediately proceeds the deadline
 Equations similar to “no carry-in” case
 Need only consider lower priority zero-laxity tasks

(no increase in interference from higher priority zero-laxity
tasks – already of higher priority)

)1),(min(),(+−= k
Z
jk

Z
j CLLWCLI

))(,min()()(j
Z
j

UB
j

UB
j

Z
j

Z
j TLNLZZLNLW −+=

⎣ ⎦j
Z
j TLLN /)(=

j
UB
j CZ =

FPZL Schedulability Analysis
 Deadline Analysis for FPZL (DA-LC test)

 If inequality holds, task is schedulable without priority
promotion, otherwise it is a zero-laxity task

 At most m zero-laxity tasks in a schedulable system
 Dominates equivalent test for global FP
 Schedulability needs to be checked lowest priority first to

identify which tasks are zero-laxity tasks
 Polynomial time test of taskset schedulability

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

+≥

∑

∑

∑

∈∀

−∈

−

∈∀

)(

)1,(

)(

),(

),(

),(

1

klpzlj
kk

Z
j

mkMDi
kk

DDIFF
i

khpi
kk

NC
i

kk

CDI

CDI

CDI

m
CD

)(2nO

 Response Time Analysis for FPZL (RTA-LC test)

 As before:
 If , task is schedulable without priority

promotion, otherwise it is a zero-laxity task
 At most m zero-laxity tasks in a schedulable system
 Dominates equivalent test for global FP

 Problem:
 Response time upper bound depends on response times of

higher priority tasks and the zero-laxity status of lower
priority tasks

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

+←

∑

∑

∑

∈∀

−∈

−

∈∀

)(

)1,(

)(

),(

),(

),(

1

klpzlj
k

UB
k

Z
j

mkMRi
k

UB
k

RDIFF
i

khpi
k

UB
k

NC
i

k
UB
k

CRI

CRI

CRI

m
CR

FPZL Schedulability Analysis

k
UB
k DR ≤

 RTA Solution
 Response time (and hence

zero-laxity status) is
monotonically non-
decreasing in the response
times of higher priority tasks
and the zero-laxity status /
zero-laxity execution times
of lower priority tasks

 Whenever a zero-laxity task
is found – must repeat
response time calculations

FPZL Schedulability Analysis

 DC-Sustainability
 A schedulability test is DC-Sustainable provided that

 Any task that is schedulable according to the test with
parameters (D,C) remains schedulable when D and C are
reduced by the same amount x to (D-x, C-x)

 Any task that is unschedulable according to the test with
parameters (D,C) remains unschedulable when D and C are
increased by the same amount to (D+x, C+x)

 Both FPZL schedulability tests (DA-LC and RTA-LC) are
DC-Sustainable
 Proofs in the paper

Bounding zero-laxity
execution time

 Execution time in the zero-laxity state
 DC-Sustainability of the schedulability tests means

 For each zero-laxity task, we can use a binary search to
find the min value of x such that the task is schedulable
with parameters (D-x, C-x) without priority promotion

 x is then an upper bound on the execution time in the
zero-laxity state

 Response Time Analysis
 Iterative calculation - also need to re-start calculations

whenever the response times or execution times in the
zero-laxity state change

Bounding zero-laxity
execution time

Empirical Investigation
 Taskset parameters

 Task utilisations generated via UUnifast-Discard
 Task periods chosen from a log-uniform distribution with a

range from min to max period of 1000 (e.g. 1ms to 1 sec)
 Execution times set from task utilisation and period values
 Task deadlines chosen from a uniform distribution between

execution time and period
 Total utilisation varied from 0.025m to 0.975m in steps of

0.025m
 1000 tasksets generated for each total utilisation level
 Graphs plot the percentage of tasksets that are schedulable

according to each schedulability test against total utilisation

Empirical Investigation
 Sufficient schedulability tests

 Global FP: (DA-LC test and DMPO)
 Global FP: (DA-LC test and OPA)
 Global EDF: (EDF-RTA test)
 EDZL: (EDZL-I test)
 FPZL: (DA-LC test and OPA)

 LOAD* necessary infeasibility test
 Simulations

 Global FP (DMPO, DCMPO)
 FPZL (DCMPO)
 EDF
 EDZL

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
EDF Sim
EDF (RTA)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
EDF Sim
FP Sim (DMPO)
FP DA-LC (DMPO)
EDF (RTA)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FP DA-LC (OPA)
FP DA-LC (DMPO)
EDF (RTA)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
FP DA-LC (DMPO)
EDF (RTA)

Empirical results: 8 Processors
40 tasks D≤≤T

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

Empirical results: 4 Processors
20 tasks D≤≤T

Empirical results: 2 Processors
10 tasks D≤≤T

0%

20%

40%

60%

80%

100%

120%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

RMZL and FPZL
 Related research on RMZL

 Originally published in Japanese by Shinpei Kato
 Now available as a technical report in English
 RMZL is the same zero-laxity rule applied to global FP

scheduling for the “Rate Monotonic” case (D=T)
 Algorithm is the same as FPZL
 Analysis is simpler but only applicable to the implicit deadline

case with RM priority order
 RMZL analysis assumes every lower priority task can be a

zero-laxity task
 Unfortunately this leads to declining schedulability test

performance with an increasing number of tasks
 FPZL schedulability test dominates the equivalent RMZL

test

Summary and conclusions
 Motivation

 To improve on current state-of-the-art in terms of
techniques that enable the efficient use of processing
capacity in hard real-time systems based on
multiprocessors.

 Aimed to improve upon the effectiveness of global FP
scheduling without introducing significant additional
overheads (e.g. large numbers of context switches)

 Therefore investigated a minimally dynamic priority
algorithm FPZL

Summary and conclusions
 Contribution

 Introduced polynomial and pseudo-polynomial time
schedulability tests (Deadline Analysis and Response Time
Analysis) for FPZL

 Improved these tests via calculation of the maximum
execution time in the zero-laxity state

 Test dominate the equivalent tests for global FP
 Empirical results show that FPZL schedulability tests make

a useful improvement on those for global FP particularly
in the implicit deadline case

 Simulation results show that FPZL (and EDZL) are highly
effective – still a large gap between simulation and
schedulability analysis potentially due to pessimism in the
analysis

	 Fixed Priority until Zero Laxity (FPZL)�Schedulability Analysis
	Research scope
	Motivation
	Outline
	System model
	Global FP: Sufficient schedulability tests
	Deadline analysis for global FP
	Deadline analysis for global FP
	Response Time analysis �for global FP
	Response Time analysis�for global FP
	FPZL Schedulability analysis
	FPZL Schedulability Analysis
	FPZL Schedulability Analysis
	FPZL Schedulability Analysis
	Bounding zero-laxity �execution time
	Bounding zero-laxity �execution time
	Empirical Investigation
	Empirical Investigation
	Empirical results:
	Empirical results:
	Empirical results:
	RMZL and FPZL
	Summary and conclusions
	Summary and conclusions

