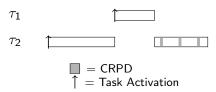
Cache related pre-emption delay aware response time analysis for fixed priority pre-emptive systems

Sebastian Altmeyer, Robert I. Davis, Claire Maiza

RTSS 2011, Vienna

 Cache Related Pre-emption Delay Useful Cache Blocks Evicting Cache Blocks

2 Response Time Analysis

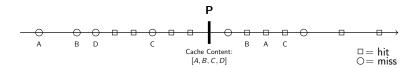

Analysis/Review of existing Approaches New Approach: ECB Union Correct Handling of Blocking Time

3 Evaluation
Case Study
Generated Test Cases

4 Conclusions & Future Work

Pre-emptively Scheduled Systems: Cache Related Pre-emption Delay

- Pre-emptive scheduling
- Cache related pre-emption delay (CRPD):
 - Impact of pre-emption on the cache content
 - Overall cost of additional reloads due to pre-emption

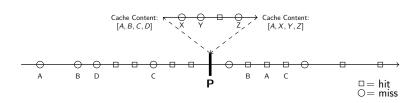


Altmeyer, Davis, Maiza CRPD aware RTA 3 / 24

Useful Cache Blocks

A memory block m at program point P is called a useful cache block, if

- a) m may be cached at P
- b) m may be reused at program point P' that may be reached from P with no eviction of m on this path.



$$UCB = \{A, B, C\}$$

Altmeyer, Davis, Maiza CRPD aware RTA 4 / 24

Evicting Cache Blocks

A memory block of the pre-empting task is called an evicting cache block, if it may be accessed during the execution of the pre-empting task.

$$ECB = \{X, Y, Z\}$$

Altmeyer, Davis, Maiza CRPD aware RTA 5 / 24

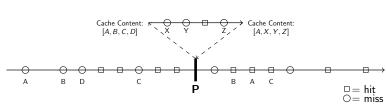
Cache Related Pre-emption Delay - Notation

Presentation restricted to direct-mapped caches only:

Sets of ECBs and UCBs are sets of integers:

 $s \in \mathsf{UCB}_i \Leftrightarrow \tau_i$ has a useful cache block in cache-set s

 $s \in ECB_i \Leftrightarrow \tau_i$ may evict a cache block in cache-set s


pre-emption cost task τ_i pre-empting τ_i (BRT block reload time):

 $BRT \cdot |UCB_i \cap ECB_j|$

Altmeyer, Davis, Maiza CRPD aware RTA 6 / 24

Cache Related Pre-emption Delay - Example

$$au_1$$
 pre-empts au_2 ECB $_1 = \{X, Y, Z\}$ UCB $_2 = \{A, B, C\}$

Altmeyer, Davis, Maiza CRPD aware RTA 7 / 24

Cache Related Pre-emption Delay - Example

$$\tau_1 \text{ pre-empts } \tau_2$$

$$\mathsf{ECB_1} = \{2,3,4\} \text{ UCB}_2 = \{1,2,3\}$$

$$\xrightarrow{\mathsf{Cache Content:}} [A,B,C,D] \xrightarrow{\mathsf{Cache Content:}} [A,X,Y,Z]$$

$$\downarrow \mathsf{P} \qquad \qquad \Box = \mathsf{hit} \\ \mathsf{O} = \mathsf{miss}$$

$$\begin{split} \textit{CRPD}_{1,2} &= \mathsf{BRT} \cdot |\mathsf{UCB}_2 \cap \mathsf{ECB}_1| \\ &= \mathsf{BRT} \cdot |\{1,2,3\} \cap \{2,3,4\}| = \mathsf{BRT} \cdot |\{2,3\}| \end{split}$$

UCBs in cache-set 2 and 3 may be evicted \Rightarrow 2 pre-emption misses

Altmeyer, Davis, Maiza CRPD aware RTA 8 / 24

Response Time Analysis (for fixed priorities)

$$R_i = C_i + \sum_{\forall j \in \mathsf{hp}(i)} \left\lceil \frac{R_i}{T_j} \right\rceil (C_j)$$

Response Time R_i = finishing time - activation time no deadline miss $\Leftrightarrow \forall \tau_i : R_i \leq D_i$

(exec. time C_i , period T_i , deadline D_i , tasks with higher priority hp(i))

Altmeyer, Davis, Maiza CRPD aware RTA 9 / 24

Response Time Analysis (for fixed priorities)

$$R_i = C_i + \sum_{\forall j \in \mathsf{hp}(i)} \left\lceil \frac{R_i}{T_j} \right\rceil (C_j + \gamma_{i,j})$$

 $\gamma_{i,j}$ denotes the pre-emption cost

Response Time R_i = finishing time – activation time no deadline miss $\Leftrightarrow \forall \tau_i : R_i \leq D_i$

(exec. time C_i , period T_i , deadline D_i , tasks with higher priority hp(i))

Altmeyer, Davis, Maiza CRPD aware RTA 9 / 24

Response Time Analysis with CRPD

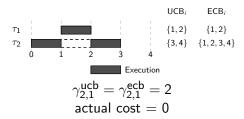
$$R_i = C_i + \sum_{\forall j \in \mathsf{hp}(i)} \left\lceil \frac{R_i}{T_j} \right\rceil (C_j + \gamma_{i,j})$$

 $\gamma_{i,j}$ denotes the pre-emption cost

But what is the precise meaning of γ ?

UCB only or ECB only (Busquets-Mataix et al., Lee et al.)

$$R_i = C_i + \sum_{\forall j \in \mathsf{hp}(i)} \left\lceil \frac{R_i}{T_j} \right\rceil (C_j + \gamma_{i,j})$$


$$\begin{split} \gamma_{i,j}^{\mathsf{ecb}} &= \mathsf{BRT} \cdot |\mathsf{ECB}_j| \quad \text{ or } \quad \gamma_{i,j}^{\mathsf{ucb}} &= \mathsf{BRT} \cdot \mathsf{max}_{\forall k \in \mathsf{aff}(i,j)} \left\{ |\mathsf{UCB}_k| \right\} \\ & \quad (\mathsf{aff}(i,j) = \mathsf{hep}(i) \cap \mathsf{lp}(j)) \end{split}$$

Altmeyer, Davis, Maiza CRPD aware RTA 11/24

UCB only or ECB only (Busquets-Mataix et al., Lee et al.)

$$R_i = C_i + \sum_{\forall j \in \mathsf{hp}(i)} \left\lceil \frac{R_i}{T_j} \right\rceil (C_j + \gamma_{i,j})$$

$$\begin{split} \gamma_{i,j}^{\mathsf{ecb}} &= \mathsf{BRT} \cdot |\mathsf{ECB}_j| \quad \text{ or } \quad \gamma_{i,j}^{\mathsf{ucb}} &= \mathsf{BRT} \cdot \mathsf{max}_{\forall k \in \mathsf{aff}(i,j)} \left\{ |\mathsf{UCB}_k| \right\} \\ & \quad (\mathsf{aff}(i,j) = \mathsf{hep}(i) \cap \mathsf{lp}(j)) \end{split}$$

Altmeyer, Davis, Maiza CRPD aware RTA 11 / 24

Why not use a simple combination?

$$R_i = C_i + \sum_{\forall j \in \mathsf{hp}(i)} \left\lceil \frac{R_i}{T_j} \right\rceil (C_j + \gamma_{i,j})$$

$$\gamma_{i,j} = \mathsf{BRT} \cdot |\mathsf{UCB}_i \cap \mathsf{ECB}_j|$$

Why not use a simple combination?

$$R_i = C_i + \sum_{\forall j \in \mathsf{hp}(i)} \left\lceil \frac{R_i}{T_j} \right\rceil (C_j + \gamma_{i,j})$$

$$\gamma_{i,j} = \mathsf{BRT} \cdot |\mathsf{UCB}_i \cap \mathsf{ECB}_j|$$

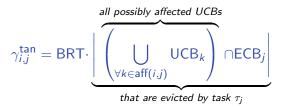
$$C_1=1,\ C_2=2,\ C_3=3,\ \mathsf{BRT}=1$$
UCB, ECB,

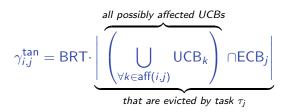
 τ_1
 τ_2
 τ_3
 τ_3
 τ_4
 τ_5
 τ_6
 τ_7
 τ_8
 τ_9
 τ_9

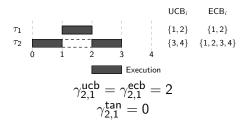
 τ_1 pre-empting τ_2 causes higher costs (1) than τ_1 pre-empting τ_3 (0)

Altmeyer, Davis, Maiza CRPD aware RTA 12/24

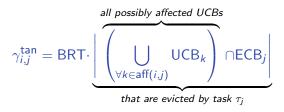
Why not use a simple combination?

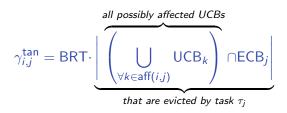

$$R_i = C_i + \sum_{\forall j \in \mathsf{hp}(i)} \left\lceil \frac{R_i}{T_j} \right\rceil (C_j + \gamma_{i,j})$$


$$\gamma_{i,j} = \mathsf{BRT} \cdot |\mathsf{UCB}_i \cap \mathsf{ECB}_j|$$


$$C_1 = 1, \ C_2 = 2, \ C_3 = 3, \ \mathsf{BRT} = 1$$
 $\mathsf{UCB}_i \quad \mathsf{ECB}_i$
 $\tau_1 \quad \emptyset \quad \{2,3\}$
 $\tau_2 \quad \{1,2\} \quad \{1,2\} \quad \{1,2\}$
 $\tau_3 \quad \{3,4\} \quad \{1,2,3,4\}$
 $\tau_4 \quad \{1,2,3,4\}$
 $\tau_5 \quad \{1,2,3,4\}$
 $\tau_7 \quad \{1,2,3,4\}$

Nested pre-emption causes higher costs (2) than any non-nested (1)


Altmeyer, Davis, Maiza CRPD aware RTA 12 / 24



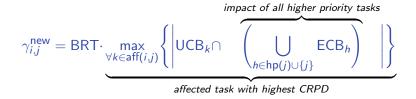
Altmeyer, Davis, Maiza CRPD aware RTA 13 / 24

- safe combination of ECBs and UCBs
- dominates ECB-Only $(\gamma_{i,i}^{\text{ecb}} = \mathsf{BRT} \cdot |\mathsf{ECB}_i|)$

Altmeyer, Davis, Maiza CRPD aware RTA 13 / 24

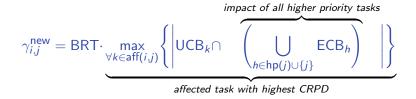
$$C_1 = 1$$
, $C_2 = C_3 = 2$, BRT = 1
UCB, ECB,
 τ_1 \emptyset {1,2,3,4}
 τ_2 {1,2} {1,2,3,4}
 τ_3 {3,4} {1,2,3,4}

 $\gamma_{3,1}^{\rm tan}=4 \wedge \gamma_{3,2}^{\rm tan}=2 o {
m total}$ pre-emption cost =6 actual cost =4


Altmeyer, Davis, Maiza CRPD aware RTA 13 / 24

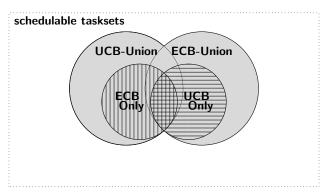
$$\gamma_{i,j}^{\text{new}} = \text{BRT} \cdot \max_{\forall k \in \text{aff}(i,j)} \left\{ \left| \text{UCB}_k \cap \left(\bigcup_{h \in \text{hp}(j) \cup \{j\}} \text{ECB}_h \right) \right| \right\}$$

$$\gamma_{i,j}^{\text{new}} = \mathsf{BRT} \cdot \max_{\forall k \in \mathsf{aff}(i,j)} \left\{ \left| \mathsf{UCB}_k \cap \left(\bigcup_{h \in \mathsf{hp}(j) \cup \{j\}} \mathsf{ECB}_h \right) \right| \right\}$$

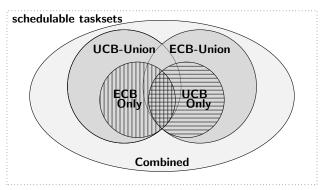

- safe combination of ECBs and UCBs
- dominates UCB-Only $(\gamma_{i,j}^{\mathsf{ucb}} = \mathsf{BRT} \cdot \mathsf{max}_{\forall k \in \mathsf{aff}(i,j)} \{|\mathsf{UCB}_k|\})$

Altmeyer, Davis, Maiza CRPD aware RTA 14 / 24

$$C_1 = 1, \ C_2 = C_3 = 2, \ \mathsf{BRT} = 1 \\ \mathsf{UCB}_i \quad \mathsf{ECB}_i \\ \emptyset \quad \{1, 2, 3, 4\} \\ \{1, 2\} \quad \{1, 2, 3, 4\} \\ \{3, 4\} \quad \{1, 2, 3, 4\} \\ \{3, 4\} \quad \{1, 2, 3, 4\} \\ \{3, 4\} \quad \{1, 2, 3, 4\} \\ \gamma^\mathsf{tan}_{3,1} = 4 \land \gamma^\mathsf{tan}_{3,2} = 2 \Rightarrow 6 \qquad \gamma^\mathsf{new}_{3,1} = 2 \land \gamma^\mathsf{new}_{3,2} = 2 \Rightarrow 4 \\ \mathsf{actual cost} = 4$$


Altmeyer, Davis, Maiza CRPD aware RTA 14/24

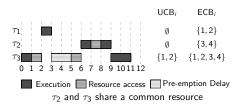
$$C_1 = 1, \ C_2 = C_3 = 2, \ \mathsf{BRT} = 1 \\ \mathsf{UCB}_i \quad \mathsf{ECB}_i \\ \emptyset \quad \{1,2\} \\ \emptyset \quad \{3,4\} \\ 73 \\ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \\ \end{cases} \\ \gamma^{\mathsf{tan}}_{3,1} = 2 \wedge \gamma^{\mathsf{tan}}_{3,2} = 2 \Rightarrow 4 \qquad \gamma^{\mathsf{new}}_{3,1} = 2 \wedge \gamma^{\mathsf{new}}_{3,2} = 4 \Rightarrow 6 \\ \mathsf{actual \ cost} = 4$$


Altmeyer, Davis, Maiza CRPD aware RTA 14 / 24

Combined Approach

The larger the area, the more tasksets deemed schedulable.

Combined Approach


The larger the area, the more tasksets deemed schedulable.

$$R_i^{\text{comb}} = \min(R_i^{\text{tan}}, R_i^{\text{new}})$$

Altmeyer, Davis, Maiza CRPD aware RTA 15 / 24

Blocking Time (Stack Resource Protocol)

$$R_i = C_i + B_i + \sum_{\forall j \in \mathsf{hp}(i)} \left\lceil \frac{R_i + J_j}{T_j} \right\rceil (C_j + \gamma_{i,j})$$

Task τ_2 can be blocked by execution of τ_3 and pre-emption delay $(\tau_1 \text{ pre-empting } \tau_3)$

ECB-Only accounts for this implicitly all others must be extended (see paper)

Altmeyer, Davis, Maiza CRPD aware RTA 16 / 24

Evaluation

1 case study (benchmarks from Mälardalen benchmark suite)

2 randomly generated test cases

Case Study – Benchmarks

	WCET	UCBs	ECBs
bs	445	5	35
minmax	504	9	79
fac	1,252	4	24
fibcall	1,351	5	24
insertsort	6,573	10	41
loop3	13,449	4	817
select	17,088	15	151
qsort-exam	22,146	15	170
fir	29,160	9	105
sqrt	39,962	14	477
ns	43,319	13	64
qurt	214,076	14	484
crc	290,782	14	144
matmult	742,585	23	100
bsort100	1,567,222	35	62

Periods: $\forall_i : T_i = c \cdot C_i$; c varied from 15 upwards \Rightarrow utilization from 1.0 downwards

(ARM7, direct-mapped instruction, cache size 2kB, line size 8 Bytes (256 cache sets) and BRT $= 8\mu s$)

Altmeyer, Davis, Maiza CRPD aware RTA 18 / 24

Case Study – Results

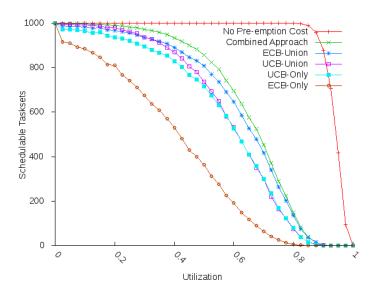
breakdown utilization: max utilization s.t. taskset was deemed schedulable

Analysis	Breakdown utilization:
No Pre-emption Cost	0.95
Combined	0.767
ECB-Union	0.767
UCB-Only	0.75
UCB-Union	0.698
ECB-Only	0.612

Altmeyer, Davis, Maiza CRPD aware RTA 19 / 24

Generated Test Cases - Setting

Task set:


- 10 tasks
- periods T_i range from 5ms to 500ms (log-uniform distribution)
- task utilization U_i generated using UUnifast
- execution times $C_i = U_i \cdot T_i$
- implicit deadlines, priorities in deadline monotonic order

Pre-emption costs:

- number of cache sets (CS = 256)
- block-reload time ($BRT = 8\mu s$)
- cache usage using UUnifast (CU = 10)
- reuse factor (UCBs), uniform distribution [0; |ECB|]

Altmeyer, Davis, Maiza CRPD aware RTA 20 / 24

Generated Test Cases – Results

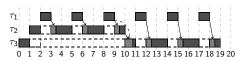
Altmeyer, Davis, Maiza CRPD aware RTA 21 / 24

Why does ECB-Union perform better than UCB-Union?

- UCB-Union overapproximates evicted UCBs
- ECB-Union overapproximates evicted ECBs
- always more ECBs than UCBs
- also UCB-Only better than ECB-Only

holds even for different parameter settings (see evaluation in paper)

Altmeyer, Davis, Maiza CRPD aware RTA 22 / 24


Conclusions

- Analysis of Response Time Analyses with CRPD
- New Approaches (ECB-Union and Combined)
- Corrected Handling of Blocking Time
- Thorough Evaluation (Case Study; generated test cases with varying parameters)

Altmeyer, Davis, Maiza CRPD aware RTA 23 / 24

Future Work

ECB Union and UCB Union still pessimistic:

ECB Union assumes task τ_1 pre-empts τ_2 up to six times but, task τ_1 pre-empts τ_2 at most three times

- Pre-emption Cost and Fixed Priority FIFO Scheduling
- Influence of the task mapping on CRPD
- Comparison with ScratchPad Memories

Altmeyer, Davis, Maiza CRPD aware RTA 24 / 24

Thanks for your attention.

Questions?