
How Embedded Applications using an RTOS can stay within On-chip Memory
Limits

Robert Davis Nick Merriam Nigel Tracey
Realogy Realogy University of York

rdavis@realogy.com nmerriam@realogy.com njt@cs.york.ac.uk
www.realogy.com

Abstract

The major requirement from manufacturers designing
embedded systems for high-volume products is to keep
production costs as low as possible. The most cost-
effective solution is to use small single chip microcon-
trollers / DSPs. Developers of software for resource
constrained systems are increasingly in a difficult po-
sition: they have to write complex programs that must
fit into very low cost microcontrollers and yet end-
product quality must not suffer. This leads to a desire
to use a real-time operating system (RTOS), yet remain
within on-chip memory limits (typically 512bytes to 4K
RAM). This is not possible with many conventional
RTOS, which allocate a separate stack for each task.
We ask the question "why don't they use a single
stack?" and explain the key elements of an execution
model required for single stack operation. The novel
concept of non-preemption groups is introduced and
shown to enable significant reductions in stack size. An
effective priority allocation algorithm is essential to
realize the advantages of non-preemption groups. The
results of applying such an algorithm show that the
number of preemption levels required to maintain
schedulability is strongly correlated with the spread of
deadlines and for typical systems is relatively small.
We conclude that a priority allocation algorithm com-
bined with the non-preemption group mechanism re-
duces stack requirements by a significant factor. This
enables efficient operation using an RTOS, whilst re-
maining within on-chip memory limits. Stack require-
ments are similar to those for a cyclic executive.

INTRODUCTION
The major requirement from manufacturers designing
embedded systems for high volume products is to keep
production costs as low as possible. The most cost ef-
fective solution is to use small single chip microcon-
trollers or DSPs with the program executing out of on-
chip ROM and using only the very limited amounts of
on-chip RAM. This is borne out by the market for mi-
crocontrollers: in 1998, 2.5 billion 8-bit microcontrol-
lers were sold, compared to only 63.7 Million 32-bit

microcontrollers. The average selling price of an 8-bit
device was $2.23 compared to $8.97 for faster 32-bit
devices.

Adding external RAM leads to significant increases in
cost. Even internal RAM is transistor hungry and ex-
pensive (8-16 times as costly as ROM). Typically, a
number of microcontroller variants are produced with
only those on-chip peripherals specifically required and
with varying amounts of on-chip RAM. For example
256, 512, 768 or 1024 bytes of RAM on an 8-bit device
(or up to a few Kbytes on an expensive 32-bit device).

The functionality and complexity of embedded soft-
ware is constantly increasing in response to "more for
less" demands by end customers. The challenge for
manufacturers is to squeeze new functionality into the
lowest cost hardware possible, without cutting corners
on reliability and hence product quality.

The conventional way to build embedded software in
resource constrained systems is to write a monolithic
program where the logical software functions are bro-
ken into small pieces. These pieces are then run in a
'round robin' sequence. Building the sequence and
writing the code for the functions turns out to be diffi-
cult to do when the number of functions becomes large
and they become complex. It also starts to be difficult
to make changes to the system, so incorporating new
enhancements is time consuming and risky. As well as
being difficult to write, the software ends up using the
available processor time inefficiently, requiring a faster
and more expensive microcontroller. [1].

Developers of software for resource constrained sys-
tems are increasingly in a difficult position: they have
to write complex programs without impacting end-
product quality. This leads to a need to use a real-time
operating system (RTOS), yet the application must fit
into very low cost microcontrollers.

STACK USAGE

Conventional RTOS approach

Real-time operating systems deal effectively with the
complexity problems inherent in using 'superloop' or
cyclic executive solutions. They do this by supporting
multi-tasking and fixed priority preemptive scheduling.
The advantages of using an RTOS are well known:
there is no need to break functionality up into frag-
ments to fit it within the major and minor cycles, func-
tionality can be executed at the appropriate rate, and
sporadic events such as infrequent but short deadline
interrupts can be dealt with efficiently. Applications
using an RTOS can make significantly more effective
use of processor time than 'superloop' systems. Simple
cyclic systems can waste as much as 20% of the CPU
through over-sampling and provision for sporadic ac-
tivities [1].

In a typical multi-tasking operating system, a number
of tasks compete for use of the processor based on their
priorities. When a low priority task is executing and a
higher priority task becomes ready, the RTOS pre-
empts execution of the low priority task, saves its exe-
cution context, restores the context for the high priority
task which then executes. Once the high priority task
has finished, the low priority task will be resumed.

Unfortunately, most RTOS allocate a separate stack to
each task. This stack is used by the task as it executes
to store local variables, return addresses etc. It may
also be used when switching away from the task to
save its context (current register values). Finally, when
an interrupt is serviced, the interrupt handler may also
execute on the task's stack. This separate allocation of a
stack per task uses a large amount of RAM as shown
by the example below: (Figures for an 8-bit micro with
512 bytes of on-chip RAM, context save of 15 bytes).

Task Priority Stack (bytes)
A 1 40
B 2 30
C 3 35
D 8 20
E 5 80
F 6 70
G 7 60
H 4 35
Interrupt - 20

Table 1.

Total stack usage = Sum of all task stack usage +
(N * context) + (N * interrupt stack usage).

= 650 bytes

In this example, the total amount of RAM needed for
the task stacks is greater than the total on-chip RAM!

Note that an improvement can be made via the use of a
separate stack for interrupts, however this typically
requires hardware support (e.g. ARM7 devices) if it is
to avoid placing any of the processor context on the
task's stack.

Why use a stack per task?

The execution model used in conventional real-time
operating systems can be traced back to operating sys-
tems designed for multi-processing in the 1960's. Each
task loops indefinitely, waiting for some event (for ex-
ample the expiry of its period).

void my_task()
{
 while(1) {
 /* do something */
 delay (500ms);
 }
}

This execution model means that the RTOS cannot use
a single stack. If a single stack was used, then the fol-
lowing situation could occur: a low priority task L exe-
cutes and its current state is placed on the stack. L is
then preempted by a high priority task H, H uses the
stack below the memory used by L (assuming that the
stack grows downwards). Then when H voluntarily
suspends via the delay() call, task L resumes. Either the
stack pointer is incorrect for the resumption of L, or L
overwrites the area of the stack currently in use by H.

As well as the basic execution model, the poor syn-
chronization mechanisms such as semaphores or prior-
ity inheritance used by many RTOS also prevent the
use of a single stack. For example, when priority in-
heritance is used to obtain mutual exclusion, the fol-
lowing situation can occur. Task L runs, obtains a re-
source and is then preempted by H. When H attempts
to obtain the resource, it is suspended and the priority
of L increased so that it can complete execution of its
critical section. This however leads to the problem
noted above: either the stack pointer is incorrect for the
resumption of L, or L overwrites the area of the stack
currently in use by H.

Requirements for Single Stack operation

Execution of multiple tasks on a single stack requires
an execution model where each task executes to com-
pletion (possibly being preempted by higher priority

tasks) before returning to any lower priority task. Peri-
odic behavior is obtained by re-activating the task.

With single shot execution, once a low priority task L
is preempted by a higher priority task H, H will execute
to completion before L is resumed. This means that
task H uses an area of the stack strictly below that cur-
rently in use by L and both can execute on the same
stack.

A more effective mechanism for enforcing mutual ex-
clusion is also required for single stack operation: this
is the Stack Resource Policy [5], an enhancement of
the Priority Ceiling Protocol [2]. Using this 'immediate'
variant of the Priority Ceiling Protocol, each resource
is allocated a priority, which is the highest priority of
any task that is permitted to lock that resource. At run-
time, when a low priority task L locks a resource
shared with a high priority task H, its priority is imme-
diately raised to the ceiling priority of the resource (at
least as high as the priority of H). Hence task H cannot
even start to execute until L has released all resources
shared with H or higher priority tasks. Once task H
starts to execute, it is therefore guaranteed to obtain all
the resources it needs. This means that under the Im-
mediate Priority Ceiling Protocol, resource locks are
not blocking calls! So even in the presence of resource
locks, tasks execute to completion, with strictly nested
preemption by higher priority tasks. Operation is there-
fore possible on a single stack, and is also guaranteed
to be deadlock free [5].

Single stack

Single stack operation alone, is not enough to make a
significant reduction in the amount of stack used. This
is illustrated by the set of tasks in table 1. With a single
stack and a unique priority for each task:

Total stack usage = Sum of all task stack usage +
(N * context) + interrupt stack usage.

= 510 bytes

There is an advantage in total stack usage over the
multi-stack approach. Interrupt handler stack usage
does not require space on multiple stacks, only on one.
The interruption of any task results in the interrupt
handler executing on the same stack, with no require-
ment for hardware support to switch to a special inter-
rupt stack.

Non-Preemption Groups

With all tasks (and interrupt handlers) executing on a
single stack, there is scope to reduce the amount of
RAM required for the stack by a large factor. This can

be achieved by limiting which tasks can preempt each
other.

Control of preemption can be achieved with no addi-
tional run-time overheads via the use of Non-
Preemption Groups. A Non-Preemption Group is sim-
ply a collection of tasks that are not permitted to pre-
empt each other.

To support Non-Preemption Groups, each task has two
static priorities:

1. Base priority
2. Dispatch priority

A task's base priority is the priority at which a ready
task (which has not yet started to execute) competes for
the processor.

The dispatch priority of a task A is the highest base
priority of any task that shares a Non-preemption
Group with task A. At run-time, when a task first starts
to execute, the current active priority is set to its dis-
patch priority. This means that the task can only be
preempted by tasks with a higher base priority than its
dispatch priority. This means it cannot be preempted by
any task with which it 'shares' a Non-Preemption
Group.

In fact, Non-Preemption Groups are just like the Im-
mediate Priority Ceiling Protocol. When a task first
starts to execute, it is as if it had locked a resource
shared with all other tasks in the same Non-Preemption
Group. Therefore, it is guaranteed not to be preempted
by any of them. It should be noted that the base and
dispatch priority mechanism is more efficient than us-
ing resource locks to avoid preemption. It also avoids
providing a window of opportunity for preemption to
take place just prior to the task starting execution -
leading to more nested contexts.

Using Non-Preemption Groups, the total stack usage
can be significantly reduced:

Task Base
priority

Dispatch
priority

 Stack
(bytes)

A 1 4 40
B 2 4 30
C 3 4 35
D 8 8 20
E 5 7 80
F 6 7 70
G 7 7 60
H 4 4 35
Interrupt - 20

Table 2.

In the above example, there are two Non-Preemption
Groups, consisting of tasks A ,B,C and H and tasks E,F
and G respectively. This means that the worst case
stack depth comprises the maximum stack usage of any
one task from each Non-Preemption Group, plus the
stack usage of task D. This system in effect has three
(task) preemption levels.

Total stack usage = Max for each preemption level
+ (Num preemption levels * context) + interrupt
stack usage.

= 205 bytes

Resource locking

As mentioned previously, Non-preemption Groups are
very similar to resource locks under the Immediate Pri-
ority Ceiling Protocol. Therefore it is unsurprising to
learn that resource locking can also result in decreased
stack usage.

Stack (bytes)Task Base
priority

Dispatch
priority

(no
locks)

(with
locks)

A 1 4 10 40
B 2 4 30
C 3 4 15 35
D 8 8 20
E 5 7 40 80
F 6 7 40 70
G 7 7 60
H 4 4 15 35
Inter-
rupt

- 20

Table 3.

In the above example, the maximum stack usage of
tasks A, C and H occur when they have a resource
locked which is shared with task G. The final two col-
umns in table 3, break the stack usage down into the
maximum used without the resource locked and the
maximum with it locked. Similarly, tasks E and F have
their worst-case stack usage whilst locking a resource
shared with task D.

In this case, calculating the total worst-case stack usage
is much more complex, however such calculations are
easily amenable to automated tool support.

In this case, the maximum stack usage occurs when
task B is preempted by task G, which is in turn pre-
empted by task D.

= 175 bytes

(Leaving 337 bytes of on-chip RAM available for
global variables, communications buffers and addi-
tional application functionality).
Clearly using a single stack, in conjunction with Non-
Preemption Groups, can lead to a significant reduction
in the amount of RAM required for the stack. However,
placing tasks into Non-Preemption Groups also has an
effect on system schedulability. By reducing the
amount of preemption, it is possible that the system
will start to miss deadlines. Integrated priority alloca-
tion and schedulability analysis addresses this problem.

PRIORITY ALLOCATION

A description of various priority allocation schemes for
fixed priority preemptive scheduling can be found in
[3]. These include Rate Monotonic Priority Allocation
and Deadline Monotonic Priority Allocation, which are
optimal for systems that meet a set of very restrictive
criteria. They are not however optimal for real-world
systems where tasks have:

1. Deadlines on some operation prior to their
completion.

2. Deadlines larger than their minimum inter-
arrival time.

3. Offset release points.

An optimal algorithm developed by Neil Audsley ad-
dresses some of these constraints [4].

This algorithm formed the basis of our work to devise
an algorithm that allocates base and dispatch priorities
to form schedulable allocations that use only a small
number of preemption levels.

The problem of allocating priorities to obtain a system
which is both schedulable and uses the minimum num-
ber of preemption levels is considerably harder than
finding a schedulable allocation of unique priorities.
The search space size is O(2N-1N!) where N is the
number of tasks.

The algorithm devised at Realogy allows users to pro-
vide a parameter p to control complexity. With p set to
1, the algorithm is O(N2). With p=1, the algorithm is
not always optimal, but it is highly effective. Larger
values of p increase effectiveness at the expense of
increased complexity ~O(Np+1).

The difficulty in achieving optimal priority allocation
is amply illustrated by the following example, which
shows that not only do Non-Preemption Groups some-
times improve schedulability, but that any algorithm
used to find Non-Preemption Groups cannot simply
place tasks one at a time in a Non-Preemption Group.

Task Jitter WCET Period Deadline
A 20 45 100 110
B 20 40 100 110

Table 4.

Consider the example given in table 4. Using simple
fixed priority preemptive scheduling based on unique
priorities: If task A is given the lower priority, then its
response time is 145 making it unschedulable. Simi-
larly, if task B is given the lower priority, then it has a
response time of 150 and is therefore unschedulable.

If the two tasks are placed in a Non-Preemption Group,
then the worst case response time for each task is 105
and they are therefore both schedulable.

The example in table 5 gives a further illustration of
the difficulty in achieving an optimal priority allocation
and the advantages of using both base and dispatch
priorities.

Task WCET Period Deadline
A 2 13 13
B 3 16 16
C 10 1000 1000

Table 5.

In this case, the system is schedulable with unique pri-
orities. Placing tasks one at a time in a Non-Preemption
group, task C can be placed at the lowest priority. If
task A is then placed in the Non-Preemption Group,
with B at a higher priority, we find that A's response
time is 15, and it is therefore unschedulable. Similarly,
if task B is placed in the Non-Preemption Group with
A at a higher priority, then B's response time is 17, and
it too is unschedulable. However, placing tasks A, B
and C in the same Non-Preemption Group (with base
priorities in deadline monotonic order) results in a
schedulable system, with response times of 12, 15 and
15 respectively.

It is interesting to note that this system is not schedul-
able if all the tasks are considered as having the same
priority and executed in FIFO order. In general, FIFO
scheduling within a priority band is not an effective
scheduling method. It leads to large blocking times,
and hence long response times, as each task may have
to wait for all of the others in the band to execute first

RESULTS

How many preemption levels are needed?

Analysis of the number of preemption levels required
for systems containing 16 to 32 tasks was carried out
using Realogy's Time Compiler tool. The Time Co m-
piler provided both schedulability analysis and auto-
matic priority allocation.

To provide the test data, 10000 systems were randomly
generated. Deadlines for the tasks in each system
where chosen from an exponential distribution with a
spread of 5 orders of magnitude (representing deadlines
from 10us to 1 second). For the purposes of this re-
search, all tasks had their period set equal to their
deadline. The execution time proportion for each task
was chosen from a uniform distribution. The tasks exe-
cution time was then set to its normalized proportion of
the total, multiplied by its deadline and the desired
utilization. Systems that were found to be unschedula-
ble with any priority allocation were discarded.

Figure 1 shows the number of preemption levels re-
quired and how this varies with system utilization,
from 70% utilization to 95% utilization.

Figure 1. Number of preemption levels required at
varying processor utilizations.

Figure 1 clearly shows that although there are up to 32
tasks in each system, with a 105 spread of deadlines,
the maximum number of preemption levels required
was 7. No systems were schedulable with just 1 or 2
preemption levels. (So using fixed priority non-
preemptive scheduling none of these systems would be
schedulable). Further, the average number of preemp-
tion levels needed changed from around 4 at 70-75%
utilization to around 5 at 95-100% utilization.

3
4

5
6

7

70

75

80

85

90

95

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Normalised samples

Preemption levels

Utilisation

Number of Preemption Levels (10e5 spread of deadlines)

70
75
80
85

90
95

Correlation with Number of tasks

Figure 2. Number of preemption levels required for
various numbers of tasks.

Figure 2 shows the average number of preemption lev-
els required for various numbers of tasks, using the
same data set as figure 1. The line is effectively flat,
showing that the number of preemption levels is inde-
pendent of the number of tasks, over the range 16 to
32.

Correlation with deadline spread

The analysis was then repeated. This time, the utiliza-
tion of the systems was fixed at 80%, and the spread of
deadlines was varied from 2 to 7 orders of magnitude.

Figure 3 Number of preemption levels required for
various spreads of deadlines.

Figure 3 shows the number of preemption levels re-
quired. It is interesting to note that very simple systems
with only 2 orders of magnitude range of deadlines are

schedulable with all the tasks in one Non-Preemption
Group (corresponding to fixed priority non-preemptive
scheduling). Whereas those with 3 or more orders of
magnitude spread of deadlines require at least 2 or 3
preemption levels, with 4 or 5 preemption levels re-
quired for systems with a 105 to 107 spread of dead-
lines.

Figure 4 Correlation between number of preemp-
tion levels required and number of orders of magni-

tude covering all deadlines.

Figure 4 shows the strong correlation between the log
spread of deadlines and the number of preemption lev-
els required.

The number of preemption levels needed has a clear
dependence on the spread of deadlines and is effec-
tively independent of the number of tasks (assuming
that there are enough tasks such that each order of
magnitude spread of deadlines contains at least 2 or 3
tasks).

Reduction in stack size

For systems comprising 16 or more tasks, the Non-
Preemption Group concept, combined with integrated
priority allocation and schedulability analysis results in
a reduction in the number of preemption levels re-
quired by a factor of 4 or more

The reductions in overall stack size can reasonably be
expected to be of a similar scale to the reduction in the
number of preemption levels. The actual reduction is
dependent on the distribution of individual task stack
usage and the amount of stack usage that is effectively
overlapped due to resource locking effects.

1
2

3
4

5
6

2 orders

3 orders

4 orders

5 orders

6 orders

7 orders

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

is
ed

 n
u

m
b

er
 o

f s
am

p
le

s

Preemption levels

Deadline spread

Number of preemption levels required for various spreads of deadlines

2 orders
3 orders

4 orders
5 orders

6 orders
7 orders

Preemption levels required v deadline spread

R
2
 = 0.9875

0

1

2

3

4

5

6

2 3 4 5 6 7

Deadline spread (orders)

A
ve

ra
ge

 n
um

be
r

of
 p

re
em

pt
io

n
le

ve
ls

 r
eq

ui
re

d

Premption Levels Log. (Premption Levels)

Number of Preemption Levels v Number of Tasks

0

1

2

3

4

5

6

7

8

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Number of tasks

N
um

be
r

of
 p

re
em

pt
io

n
le

ve
ls

SUMMARY

The major requirement from manufacturers designing
embedded systems for high-volume products is to keep
production costs as low as possible. This means staying
within on-chip RAM and ROM limits.

Conventional RTOS approaches waste RAM by using
a separate stack for each task. This problem can be ad-
dressed by using an RTOS that supports single stack
operation. To be effective, this requires:

1. A single shot execution model.
2. Immediate Priority Ceiling Protocol for mu-

tual exclusion.
3. Support for Non-Preemption Groups.
4. Automated schedulability analysis for real-

world systems.
5. Integrated priority allocation algorithm.

Using Realogy's Time Compiler tools, the number of
preemption levels and hence stack usage requirements
of a typical application can be reduced to less than 25%
of that required by an RTOS which requires a stack per
task.

COMMON MISCONCEPTIONS

Academic

"Execution time is more important than memory"

Often academic work in the field of real-time systems
focuses attention on execution time. The memory re-
quirements of different scheduling methods rarely get a
mention. However, in high volume embedded systems,
on-chip RAM and ROM usage is the key factor. The
difference in silicon area between an 8-bit and a 32-bit
CPU core is relatively small when compared to adding
kilobytes of extra RAM. This is exploited by ARM and
other silicon vendors, with 32-bit CPU cores that can
execute 16-bit instructions.

Only optimal algorithms are useful.

Most of the algorithms published in academic literature
are optimal algorithms. Real-world problems that break
the cozy assumptions needed for optimality also need
effective solutions.

Fixed priority means a single fixed priority.

There is a wealth of potential in using 'fixed' priorities
but changing the priority of tasks at key points e.g.
when they start to execute. Research in this area may
well move the state of the art in fixed priority preemp-
tive scheduling theory forward.

Industrial

Cyclic executives are efficient

The actual code for a cyclic executive may be very
small and fast. This does not however mean that the
most effective use is being made of the CPU. Often
large amounts (20%+) of CPU time are wasted through
over-sampling and allowing for short deadline sporadic
events. Compared to 1-3% overheads for an efficient
RTOS [1].

RTOS have large overheads (execution time, RAM and
ROM).

This is certainly true of many operating systems, which
have their roots in mainstream computing. Multi-stack
RTOS are inherently wasteful of RAM. With a care-
fully designed single stack RTOS, supported by inte-
grated priority allocation and schedulability analysis
tools, overheads can be reduced to a few percent of
CPU time and a fraction of on-chip memory. For ex-
ample, RTOS overheads of 1009 bytes of ROM and 79
bytes of RAM (135 bytes total stack usage) for a 10-
task benchmark on a Motorola 68HC12.

Using priority allocation and Non-Preemption Groups,
RAM usage can be as low as using a cyclic executive.

If I want to analyze a system for timing correctness,
then I have to use a cyclic executive.

Using an analyzable RTOS and co-designed schedula-
bility analysis tools, it is possible to perform full timing
analysis on real-world embedded systems.

KEY CHALLENGES

Industry needs tool support:
1. Analyzable RTOS.
2. Schedulability Analysis tools (with support

for real-world systems).
3. Priority allocation algorithms (don't care what

the allocation is, but the system must fit on
chip and meet its deadlines).

4. Worst case execution time analysis and meas-
urement tools.

REFERENCES

[1] A. Hutcheon, From Cyclic Schedule to Preemption: Is-
sues and Benefits, Miller Freeman Embedded Seminar, the
Moller Centre, Cambridge 6th April 2000. Available at
www.realogy.com

[2] L. Sha, R. Rajkumar, J. Lehoczky, Priority Inheritance
Protocols: An approach to Real-Time Synchronization, IEEE
Transactions on Computers 39(9) Sept. 1990 pp1175-1185.

[3] N.C. Audsley, A. Burns, R.I.Davis, K.W.Tindell,
A.J.Wellings, Fixed Priority Scheduling: An Historical Per-
spective, Journal of Real-Time Systems, 8(2/3): 129-154,
1995

[4] N.C. Audsley, Optimal Priority Assignment and Feasibil-
ity of Static Priority Tasks with Arbitrary Start Times, Tech-
nical Report YCS-164, Dept. of Computer Science, Univer-
sity of York, England. November 1991. Available at
ftp://ftp.cs.york.ac.uk/pub/realtime/papers/YCS164.ps.Z

[5] T.P. Baker, A Stack Based Resource Allocation Policy for
Real-time Processes" Proceedings 11th IEEE Real-Time Sy s-
tems Symposium 1990 p191-200.

CONTACT DETAILS
Realogy,
Innovation Centre,
York Science Park,
York, England,
YO10 5DG

www.realogy.com

