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Abstract 
Controller Area Network (CAN) is widely used in 

automotive applications. Existing schedulability analysis for 
CAN is based on the assumption that the highest priority 
message ready for transmission at each node on the network 
will be entered into arbitration on the bus. However, in 
practice, some CAN device drivers implement FIFO rather 
than priority-based queues invalidating this assumption. In 
this paper, we introduce response time analysis and optimal 
priority assignment policies for CAN messages in networks 
where some nodes use FIFO queues while other nodes use 
priority queues. We show, via a case study and experimental 
evaluation, the detrimental impact that FIFO queues have 
on the real-time performance of CAN. Further, we show that 
in gateway applications, if it is not possible to implement a 
priority queue, then it is preferable to use multiple FIFO 
queues each allocated a small number of messages with 
similar transmission deadlines. 

Extended version 
This paper forms an extended version of "Controller Area 
Network (CAN) Schedulability Analysis with FIFO queues”
by Davis et al. (2011) published in ECRTS. The analysis 
given in that paper has been extended via the inclusion of 
the following new material: 
• In Section 1.2 we have added examples of CAN devices 

that provide hardware support for FIFO queues. 
• Section 4.6 has been added, providing formal proofs 

that the schedulability tests given in Sections 4.1, 4.2
and 4.3 are sufficient (Theorems 2 and 3) and self-
sustainable (Theorems 4 and 5). This section also 
shows how more precise analysis can be achieved when 
the priorities of messages in a FIFO queue span those of 
messages in a priority queue or another FIFO queue, 
which is often the case in practice. 

• In Section 5.2, we have added a formal proof that 
transmission deadline monotonic priority ordering is 
optimal when all messages have the same maximum 
transmission time (Theorem 7). 

• In Section 7, we have extended the experimental 
evaluation to show how the performance degradation 
due to FIFO queues depends on the number of 
messages in each queue. 

• Sections 6.1 and 7.1 have been added, exploring the 
effects of implementing one or more FIFO queues in 

gateway nodes that are responsible for transferring 
messages from one network to another. 

1. Introduction 
Controller Area Network (CAN) (Bosch, 1991; ISO 

11898-1, 1993) was designed as a simple, efficient, and 
robust, broadcast communications bus for in-vehicle 
networks. Today, typical mainstream family cars contain 
25-35 Electronic Control Units (ECUs), many of which 
communicate using CAN. As a result of this wholesale 
adoption of CAN by the automotive industry, annual sales 
of CAN nodes (8, 16 and 32-bit micro-controllers with on-
chip CAN controllers) have grown from under 50 million in 
1999 to around 750 million in 20101. 

In automotive applications, CAN is typically used to 
provide high speed networks (500Kbits/s) connecting 
chassis and power-train components, for example engine 
management and transmission control. It is also used for 
low speed networks (100 or 125Kbits/s) connecting body 
and comfort electronics. Data required by nodes on different 
networks is typically transferred between the different CAN 
buses by a gateway node connected to both. 

CAN is an asynchronous multi-master serial data bus 
that uses Carrier Sense Multiple Access / Collision 
Resolution (CSMA/CR) to determine access to the bus. The 
CAN protocol requires that nodes wait for a bus idle period 
before attempting to transmit. If two or more nodes attempt 
to transmit messages at the same time, then the node with 
the message with the lowest numeric CAN Identifier will 
win arbitration and continue to send its message. The other 
nodes will cease transmitting and must wait until the bus 
becomes idle again before attempting to re-transmit their 
messages. (Full details of the CAN physical layer protocol 
are given by Bosch (1991), with a summary given by Davis 
et al. (2007). In effect CAN messages are sent according to 
fixed priority non-pre-emptive scheduling, with the 
identifier (ID) of each message acting as its priority. 
1.1. Related work 

Tindell and Burns (1994) showed how research into 
fixed priority scheduling for single processor systems could 
be adapted and applied to the scheduling of messages on 
CAN. The analysis of Tindell et al. provided a method of 
calculating the maximum queuing delay and hence the 

1 Figures from the CAN in Automation (CiA) website www.can-cia.org 



worst-case response time of each message on the network. 
(Tindell and Burns, 1994; Tindell et al., 1994; Tindell et al., 
1995) also recognised that with fixed priority scheduling, an 
appropriate priority assignment policy is key to obtaining 
effective real-time performance. Tindell et al. suggested that 
messages should be assigned priorities in ‘Deadline minus 
Jitter’ monotonic priority order (Zuhily and Burns, 2007). 

The seminal work of Tindell et al. lead to a large body of 
research into scheduling theory for CAN (Rufino et al., 
1998; Broster et al., 2002; Broster and Burns, 2003; Broster, 
2003; Broster et al., 2005; Ferreira et al., 2004; Hansson et 
al., 2002; Nolte et al., 2002; Nolte et al., 2003; Nolte, 2006), 
and was used as the basis for commercial CAN 
schedulability analysis tools (Casparsson et al., 1998). 

Davis et al. (2007) found and corrected significant flaws 
in the schedulability analysis given by Tindell and Burns, 
(1994), Tindell et al., (1994), and Tindell et al., (1995). 
These flaws could potentially result in the original analysis 
providing guarantees for messages that could in fact miss 
their deadlines during network operation. Further, Davis et 
al. (2007) showed that the ‘Deadline minus Jitter’ 
monotonic priority ordering, claimed by Tindell et al. to be 
optimal for CAN, is not in fact optimal; and that Audsley’s 
Optimal Priority Assignment (OPA) algorithm (Audsley, 
1991, 2001) is required in this case.  

Prior to the advent of schedulability analysis and 
appropriate priority assignment policies for CAN, message 
IDs were typically assigned simply as a way of identifying 
the data and the sending node. This meant that only low 
levels of bus utilisation, typically around 30%, could be 
obtained before deadlines were missed. Further, the only 
means of obtaining confidence that message deadlines 
would not be missed was via extensive testing. Using the 
systematic approach of schedulability analysis, combined 
with a suitable priority assignment policy, it became 
possible to engineer CAN based systems for timing 
correctness, providing guarantees that all messages would 
meet their deadlines, with bus utilisations of up to about 
80% (Davis and Burns, 2009a; Casparsson et al., 1998). 
1.2. Motivation 

Engineers using schedulability analysis to analyse 
network / message configurations must ensure that all of the 
assumptions of the specified scheduling model hold for their 
particular system. Specifically, when using the analysis 
given by Davis et al. (2007), it is important that each CAN 
controller and device driver is capable of ensuring that 
whenever message arbitration starts on the bus, the highest 
priority message queued at that node is entered into 
arbitration. This behaviour is essential if message 
transmission is to take place as if there were a single global 
priority queue and for the analysis to be correct. 

As noted by Di Natale (2008), there are a number of 
potential issues that can lead to behaviour that does not 
match that required by the scheduling model given by Davis 
et al. (2007). For example, if a CAN node has fewer 
transmit message buffers than the number of messages that 
it transmits, then the following properties of the CAN 

controller hardware can prove problematic: 
(i) internal message arbitration based on transmit 

buffer number rather than message ID (Fujitsu 
MB90385/90387, Fujitsu 90390, Intel 87C196 
(82527), Infineon XC161CJ/167 (82C900)); 

(ii) non-abortable message transmission: Philips 
82C200, (Di Natale, 2006); 

(iii) less than 3 transmit buffers: Philips 8xC592 
(SJA1000), Philips 82C200, (Meschi et al., 1996). 

CAN controllers which avoid these potential problems 
include, the Atmel AT89C51CC03 / AT90CAN32/64 the 
Microchip MPC2515, and the Motorola MSCAN on-chip 
peripheral, all of which have at least 3 transmit buffers, 
internal message arbitration based on message ID rather 
than transmit buffer number, and abortable message 
transmission. 

The CAN device driver / software protocol layer 
implementation also has the potential to result in behaviour 
which does not match that required by the standard 
scheduling model (Davis et al., 2007). Issues include, delays 
in refilling a transmit buffer (Khan et al., 2010), and FIFO 
queuing of messages in the device driver or CAN controller.  

A number of CAN controller hardware implementations 
provide specific support for FIFO queues. These include: 
o The BXCAN and BECAN for the ST7 and ST9 

Microcontrollers from STMicroelectronics, which 
includes hardware support for both priority-queued and 
FIFO-queued message transmission 
(STMicroelectronics, 2001).  

o The XILINX CAN Controller Core (LogiCORE IP AXI 
Controller) which provides a transmit buffer FIFO of 
configurable depth (up to 64 messages) and a single 
additional high priority transmit buffer that takes 
precedence over the FIFO (XILINX, 2010). 

o The Microchip PIC32MX (Microchip Technology Inc., 
2009) which has 32 FIFOs each of which can hold up to 
32 messages. Arbitration between the individual FIFOs 
takes place on the basis of a priority assigned to each 
FIFO or the FIFO number in the case of ties, hence all 
of the messages in a high priority FIFO are sent before 
any of the messages in a lower priority FIFO. (We note 
that as there are 32 FIFOs, the PIC32MX can 
effectively provide priority-based queuing for up to 32 
transmit messages, each utilising an individual FIFO). 

o The Avnet MC-ACT-XCANF which is a small FPGA 
footprint CAN Controller for use with Actel 
programmable logic devices (Avnet, 2006). The MC-
ACT-XCANF has a single transmit FIFO and a single 
receive FIFO. 

o The Renesas R32C/160 (Renesas, 2010) is a 
microcontroller from the M16C family, specific to 
vehicle network applications. The on-chip CAN 
peripheral has 32 message buffers / mailboxes and 
provides the option of a FIFO mailbox mode. In this 
mode, 4 mailboxes are configured as a 4-stage transmit 
FIFO and 4 mailboxes as a 4-stage receive FIFO. 
Otherwise the buffers may be configured for 



transmission based on either message priority or buffer 
number. 

We note that the more sophisticated CAN controllers offer 
the option of hardware support for FIFO queues while also 
fully supporting priority queues, thus leaving the choice of 
which queuing policy to use up to the device driver / 
software protocol layer implementation. 

Di Natale (2008) noted that using FIFO queues in CAN 
device drivers / software protocol layers can seem an 
attractive solution, “because of its simplicity and the illusion 
that faster queue management improves the performance of 
the system”. This is unfortunate, because FIFO message 
queues undermine the priority-based bus arbitration used by 
CAN. They can introduce significant priority inversion and 
result in degraded real-time performance. Nevertheless, 
FIFO queues are a reality in some commercial CAN device 
drivers / software protocol layers. 

One area in which the use of FIFO queues can have a 
particularly detrimental effect is in gateway applications. 
The number of messages transmitted onto a network by a 
gateway node can easily exceed the number of hardware 
transmit buffers available in the CAN controller it uses. A 
simple design solution to this problem is to use a single 
FIFO queue for all of these messages; however, such a 
choice can significantly degrade the real-time performance 
of the network. 

As far as we are aware, there is no published research2

integrating FIFO queues into response time analysis for 
CAN. This paper focuses on the issue of FIFO queues. We 
provide response time analysis and appropriate priority 
assignment policies for Controller Area Networks 
comprising some nodes that use FIFO queues and other 
nodes that use priority queues. 
1.3. Organisation 

The remainder of this paper is organised as follows: In 
Section 2, we introduce the scheduling model, notation, and 
terminology used in the rest of the paper. In Section 3 we 
recap on the sufficient schedulability analysis for CAN 
given by Davis et al. (2007). Section 4 then extends this 
analysis to networks where some nodes implement priority-
based queues while others implement FIFO queues. Section 
5 discusses priority assignment for mixed sets of FIFO-
queued and priority-queued messages. Section 6 presents 
the results of a case study exploring the impact of FIFO 
queues on message response times and network 
schedulability. Section 7 evaluates the effect of priority 
assignment and FIFO queues on the maximum achievable 
network utilisation. Finally, Section 8 concludes with a 
summary and recommendations. 

2. System Model, Notation and Terminology 
In this section we describe a system model and notation 

that can be used to analyse the worst-case response times of 
CAN messages. This model is based on that used by Davis 

2 The commercial tool NETCAR-Analyzer (www.realtimeatwork.com) 
addresses the case of FIFO queues.

et al. (2007) with extensions to describe FIFO queues. A 
summary of the notation used is given in Table 1 for easy 
reference. Here we give only a high level description 
necessary to understand the message scheduling behaviour 
of CAN. Readers interested in the underlying lower level 
CAN protocol and its terminology are directed to Section 
2.1 of (Davis et al., 2007). 

The system is assumed to comprise a number of nodes 
(microprocessors) connected to a single CAN bus. Nodes 
are classified according to the type of message queue used 
in their device driver. Thus FQ-nodes implement a FIFO 
message queue, whereas PQ-nodes implement a priority 
queue. PQ-nodes are assumed to be capable of ensuring that, 
at any given time when bus arbitration starts, the highest 
priority message queued at the node is entered into 
arbitration. FQ-nodes are assumed to be capable of ensuring 
that, at any given time when bus arbitration starts, the oldest 
message in the FIFO queue is entered into arbitration. 

The system is assumed to contain a static set of hard 
real-time messages, each statically assigned to a single node 
on the network. Each message m has a distinct fixed 
Identifier (ID) and hence a unique priority. As priority 
uniquely identifies each message, in the remainder of the 
paper we will overload m to mean either message m or 
priority m as appropriate. We use )(mhp  to denote the set 
of messages with priorities higher than m, and similarly, 

)(mlp  to denote the set of messages with priorities lower 
than m. 

Each message m has a maximum transmission time of 
mC  (see (Davis et al., 2007) for details of how to compute 

the maximum transmission time of messages on CAN, 
taking into account the number of data bytes and bit-
stuffing). 

The event that triggers queuing of message m is assumed 
to occur with a minimum inter-arrival time of mT , referred 
to as the message period. Each message m has a hard 
deadline mD , corresponding to the maximum permitted 
time from occurrence of the initiating event to the end of 
successful transmission of the message, at which time the 
message data is assumed to be available on the receiving 
nodes that require it. Tasks on the receiving nodes may 
place different timing requirements on the data, however in 
such cases we assume that mD  is the shortest such time 
constraint. We assume that the deadline of each message is 
less than or equal to its period ( mm TD ≤ ). Each message m
is assumed to be queued by a software task, process or 
interrupt handler executing on the sending node. This task is 
either invoked by, or polls for, the event that initiates the 
message, and takes a bounded amount of time, between 0 
and mJ , before the message is in the device driver queue 
available for transmission. mJ  is referred to as the queuing 
jitter of the message and is inherited from the overall 
response time of the task, including any polling delay3. The 

3 In the best case, the task could arrive the instant the event occurs and 
queue the message immediately, whereas in the worst-case, there could be 
a delay of up to the task’s period before it arrives and then a further delay 
of up to the task’s worst-case response time before it queues the message. 



transmission deadline mE  of message m is given 
by mmm JDE −= , and represents the maximum permitted 
time from the message being queued at the sending node to 
it being received at other nodes on the bus. 

The maximum queuing delay mw , corresponds to the 
longest time that message m can remain in the device driver 
queue or CAN controller transmit buffers, before 
commencing successful transmission on the bus. 

In this paper, we define the worst-case response time
mR  of a message m as the maximum possible transmission 

delay from the message being queued until it is received at 
the receiving nodes4. Hence: 

mmm CwR +=       (1) 
As noted by Broster (2003), receiving nodes can access 

message m following the end of (message) frame marker 
and before the 3-bit inter-frame space. The analysis given in 
the remainder of this paper is therefore slightly pessimistic 
in that it includes the 3-bit inter-frame space in the 
computed worst-case response times. To remove this small 
degree of pessimism, it is valid to simply subtract 3 bitτ
from the computed response time values, where bitτ is the 
transmission time for a single bit on the bus. 

A message is said to be schedulable if its worst-case 
response time is less than or equal to its transmission 
deadline )( mm ER ≤ . A system is said to be schedulable if 
all of the messages in the system are schedulable. 

The following additional notation is used to describe the 
properties of a set of messages that are transmitted by the 
same FQ-node and so share a FIFO queue. The FIFO group 

)(mM  is the set of messages that are transmitted by the FQ-
node that transmits message m. The lowest priority of any 
message in the FIFO group )(mM  is denoted by mL . 

MAX
mC  and MIN

mC  are the transmission times of the longest 
and shortest messages in the FIFO group, while SUM

mC  is 
the sum of the transmission times of all of the messages in 
the group. MIN

mE  is the shortest transmission deadline of any 
message in the group. 

We use mf  to denote the maximum buffering time from 
message m being queued until it is able to take part in 
priority-based arbitration. For a FIFO-queued message mf
equates to the time from the message being entered into the 
FIFO queue to it becoming the oldest message in that queue. 
For a priority-queued message 0=mf . 

As well as determining message schedulability given a 
particular priority ordering, we are also interested in 
effective priority assignment policies.  
Definition 1: Optimal priority assignment policy: A priority 
assignment policy P is referred to as optimal with respect to 
a schedulability test S and a given network model, if and 
only if there is no set of messages that are compliant with 
the model that are deemed schedulable by test S using 
another priority assignment policy, that are not also deemed 

4 Note this is a different way of defining response time to that used by 
Davis et al. (2007) which includes queuing jitter. To compensate for not 
including queuing jitter in the response time, in this paper we compare 
response times with transmission deadlines to determine schedulability. 

schedulable according to test S using policy P. 
We note that the above definition is applicable to both 

sufficient schedulability tests such as those given in 
Sections 3 and 4, as well as exact schedulability tests. 

A scheduling algorithm is said to be sustainable (Baruah 
and Burns, 2006) with respect to a system model, if and 
only if schedulability of any set of messages compliant with 
the model implies schedulability of the same set of 
messages modified by: (i) decreasing transmission times, 
(ii) increasing periods or inter-arrival times, and (iii) 
increasing deadlines. Similarly, a schedulability test is 
referred to as sustainable if these changes cannot result in a 
set of messages that was previously deemed schedulable by 
the test becoming unschedulable. We note that the modified 
set of messages may not necessarily be deemed schedulable 
by the test. A schedulability test is referred to as self-
sustainable (Baker and Baruah, 2009) if such a modified set 
of messages is always deemed schedulable by the test. 

Table 1: Notation 

Symbol Meaning
mB Blocking factor at priority m.
mC Longest transmission time of message m.

MAX
mC Max. transmission time of a message in )(mM .
MIN
mC Min. transmission time of a message in )(mM .
SUM
mC Sum of transmission times of messages in 

)(mM .
mD Deadline of message m.
mE Transmission deadline of message m.

MIN
mE Min. transmission deadline of any message in 

)(mM
mf Buffering delay for message m.

)(mhp Set of messages with higher priority than 
message m.

mJ Release jitter of message m.
)(mlp Set of messages with lower priority than 

message m.
mL Lowest priority of any message in )(mM .

m Message m (also its priority).
)(mM The set of messages sharing a FIFO queue with 

message m.
mR Worst case response time for message m.

bitτ Transmission time for one bit.
mT Minimum inter-arrival time or period of 

message m.
mw Queuing delay for message m.

3. Schedulability Analysis with Priority Queues 
In this section, we recapitulate the simple sufficient 

schedulability analysis given by Davis et al. (2007). For 
networks of PQ-nodes, complying with the scheduling 
model given in Section 2, CAN effectively implements 
fixed priority non-pre-emptive scheduling. In this case, 
Davis et al. (2007) showed that an upper bound on the 
response time mR  of each message m can be found by 
computing the maximum queuing delay mw  using the 



following fixed-point iteration: 
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where bitτ is the transmission time for a single bit, and mB
is the blocking factor described below. Iteration starts with a 
suitable initial value such as mm Cw =0 , and continues until 
either mm

n
m ECw >++1  in which case the message is not 

schedulable, or n
m

n
m ww =+1  in which case the message is 

schedulable and its worst-case response time is given by: 

m
n
mm CwR += +1       (3) 

As CAN message transmission is non-pre-emptable, the 
transmission of a single lower priority message can cause a 
delay of up to mB  (referred to as direct blocking) between 
message m being queued and the first time that message m 
could be entered into arbitration on the bus. mB  represents 
the maximum blocking time due to lower priority messages: 

)(max
)(

kmlpkm CB
∈∀

=     (4)

Alternatively, in some cases, the transmission of the 
previous instance of message m could delay transmission of 
a higher priority message causing a similar delay (referred 
to as push-through blocking5) of up to mC . Both direct and 
push-through blocking are accounted for by the 1st term on 
the RHS of (2). The 2nd term represents interference from 
higher priority messages that can win arbitration over 
message m and so delay its transmission. Note that once 
message m starts successful transmission it cannot be pre-
empted, so the message’s overall response time is simply 
the queuing delay plus its transmission time (given by (3)).  

Using (2) and (3), engineers can determine upper 
bounds6 on worst-case response times and hence the 
schedulability of all messages on a network comprising 
solely PQ-nodes. Although the analysis embodied in (2) and 
(3) is pseudo-polynomial in complexity in practice it is 
tractable on a desktop PC for complex systems with 
hundreds of messages. (A number of techniques are also 
available for increasing the efficiency of such fixed point 
iterations (Davis et al., 2008)). 

4. Schedulability Analysis with FIFO Queues 
In this section, we derive sufficient schedulability 

analysis for messages on networks with both PQ-nodes and 
FQ-nodes. The analysis we introduce is FIFO-symmetric, by 
this we mean that the same worst-case response time is 
attributed to all of the messages in a FIFO group. We note 
that FIFO-symmetric analysis incurs some pessimism in 
terms of the worst-case response time attributed to the 
higher priority messages in a FIFO group; however, in 
practice this pessimism is likely to be small. This is because 
the order in which messages are placed in a FIFO queue is 
undefined, and so in the worst case, the highest priority 
message in a FIFO group has to wait for an instance of each 

5 See Davis et al. (2007) for an explanation of why push-through blocking 
is important. 
6 Equation (2) is sufficient rather than exact due to the fact that push 
through blocking may not necessarily be possible. 

lower priority message in the group to be transmitted. 
4.1. Priority-queued messages 

We now derive an upper bound on the worst-case 
queuing delay for a priority-queued message m, in a system 
with both PQ-nodes and FQ-nodes. 

In the case of systems with only PQ-nodes, Davis et al. 
(2007) showed that the worst-case queuing delay for a 
priority-queued message m occurs for an instance of that 
message queued at the beginning of a priority level-m busy 
period7 that starts immediately after the longest lower 
priority message begins transmission. Further, this maximal 
busy period begins with a so-called critical instant where 
message m is queued simultaneously with all higher priority 
messages and then each of these higher priority messages is 
subsequently queued again after the shortest possible time 
interval. Equation (2) provides a sufficient upper bound on 
this worst-case queuing delay.  

The analysis embodied in (2) assumes that higher 
priority messages are able to compete for access to the bus 
(i.e. enter bus arbitration) as soon as they are queued; 
however, this assumption does not hold for FIFO-queued 
messages. Instead a FIFO-queued message k may have to 
wait for up to a maximum time kf  before it becomes the 
oldest message in its FIFO queue, and can enter priority-
based arbitration. A FIFO-queued message k can therefore 
be thought of as becoming priority queued after an 
additional delay of kf . Stated otherwise, in terms of its 
interference on lower priority messages, a FIFO-queued 
message k can be viewed as if it were a priority-queued 
message with its jitter increased by kf . (Note, we will 
return to how kf  is calculated for FIFO-queued messages 
later). An upper bound on the queuing delay for a priority-
queued message m can therefore be calculated via the fixed 
point iteration given by (5). 
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As with (2), iteration starts with a suitable initial value such 
as mm Cw =0 , and continues until either mm

n
m ECw >++1  in 

which case the message is not schedulable, or n
m

n
m ww =+1  in 

which case its response time is given by: 

m
n
mm CwR += +1       (6) 

Note that the queuing delay and response time are only 
valid with respect to the values of kf  used. We return to 
this point later. 
4.2. FIFO-queued messages 

We now derive an upper bound on the worst-case 
queuing delay for a FIFO-queued message m, in a system 
with both PQ-nodes and FQ-nodes. 

As our analysis is FIFO-symmetric, we will attribute the 
same upper bound response time to all of the messages sent 
by the same FQ-node. Our analysis derives this sufficient 

7 A priority level-m busy period is a contiguous interval of time during 
which there is always at least one message of priority m that has not yet 
completed transmission.



response time by considering an arbitrary message from the 
FIFO group )(mM . For the sake of simplicity, we will still 
refer to this message as message m; however our analysis 
will be independent of the exact choice of message from the 
FIFO group. At each stage in our analysis we will make 
worst-case assumptions, ensuring that the derived response 
time is a correct upper bound. For example, we will frame 
our calculation of the queuing delay mw  by assuming the 
lowest priority mL  of any message in the FIFO group. 
 As every message j in )(mM  has jj TD ≤  then in a 
schedulable system, when any arbitrary message from

)(mM  is queued, there can be at most one instance of each 
of the other messages in )(mM  ahead of it in the FIFO 
queue. The maximum transmission time of these messages, 
and hence the maximum interference on an arbitrary 
message m, due to messages sent by the same FQ-node, is 
therefore upper bounded by: 

MIN
m

SUM
m CC −       (7) 

Indirect blocking could also occur due to the non-pre-
emptive transmission of a previous instance of any one of 
the messages in )(mM . This indirect blocking is upper 
bounded by MAX

mC . As an alternative, direct blocking could 
occur due to transmission of any of the messages of lower 
priority than mL  sent by other nodes. Finally, in terms of 
interference from higher priority messages sent by other 
FQ-nodes and PQ-nodes, the argument about increased jitter 
made in the previous section applies, and so the interference 
term from (5) can again be used. 

Considering all of the above, an upper bound on the 
queuing delay for an arbitrary message m belonging to the 
FIFO group )(mM  is given by the solution to the following 
fixed point iteration: 
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Iteration starts with a value of ),max(0 MAX
mLm CBw

m
=

)( MIN
m

SUM
m CC −+  and continues until either 

MIN
m

MIN
m

n
m ECw >++1  in which case the set of messages 

)(mM  is declared unschedulable, or n
m

n
m ww =+1  in which 

case all of the messages in )(mM  are deemed to have a 
response time of: 

MIN
m

n
mm CwR += +1       (9) 

Equations (8) and (9) make the worst-case assumption 
that interference from higher priority messages can occur up 
to a time MIN

mC  before transmission of message m
completes. We note that this is a pessimistic assumption 
with respect to those messages belonging to the FIFO group 
that have transmission times8 longer than MIN

mC . 

8 In practice all messages sent on CAN often have the maximum length (8 
data bytes) so as to minimise the relative overheads of the other fields in 
the message (ID, CRC etc). In this case, no additional pessimism is 
introduced by this assumption. 

4.3. Schedulability test with arbitrary priorities  
We now derive a schedulability test from (5) & (6) and 

(8) & (9). The basic idea is to avoid having to consider the 
potentially complex interactions between the FIFO queues 
of different nodes. This is achieved by abstracting the FIFO 
behaviour of messages sent by other nodes as simply 
additional jitter kf  before each message k can enter priority 
based arbitration on the bus. When calculating the response 
time of a given message, we therefore need only consider 
the behaviour of the node that sends that message (PQ-node 
or FQ-node) and the buffering delays of messages sent by 
other nodes9.  

An upper bound on the buffering time mf  of a FIFO-
queued message m is: 

MIN
mmm CRf −=        (10) 

1 repeat = true
2 initialise all kf  = 0 
3 while(repeat){ 
4 repeat = false 
5 for each priority m, highest first{ 
6  if (m is FIFO-queued){ 
7   calc mR  according to Eqs (8) & (9) 
8   if( mR > MIN

mE ) { 
9    return unschedulable 
10   } 
11   if( mf mw< ){ 
12    mm wf =
13    repeat = true; 
14   } 
15  } 
16  else { 
17   calc mR  according to Eqs (5) & (6)  
18   if( mR > mE ) { 
19    return unschedulable 
20   } 
21  } 
22 } 
23 } 
24 return schedulable

Algorithm 1: FIFO Symmetric Schedulability Test 

When the priorities of messages in different FIFO 
groups are interleaved, this leads to a circular dependency in 
the response time calculations. For example, let m and k be 
the priorities of messages in two different FIFO groups with 
interleaved priorities (i.e. )( mLhpk ∈  and )( kLhpm∈ ). 
The response time kR  of message k, and hence its buffering 
time kf , depend on the buffering time mf  of message m as 

)( kLhpm∈ ; however, the buffering time mf  of message m
depends on its response time mR  which in turn depends on 

kf  as )( mLhpk ∈ . This apparent problem can be solved by 

9 If the message belongs to a PQ-node, then the other messages sent by the 
same node have buffering delays of zero, if it belongs to an FQ-node, then 
the buffering delays for other messages sent by the same node are not 
needed in the calculations (8) &(9). 



noting that the response times calculated via (5) & (6) and 
(8) & (9) are monotonically non-decreasing with respect to 
the buffering times, and that the buffering times given by 
(10) are monotonically non-decreasing with respect to the 
response times calculated via (8) & (9). Hence by using an 
outer loop iteration, and repeating response time 
calculations until the buffering times no longer increase, we 
can compute correct upper bound response times and hence 
schedulability for all messages, as shown in Algorithm 1. 
(Note, to speed up the schedulability test, for each message 
m, the value of mw  computed on one iteration of the while 
loop (lines 3 to 23) can be used as an initial value on the 
next iteration). 

Algorithm 1 provides a sufficient schedulability test for 
FIFO-queued and priority-queued messages in any arbitrary 
priority ordering. 
4.4. Partial priority ordering within a FIFO group 

In this section, we consider an appropriate priority 
ordering for messages within a FIFO group. 
Definition 2: A FIFO-adjacent priority ordering is any 
priority ordering whereby all of the messages sharing a 
FIFO queue are assigned adjacent priorities. 
Theorem 1: If a priority ordering Q exists that is 
schedulable according to the FIFO-symmetric schedulability 
analysis of Algorithm 1 then a schedulable FIFO-adjacent 
priority ordering P also exists. 
Proof: Let m be a FIFO-queued message that is not the 
lowest priority message in its FIFO group. Now consider a 
priority transformation whereby message m is shifted down 
in priority so that it is at a priority level immediately above 
that of the lowest priority message in its FIFO group. We 
will refer to the old priority ordering as Q and the new 
priority ordering as Q’. 

We observe from (5) and (8), that given the same fixed 
set of buffering times kf , then (i) the response time 
computed for message m is the same for both priority 
orderings, and (ii) the response times computed for all other 
messages are no larger in priority ordering Q’ than they are 
in priority ordering Q. Due to the mutual monotonically 
non-decreasing relationship between message buffering 
times and response times, and the fact that Algorithm 1
starts with all the buffering times set to zero, this means that 
on every iteration of Algorithm 1, the response times and 
buffering times computed for each message under priority 
ordering Q’ are no larger than those computed on the same 
iteration for priority ordering Q. Hence if priority ordering 
Q is schedulable, then so is priority ordering Q’. 

Applying the priority transformation described above to 
every FIFO-queued message that is not the lowest priority 
message in its FIFO group transforms any schedulable 
priority ordering Q into a FIFO-adjacent priority ordering P, 
without any loss of schedulability □
Theorem 1 tells us that regardless of the priority assignment 
applied to priority-queued messages, we should ensure that 
all of the messages that share a single FIFO queue have 
adjacent priorities. In terms of CAN message IDs we note 

that this does not require that consecutive values are used 
for the IDs, only that there is no interleaving with respect to 
the priorities of other messages. In practice message IDs can 
be chosen to meet these requirements, while also providing 
appropriate bit patterns for message filtering. 
4.5. Schedulability test for FIFO-adjacent priorities 

In this section, we derive an improved schedulability 
test that is valid for FIFO-adjacent priority orderings.  

Recall that Davis et al. (2007) showed that the worst-
case queuing delay for a priority-queued message m occurs 
within the priority level-m busy period that starts with a 
critical instant. Provided that a FIFO-adjacent priority 
ordering is used, then the same situation also represents the 
worst-case scenario when higher priority messages are sent 
by either PQ-nodes or FQ-nodes. This can be seen by 
considering the interference on a priority-queued message m
from a higher priority FIFO-queued message k. As message 
k is of higher priority than message m, then so are all of the 
other messages in the same FIFO group (i.e. )(kM ). Thus 
any message in )(kM  that is queued prior to the start of 
transmission of message m will be sent on the bus before 
message m, irrespective of the order in which the messages 
in )(kM  are placed in the FIFO queue. In effect all of the 
additional jitter on message k is already accounted for by 
interference on message m from other messages in the same 
FIFO group ( )(kM ). In this case, there is no additional 
jitter on message k caused by messages of lower priority 
than m. Hence for each FIFO message k, we can set kf  = 0, 
and use (5) & (6) to calculate the queuing delay and worst-
case response time of each message m. The same argument 
applies when we consider the schedulability of a FIFO-
queued message m. In this case we can use (8) & (9) to 
calculate the queuing delay and worst-case response time, 
with all buffering times kf  = 0. Further, as the buffering 
times are all fixed at zero, a single pass over the priority 
levels is all that is needed to determine schedulability. In 
other words, lines 11-14 of Algorithm 1 can be omitted 
when considering FIFO-adjacent priority orderings. This 
revised schedulability test therefore dominates the test given 
in Section 4.3 (i.e. Algorithm 1 with lines 11-14 present). 

The simplified analysis given in this section is similar to 
that provided for FP/FIFO scheduling of flows by Martin et 
al., (2007) and for OSEK/VDX tasks by Bimbard and 
George (2006) and Hladik et al. (2007). 
4.6. Sufficiency and sustainability of the FIFO-

symmetric schedulability tests 
In this section, we prove that treating all of the 

messages in a FIFO queue as having the lowest priority mL
of any message in that queue, leads to a worst-case response 
time that is no smaller than the actual worst-case response 
time of each message. Thus, we show that the FIFO-
symmetric schedulability test given in Section 4.2, by (8) 
and (9) (i.e. Algorithm 1), is sufficient in the case of a 
general priority ordering (Theorem 2), and also in the case 
of a FIFO-adjacent priority ordering when the buffering 
delays are set to zero (Theorem 3). We also show that the 



FIFO-symmetric schedulability test is self-sustainable
(Baker and Baruah, 2009) in these two cases (Theorems 4 
and 5). 

Recall from Section 2 that the property of self-
sustainability implies sustainability of the schedulability 
test. Sustainability is an important property as it means that 
any set of messages that are deemed schedulable by the test 
remain schedulable if their transmission times are reduced, 
for example by bit-stuffing which is less than the worst-case 
assumed by the analysis, or their periods or deadlines are 
increased. 
Lemma 1: Consider a system G comprising a set of nodes 
connected via a CAN bus, with a static set of hard real-time 
messages sent on the bus. We assume that the node 
transmitting message m is an FQ-node, which transmits a 
FIFO-group of messages )(mM , and that messages from all 
other nodes are priority queued. Further, the priorities of the 
messages in the FIFO-group )(mM  are arbitrary, with a 
lowest priority of mL . Let H be a system that is identical to 
system G, with the exception that all of the messages in the 
FIFO-group )(mM  have priority mL . The worst-case 
response time of each message in )(mM  in system G is no 
greater than the worst-case response time of the equivalent 
message under system H. 
Proof: We prove a stronger hypothesis: that for any valid 
sequence of message releases, the response time of every 
instance of every message in )(mM  is no greater in system 
G than it is in system H. 
 We observe that for any valid sequence of message 
releases, the duration of each priority level mL  busy period 
(during which there are ready messages of priority mL  or 
higher) is the same in both systems. This is the case because 
fixed priority non-pre-emptive scheduling is work-
conserving, message release times are the same in both 
systems, and the only difference between them is the 
priority ordering of messages with priorities no lower than 

mL . As a consequence, the times at which messages with 
priorities lower than mL  start to be transmitted are the same 
in both systems. Note the order in which messages of 
priority mL  and higher are sent in a priority level mL  busy 
period may be different in the two systems. 
 We prove the hypothesis by contradiction: For some 
arbitrary sequence of message releases, let x be the first 
instance of a message in )(mM  with a longer response time 
in system G than it has in system H. To compare the 
response times of message instance x in the two systems, we 
need only consider the priority level mL  busy period that 
contains transmission of x. Let t be the start of this busy 
period. The time s at which x starts to be transmitted in 
system H is given by: 
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where B is blocking due to a lower priority message (if any) 
that starts transmission at the start of the busy period, )(tCP
is the total transmission time for instances of messages in 

)(mM  released during the busy period prior to the release 
of x, and )(tIk  is the total transmission time of instances of 

higher priority message k released during the busy period, 
prior to time s. 

As (11) holds for system H, it must be the case in system 
G that x can start transmission no later than s, as its priority 
is no lower than mL . This contradicts the hypothesis that x
is the first instance of a message in )(mM  with a longer 
response time in system G than it has in system H. Hence 
there can be no such instance x □
Theorem 2: The FIFO-symmetric schedulability test given 
in Section 4.2, (8) and (9), is sufficient. 
Proof: Lemma 1 shows that the worst-case response times 
for a set of FIFO-queued messages )(mM  with arbitrary 
priorities, the lowest of which is mL , are upper bounded by 
the worst-case response times of those same messages 
computed for a system that is equivalent except for the fact 
that all of the messages in )(mM  have priority mL . 
Sufficient values for the worst-case response times of FIFO-
queued messages may therefore be calculated according to 
these assumptions as described in Section 4.2. Note that the 
assumption that all messages sent by other nodes are priority 
queued is dealt with by (8) via modelling each message k
sent by another FQ-node as a priority queued message with 
release jitter increased by the buffering delay kf □

Next we show that in the case of a FIFO-adjacent 
priority ordering, the FIFO-symmetric schedulability test 
given by Algorithm 1 is sufficient with the buffering delays 
set to zero. Further, we show that in systems where not all 
of the priorities of messages in FIFO-groups are adjacent, 
then some specific buffering delays can still be assumed to 
be zero, improving the precision of the analysis. 

We use the concepts of spanning and partitioning to 
describe how the priorities of messages in different FIFO 
groups are interleaved. We say that a FIFO-group )(mM
spans a priority level j if there is at least one message in the 
group with a priority higher than j and at least one message 
in the group with a priority lower than j. Similarly, a FIFO-
group )(kM  spans another FIFO group )( jM  if there is a 
message in )(kM  with a priority higher than jL  (the lowest 
priority of a message in )( jM ) and another message in 

)(kM  with a priority lower than jL . If no FIFO-groups 
span priority level j, then we say that priority level j, 
partitions the FIFO-groups. In this case, all messages in the 
same FIFO-group either have priorities that are higher than j
or lower than j. Similarly, a FIFO-group )( jM  is said to 
partition the other FIFO groups if the lowest priority level 

jL  of the FIFO-group partitions the other FIFO-groups. In a 
FIFO-adjacent priority ordering each FIFO-group partitions 
all of the other FIFO-groups, and no FIFO group spans 
another FIFO-group or a priority queued message. 
Lemma 2: Let j be a priority queued message and )(kM  a 
FIFO group where all of the messages in )(kM  have higher 
priorities than j, i.e. )( kLlpj∈ . The worst-case response 
time of message j can be computed according to (5) and (6) 
with the interference from messages in )(kM  calculated 
with their buffering delays assumed to be zero. 
Proof: As )( kLlpj∈ , then all of the messages in FIFO-



group )(kM  have a higher priority than message j. Thus all 
of the ready messages in FIFO-group )(kM  must be sent 
prior to the start of transmission of message j. It follows that 
the worst-case interference from messages in )(kM  occurs 
when all of those messages are queued simultaneously at the 
start of a priority level-j busy period and are queued again as 
soon as possible. Further, at any given time there can be no 
messages in )(kM  of priority higher than j that are ready 
but waiting in the FIFO queue behind a message of priority j
or lower. Therefore the worst-case scenario for interference 
from messages in higher priority FIFO-group )(kM  is the 
same as the priority-queued case. (Note that buffering 
delays can still occur, but their only effect is to re-order the 
transmission of messages in )(kM , without changing the 
total interference on the message at priority level j) □
Lemma 3: Let )( jM  be a FIFO-group and )(kM  another 
FIFO-group such that all of the messages in )(kM  have 
higher priorities than the lowest priority message in )( jM , 
i.e. )( kj LlpL ∈ . The worst-case response time for messages 
in )( jM  can be computed according to (8) and (9) with the 
interference from messages in )(kM  calculated with their 
buffering delays assumed to be zero. 
Proof: (Follows the logic of the proof of Lemma 2). Lemma 
1 tells us that we can upper bound the worst-case response 
times of messages in )( jM  by assuming that they are all 
transmitted at priority jL . As )( kj LlpL ∈ , then all of the 
messages in FIFO-group )(kM  have a higher priority than 

jL . Thus all of the ready messages in FIFO-group )(kM
must be sent prior to the start of transmission of any 
message at priority jL . It follows that the worst-case 
interference from messages in )(kM  occurs when all of 
those messages are queued simultaneously at the start of a 
priority level- jL  busy period and are queued again as soon 
as possible. Further, at any given time there can be no 
messages in )(kM  of priority higher than jL  that are ready 
but waiting in the FIFO queue behind a message of priority 

jL  or lower. Therefore the worst-case scenario for 
interference from messages in FIFO-group )(kM  is the 
same as the priority-queued case. (Note that buffering 
delays can still occur, but their only effect is to re-order the 
transmission of messages in )(kM , without changing the 
total interference on messages at priority level jL ) □
Theorem 3: For any priority queued message (or FIFO-
group) that partitions the other FIFO groups, the worst-case 
response time can be computed according to (5) and (6) (or 
(8) and (9)) with the buffering delays of messages in higher 
priority FIFO-groups assumed to be zero. Further, for any 
FIFO-group )( jM  that does not partition the other FIFO-
groups, then the worst-case response time of messages in 

)( jM  can be computed with non-zero buffering delays 
used only for those messages in FIFO-groups that span 
priority level jL . Similarly, for a priority queued message j
that does not partition the FIFO-groups, then the worst-case 
response time of message j can be computed using (5) and 
(6) with non-zero buffering delays used only for those 
messages in FIFO groups that span priority level j. 

Proof: Follows from the proofs of Lemma 1 and Lemma 2, 
Lemma 3, and analysis of the priority queued case □
Corollary 1: With a FIFO-adjacent priority ordering the 
FIFO-symmetric schedulability test given by Algorithm 1 is 
sufficient with all buffering delays assumed to be zero. 
(This corollary follows from Theorem 3). 

For sets of messages that are not all in FIFO-adjacent 
priority order, then the schedulability test given by 
Algorithm 1 must be used with lines 11-14 present. This is 
because at least one priority queued message or FIFO-group 
will need to have its worst-case response time computed 
using non-zero buffering delays, and hence repeated 
calculation is required to account for the circular 
dependency that this may imply. 

Theorem 3 allows for more precise analysis of worst-
case response times when there are constraints on message 
priorities that prevent the use of a FIFO-adjacent priority 
ordering. This is illustrated by Figure 1 which shows, as 
brackets, the maximum and minimum priority of messages 
in the various FIFO-groups, as well as the priorities of two 
priority queued messages. Theorem 3 tells us that when 
computing the worst-case response time for messages in 
FIFO-4, then we may assume a buffering delay of zero for 
messages in FIFO-2 and FIFO-1, because all of the 
messages in those FIFO-groups have higher priorities than 
the lowest priority message in FIFO-4. However, we must 
compute and use non-zero buffering delays for messages in 
FIFO-6 as this group spans the lowest priority level of group 
FIFO-4. Further, when computing the worst-case response 
time for messages in FIFO-6, we can assume the buffering 
delays for messages in FIFO-1, FIFO-2 and FIFO-4 are 
zero, but must use the computed non-zero values for the 
buffering delays for messages in FIFO-7. When computing 
the worst-case response time of priority queued message 
PRI-5, we can assume the buffering delays for messages in 
FIFO-1 and FIFO-2 are zero, but must use the computed 
non-zero buffering delays for messages in FIFO-4 and 
FIFO-6. Finally, when computing the worst-case response 
time for messages in FIFO-7, we may assume a buffering 
delay of zero for all messages in FIFO-1, FIFO-2, FIFO-4, 
and FIFO-6.  
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Figure 1: Priorities spanning FIFO groups 

Note that whether we can assume buffering delays of 
zero or not for messages in a particular FIFO-group (e.g. 
FIFO-6) depends on which messages we are computing the 
worst-case response time for (e.g. FIFO-4, PRI-5, and 
FIFO-7). 
Theorem 4: With a FIFO-adjacent priority ordering, the
FIFO-symmetric schedulability test of Section 4.5
(Algorithm 1 with lines 11-14 omitted) is self-sustainable
(Baker and Baruah, 2009). Meaning that any set of 
messages deemed schedulable by the test will also be 
deemed schedulable by the test if those messages are 
modified by: (i) decreasing transmission times, (ii) 
increasing periods or inter-arrival times, and (iii) increasing 
deadlines. 
Proof: The proof is in three parts: 
(i) Decreasing transmission times. Proof of this aspect of 
self-sustainability follows from the fact that the queuing 
delay mw  of message m, given by (5) and (8), is non-
increasing with respect to any decrease in the transmission 
time of message m or any other messages. Note that in (8), 
the transmission time MIN

mC  of the shortest message in the 
FIFO queue cannot become smaller by an amount x without 
at least an equivalent reduction in the sum of the message 
transmission times SUM

mC , hence the value of 
MIN
m

SUM
m CC −  cannot increase. From (6) and (9), it follows 

that the message response time mR  is also non-increasing 
with respect to a decrease in message transmission times, 
and so the test is self-sustainable with respect to reductions 
in message transmission times. 
(ii) Increasing periods or inter-arrival times. As message 
periods appear only in the denominator of the ceiling 
functions in (5) and (8), increases in these values cannot 
result in an increase in message queuing delays or response 
times. Hence the test is self-sustainable with respect to 
increases in message periods. 
(iii) Increasing deadlines. As increases in message deadlines 
can only increase the transmission deadlines mE  and MIN

mE , 
such increases cannot result in a message that was 

previously schedulable according to the test becoming 
unschedulable according to the test. Hence the test is self-
sustainable with respect to increases in message deadlines □
Theorem 5: The FIFO-symmetric schedulability test of 
Section 4.5 (Algorithm 1 with lines 11-14 present) is self-
sustainable (Baker and Baruah, 2009) in the general case 
with an arbitrary priority ordering. 
Proof: Follows from the proof of Theorem 4, noting that the 
buffering delay mf  is equal to the queuing delay mw  (see 
(9) and (10)), and so mf  is also non-increasing with respect 
to any decrease in message transmission times, or increase 
in message periods. □
Note that the proof of Theorem 5 does not require any 
changes to the priority order of the messages. They will still 
remain schedulable according to the FIFO-symmetric 
schedulability test with the original priority ordering. 
4.7. Buffer sizes 

Assuming that all messages have constrained deadlines, 
and that the network is schedulable, then irrespective of the 
queuing policy, two instances of the same message cannot 
be present in the queue at the same time; otherwise the first 
instance would have missed its deadline. The worst-case 
buffer usage is therefore equal to the number of messages 
that use that queue, and this occurs when all of the messages 
are queued at the same time. 

5. Priority Assignment Policies 
The schedulability test presented in Section 4.5 is 

applicable irrespective of the overall priority ordering, 
provided that messages sharing the same FIFO queue are 
assigned adjacent priorities. Choosing an appropriate 
priority ordering among the priority-queued messages and 
the FIFO groups is however an important aspect of 
achieving overall schedulability and hence effective real-
time performance. 

In this section, we consider the assignment of messages 
to priority bands, where a priority band comprises either a 
single priority level containing one priority-queued 
message, or a number of adjacent priority levels containing 
a FIFO group of messages. We derive priority assignment 
policies that are optimal with respect to the schedulability 
analysis given in Section 4.5. 
5.1. Optimal priority assignment 

Davis et al. (2007), showed that, assuming solely 
priority queuing, Audsley’s Optimal Priority Assignment 
(OPA) algorithm (Audsley, 1991, 2001) provides the 
optimal priority assignment for CAN messages. We now 
show that with an appropriate modification to handle FIFO 
groups, Audsley’s algorithm is also optimal with respect to 
the schedulability test given in Section 4.5. The pseudo code 
for this OPA-FP/FIFO algorithm is given in Algorithm 2. 
Note that only one message from each FIFO group is 
considered in the initial list, as once this message is assigned 
to a priority band, then so are the other messages in the 
same FIFO group. 



for each priority band k, lowest first
{ 

for each message msg in the initial list { 
  if msg is schedulable in priority band k according to 

  schedulability test S with all unassigned priority- 
  queued messages / other FIFO groups assumed to be 
  in higher priority bands { 

   assign msg to priority band k 
if msg is part of a FIFO group { 

    assign all other messages in the FIFO group 
    to adjacent priorities within  priority band k

   }  
   break (continue outer loop) 
  } 
} 
 return unschedulable 

} 
return schedulable

Algorithm 2: Optimal Priority Assignment 
(OPA-FP/FIFO) 

Davis and Burns (2009b, 2011) showed that Audsley’s 
OPA algorithm is optimal with respect to any schedulability 
test that meets three specific conditions. According to  
Theorem 1, we need only consider the priority bands 
assigned to each priority-queued message, and each FIFO 
group (as all messages in a FIFO group have adjacent 
priorities in an optimal priority ordering). We therefore re-
state these three conditions in the context of priority-queued 
messages and FIFO groups. 

The three conditions refer to properties or attributes of 
the messages. Message properties are referred to as 
independent if they have no dependency on the priority 
assigned to the message. For example the longest 
transmission time, deadline, and minimum inter-arrival time 
of a message are all independent properties, while the worst-
case response time typically depends on the message’s 
priority and so is a dependent property. 
Condition 1: The schedulability of a message / FIFO group 
identified by m, may, according to test S, depend on any 
independent properties of other messages / FIFO groups in 
higher priority bands than m, but not on any properties of 
those messages / FIFO groups that depend on their relative 
priority ordering. 
Condition 2: The schedulability of a message / FIFO group 
identified by m may, according to test S, depend on any 
independent properties of the messages / FIFO groups in 
lower priority bands than m, but not on any properties of 
those messages / FIFO groups that depend on their relative 
priority ordering. 
Condition 3: When the priorities of any two adjacent 
priority bands are swapped, then the message / FIFO group 
being assigned the higher priority band cannot become 
unschedulable according to test S, if it was previously 
schedulable in the lower priority band. (As a corollary, the 
message / FIFO group being assigned the lower priority 
band cannot become schedulable according to test S, if it 
was previously unschedulable in the higher priority band). 

Theorem 6: The OPA-FP/FIFO algorithm is an optimal 
priority assignment algorithm with respect to the FIFO-
symmetric schedulability test of Section 4.5 (Algorithm 1
with lines 11-14 omitted). 
Proof: It suffices to show that conditions 1-3 hold with 
respect to the schedulability test given by Algorithm 1 with 
lines 11-14 omitted. 
Condition 1: Inspection of (5) & (6) and (8) & (9), assuming 
all kf  are fixed at zero, shows that the response time of 
each message m is dependent on the set of messages in 
higher priority bands, but not on their relative priority 
ordering. 
Condition 2: Inspection of (5) & (6) and (8) & (9), shows 
that the response time of each message m is dependent on 
the set of messages in lower priority bands via the direct 
blocking term, but not on their relative priority ordering. 
Condition 3: Inspection of (5) & (6) and (8) & (9), assuming 
all kf  are fixed at zero, shows that increasing the priority 
band of message m cannot result in a longer response time. 
This is because although the direct blocking term can get 
larger with increasing priority this is always counteracted by 
a decrease in interference that is at least as large; hence the 
length of the queuing delay cannot increase with increasing 
priority, and so neither can the response time □

For N priority-queued messages / FIFO groups, the 
OPA-FP/FIFO algorithm performs at most N(N-1)/2 
schedulability tests and is guaranteed to find a schedulable 
priority assignment if one exists. It does not however 
specify an order in which messages should be tried in each 
priority band. This order heavily influences the priority 
assignment chosen if there is more than one ordering that is 
schedulable. In fact, a poor choice of initial ordering can 
result in a priority assignment that leaves the system only 
just schedulable. We suggest that, as a useful heuristic, 
priority-queued messages and FIFO groups are tried at each 
priority level in order of transmission deadline (i.e. mE  or 

MIN
mE ), largest value first. This will result in a priority 

ordering reflecting transmission deadlines if such an 
ordering is schedulable. Alternatively, approaches which 
result in a robust priority assignment can be developed from 
the techniques described by Davis and Burns (2009a). 
5.2. TDMO-FP/FIFO priority assignment 

In industrial practice, CAN configurations are 
sometimes designed such that all of the messages are of the 
same maximum length (8 data bytes). This is done to 
ameliorate the effects of the large overhead of the other 
fields (arbitration, CRC etc) in each message. 
Definition 3: Transmission deadline monotonic priority 
ordering for FP/FIFO (TDMPO-FP/FIFO) is a priority 
assignment policy that assigns priority bands to priority 
queued messages and FIFO groups according to their 
transmission deadlines; with a shorter transmission deadline 
implying a higher priority. (Recall that the transmission 
deadline of a FIFO group is given by the shortest 
transmission deadline of any message in that group). 
Figure 2 illustrates the TDMPO-FP/FIFO priority 



assignment policy. In this section, we show that the 
TDMPO-FP/FIFO priority assignment policy is optimal, 
with respect to the sufficient schedulability test given in 
Section 4.5 (i.e. Algorithm 1 with lines 11-14 omitted) when 
all messages have the same worst-case transmission time 
(C). 
Corollary 2: For networks where all of the message 
transmission times are the same, then the blocking factor, 
used in both the sufficient schedulability test given by Davis 
et al. (2007) (recapitulated in Section 3) and the sufficient 
schedulability tests given in Section 4 of this paper, is the 
same for every message, and is equal to the worst-case 
message transmission time (C). 
Lemma 4: Let i and j be the indices of two adjacent priority 
bands in a priority ordering that is schedulable according to 
the sufficient schedulability test given in Section 4.5 (i.e. 
Algorithm 1 with lines 11-14 omitted). Assume that i is of 
higher priority than j, and that the transmission deadline 

XE  of the priority-queued message / FIFO group (X) 
initially in priority band i is longer than the transmission 
deadline YE  of priority-queued message / FIFO group (Y) 
initially in priority band j. If the priorities of X and Y are 
swapped, so that X is in the lower priority band j, and Y is in 
the higher priority band i, then X remains schedulable, 
provided that the set of messages all have the same worst-
case transmission time (C). 
Proof: Let jYR ,  be the response time of Y in priority band j, 
(with X in the higher priority band i). Similarly, let jXR ,  be 
the response time of X in priority band j, (with Y in the 
higher priority band i). As Y is schedulable when it is in the 
lower priority band, then, YjY ER ≤, , thus as XY EE < , it 
follows that to prove the Lemma, we need only show that 

jYjX RR ,, ≤ . Further, as all messages have the same worst-
case transmission time (C), and so the response times are 
equal to the queuing delays plus C, we need only compare 
the two queuing delays, referred to for convenience as jXw ,
and jYw , . Below we give formulae for jXw ,  and jYw ,
based on (5) & (6) and (8) & (9). We have separated out the 
interference terms for X and Y. Further, we use )( jB  to 
represent the blocking factor, and ),( wiI  to represent the 
interference from messages in higher priority bands. 
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(i) Queuing delay jXw ,  (simplified by cancelling out the 
blocking factor C and the –C from ( CC SUM

X − )) is given 
by: 

),( ,
,1

,
n

jX
Yk k

bitk
n

jXSUM
X

n
jX wiIC

T
Jw

Cw +










 ++
+= ∑

∈∀

+ τ
 (12) 

Note, in (12), if X is a priority-queued message, then 
CC SUM

X = , also, if Y is a priority-queued message, then 
there is only one message Yk ∈  present in the summation 
term; similarly for (13) below. 
(ii) Queuing delay jYw , : 
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We can simplify (13) by noting that as Y is schedulable 
according to the assumption given in the Lemma, then it 
must be the case that: 

Xk
kk

Xk
kkXYjYjY JTJDEERCw
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−≤−=<≤=+ )min()min(,,

As bitC τ> , we have Xk ∈∀ : kbitkjY TJw <++ τ, , and 
so the ceiling function in (13) evaluates to one in each case; 
indicating that only one instance of each message in X can 
contribute to the interference term. Hence (13) simplifies to:  

),( ,
1

,
n

jY
SUM
X

SUM
Y

n
jY wiICCw ++=+      (14) 

Now let us consider a simplification of (12) that is valid for 
values of CEw YjX −≤, .  
As )(min)(min kkYkkkYkY JTJDE −≤−=

∈∀∈∀
 and bitC τ>  then  

we have Yk ∈∀ : kbitkjX TJw <++ τ,  and so the ceiling 
function in (12) evaluates to one in each case; indicating 
that only one instance of each message in Y can contribute 
to the interference term. Hence, provided that 

CEw YjX −≤, , then (12) reduces to: 
),( ,

1
,

n
jX

SUM
Y

SUM
X

n
jX wiICCw ++=+     (15) 

Equations (14) and (15) are equivalent. As we know that 
(14) converges on a value CECRw YjYjY −≤−= ,, , then 
(15) and hence (12) must also converge on the same value, 
thus jYjX ww ,, = , and jYjX RR ,, = □
Theorem 7: TDMPO-FP/FIFO is an optimal policy for 
assigning priority-queued messages and FIFO groups to 
priority bands, with respect to the sufficient schedulability 
test given in Section 4.5 (Algorithm 1 with lines 11-14 
omitted), provided that all messages have the same worst-
case transmission time.  
Proof: We prove the theorem by showing that any ordering 
Q of priority bands that is schedulable according to the 
sufficient schedulability test given in Section 4.5 can be 
transformed into a TDMPO-FP/FIFO priority ordering 
without any loss of schedulability. 
 Let i and j be the indices of two adjacent priority bands 
in an ordering that is schedulable according to the sufficient 
schedulability test given in Section 4.5. Assume that i is of 
higher priority than j, and that the transmission deadline 

XE  of the priority-queued message / FIFO group (X) in 
priority band i is longer than the transmission deadline YE
of the priority-queued message / FIFO group (Y) in priority 
band j. 

We now consider what happens to the schedulability of 
all of the messages in the system when we swap the 
priorities of X and Y (i.e. when we place X in the lower 
priority band j, and Y in the higher priority band i) to create 
priority ordering Q’. There are four cases to consider: 
1. Priority bands with higher priority than i ( )(ihph∈ ): 

Inspection of (5) & (6) and (8) & (9) shows that the 
response times of each of the messages in these bands is 
the same in priority ordering Q’ as it is in priority 



ordering Q. This is because the priority ordering of the 
messages with higher priorities than h is unchanged and 
the direct blocking factor due to the set of messages 
with lower priority than h depends only on the set of 
messages )(hlp  and not on their relative priority 
ordering, and is in any case equal to C for all priority 
bands. All of the messages in bands with priorities 
higher than j are therefore schedulable in priority 
ordering Q’. 

2. Priority band i: Y was previously schedulable in the 
lower priority band j. Shifting Y up in priority above X
results in no change to the blocking factor, but removes 
interference due to X, hence the worst-case response 
time for Y can be no greater than it was in priority 
ordering Q, Y is therefore schedulable in priority 
ordering Q’. 

3. Priority band j: Lemma 4 proves that X is schedulable 
in priority band j. 

4. Priority bands with lower priority than j ( )( jhpl ∈ ): 
Inspection of (5) & (6) and (8) & (9) shows that the 
response times of each of these messages is the same in 
priority ordering Q’ as it is in priority ordering Q. This 
is because the set of messages in higher priority bands 
is the same in both orderings, and the interference due 
to higher priority messages does not depend on their 
relative priority ordering. Further, the blocking factor 
due to the set of messages with lower priority than l
depends only on the set of messages )(llp  and not on 
their relative priority ordering, and is in any case equal 
to C for all priority bands. All of the messages in bands 
with priorities lower than j are therefore schedulable in 
priority ordering Q’. 

By repeatedly swapping the priorities of any two 
adjacent priority bands that are not in TDMPO-FP/FIFO 
priority order, any arbitrary schedulable priority ordering Q 
can be transformed into a TDMPO-FP/FIFO priority 
ordering without any loss of schedulability □.
Corollary 3: For the case where all nodes use priority 
queues and all messages have the same worst-case 
transmission time, TDMPO-FP-FIFO reduces to 
transmission deadline monotonic priority ordering, which is 
therefore an optimal priority assignment policy with respect 
to the sufficient schedulability test given by Davis et al. 
(2007) (recapitulated in Section 3). 

Note that transmission deadline (i.e. Deadline minus 
Jitter) monotonic priority ordering has also been shown to 
be an effective heuristic policy in the general case with 
mixed length messages (Davis and Burns, 2009a). 
5.3. Priority inversion 

All of the messages in a FIFO group need to have 
sufficiently high priorities that the message with the shortest 
transmission deadline in the group can still meet its 
deadline. We have shown that with the FIFO-symmetric 
schedulability analysis introduced in this paper, the most 
effective way to achieve this is to assign adjacent priorities 
to all of the messages in a FIFO group. Despite this, we note 

that the use of FIFO queues still typically results in priority 
inversion with respect to the priority assignment that would 
be used if all nodes implemented priority queues. 

The problem of priority inversion can be seen by 
considering priority assignment according to the TDMPO-
FP/FIFO policy, see Figure 2 below. With only PQ-nodes, 
the priority assigned to each message would depend only on 
its transmission deadline, with a longer deadline implying 
lower priority. With FIFO queues, there are two forms of 
priority inversion: internal and external. Internal priority 
inversion takes place within a FIFO queue when messages 
with longer transmission deadlines enter the queue before, 
and so are transmitted ahead of, messages with shorter 
transmission deadlines. External priority inversion occurs 
because all of the messages in a FIFO group effectively 
obtain priorities based on the shortest transmission deadline 
of any message in that group. This has the effect of creating 
priority inversion with respect to messages sent by other 
nodes that have transmission deadlines between the 
maximum and minimum transmission deadlines of 
messages in the FIFO group. This is illustrated in Figure 2, 
where messages causing external priority inversion are 
shaded in grey. 

PQ-msg1: E = 5 

FQ-group1: EMIN = 10 
FQ-msg1: E = 10

FQ-group2: EMIN = 50 

PQ-msg2: E = 10 

PQ-msg3: E = 20 

PQ-msg4: E = 50 

PQ-msg5: E = 100 

PQ-msg6: E = 250 

PQ-msg7: E = 250 

PQ-msg8: E = 500 

FQ-msg2: E = 25
FQ-msg3: E = 100

FQ-msg4: E = 50
FQ-msg5: E = 125
FQ-msg6: E = 1000
FQ-msg7: E = 1000
FQ-msg8: E = 1000

Higher 
priority

Lower 
priority

FIFO group1

FIFO group2

Figure 2: TDMPO-FP/FIFO priority ordering 

In Figure 2, observe that the messages within each 
FIFO group have their priorities assigned according to 
transmission deadline monotonic priority assignment. We 
recommend this approach as although it does not alter the 
sufficient worst-case response times of the messages as 
calculated by our analysis, it could result in lower actual 
worst-case response times for those messages in the group 
that have shorter transmission deadlines. 

6. Case Study: Automotive 
To show that our priority assignment policies and 

schedulability analysis work with a real application we 
analysed a CAN bus architecture from the automotive 
domain, first presented by Kollmann et al., (2010). Figure 3
shows this architecture. The system consists of a CAN bus 
connecting 10 ECUs. There are a total of 85 messages sent 
on the bus. The number of messages sent by each ECU is 
given by the annotations in Figure 3. All messages are sent 
strictly periodically and share a common release time. The 



intended bus speed for this network was 500 kBit/s. We 
assumed that the queuing jitter for each message was 1% of 
its period.  

Figure 3: CAN bus architecture 

We initially compared five different configurations of the 
system: 

Expt. 1: All ECUs used priority queues. 
Expt. 2: ECU3 and ECU6 used FIFO queues and the 

remaining ECUs used priority queues. 
Expt. 3: All ECUs used FIFO queues. 
Expt. 4: All ECUs used priority queues, but the priority 

ordering was that established by Expt 3. 
Expt. 5: All ECUs used priority queues, but the priority 

ordering used was random. 
In each experiment we determined the lowest bus speed 
commensurate with a schedulable system. The minimum 
bus speed was found by a binary search with the message 
priorities assigned according to the OPA-FP/FIFO algorithm 
(Algorithm 2) using transmission deadline monotonic 
priority ordering as the reverse ordering for the initial list. 
(For each FIFO group, only the message with the shortest 
transmission deadline was included in the initial list). We 
simulated the system assuming a bus running at the 
minimum bus speed, and using the priority ordering 
obtained during analysis. The simulated network operating 
time was 1 hour. We used the commercial simulator from 
Inchron (chronSIM) to produce the simulation results. 

There are three lines plotted on each of the graphs. The 
lines give the following information for each message: 
(i) Transmission deadline; 
(ii) Worst-case response time computed using the 

analysis given in Section 4.5, assuming the 
minimum schedulable bus speed for the 
configuration. 

(iii) Maximum observed response time found by 
simulation, assuming the minimum schedulable 
bus speed found by analysis. 

All of this data is plotted in ms on the y-axis using a 
logarithmic scale. The x-axis on the graphs represents the 
priority order of the messages. Hence data for the message 
assigned the highest priority in a particular configuration 
appears on the LHS of the graph, while data for the lowest 
priority message appears on the RHS. Note the priority 
order is different in each experiment. 

Figure 4 depicts the results of Expt. 1, where all ECUs 
used priority queues. In this case, the minimum bus speed 
was 277 kBit/s, and the corresponding bus utilisation 84.5%. 
We observe that with this bus speed, the 26th highest priority 
message only just meets its deadline. Further, the results of 
analysis and simulation are close together. This is because 

the messages share a common release time, and all of the 
ECUs used priority-based queues, hence there is very little 
pessimism in the analysis, and the simulation captures the 
worst-case scenario well. 

Figure 5 depicts the results of Expt. 2, where ECU3 and 
ECU6 used FIFO queues and the other ECUs used priority 
queues. In this case, the minimum bus speed was 389 kBit/s, 
and the corresponding bus utilisation 60.1%. Our analysis 
attributes the same worst-case response time to all of the 
messages in a FIFO queue; this results in the horizontal 
segments of the analysis lines in Figure 5. The first FIFO 
queue is the 12 messages sent by ECU3, and the second, the 
6 messages sent by ECU6. The minimum transmission 
deadline for both FIFO queues was 13.8 ms. Observe that in 
Figure 5 the results of analysis and simulation are close 
together for the messages sent via priority queues, whereas 
for the messages sent via FIFO queue there are larger gaps. 
These gaps are predominantly due to the simulation not 
capturing the worst-case scenario for all of the FIFO-queued 
messages. This is evident from the variability of the 
maximum response times obtained via simulation for 
messages in the same FIFO group. 

Figure 4: Response Times (PQ only) 

Figure 5: Response Times (FQ and PQ) 



Figure 6: Response Times (FQ only) 

Figure 7: Response Times (PQ only, FQ priorities) 

Figure 8: Response Times (PQ only, random 
priorities) 

Figure 6 depicts the results of Expt. 3, where all ECUs 
used FIFO queues. In this case, the minimum bus speed was 
654 kBit/s, and the corresponding bus utilisation only 
35.8%. In contrast to the Expt. 1 & 2, this configuration is 
not schedulable at the intended bus speed for the network of 

500 kBit/s. In Expt. 3 (Figure 6), some of the maximum 
response times observed in the simulation are very low 
compared to the worst-case response times computed by the 
analysis. This is caused by differences in the order in which 
messages enter the FIFO queues in the simulation, 
compared to the assumptions made by the analysis. 

Figure 7 depicts the results of Expt. 4 which used the 
priority ordering obtained in Expt. 3, but assumed priority 
queues rather than FIFO queues. In this case, the minimum 
bus speed required was 608 kBit/s, and the corresponding 
bus utilisation 38.5%. Comparison of these results with 
those from Expt. 1 and Expt. 3 shows that the majority of 
the performance degradation caused by using FIFO queues 
occurs as a result of unavoidable external priority inversion 
in the form of a disrupted priority ordering, rather than as a 
consequence of internal priority inversion or pessimistic 
schedulability analysis for FIFO queues. 

Finally, Expt. 5 examined 1000 random priority 
orderings with no correlation between message priority and 
transmission deadline. This experiment simulates assigning 
priorities to messages on the basis of the type of data or 
ECU, or indeed any other metric that has little or no 
correlation with message transmission deadlines. In this 
case, the mean value for the minimum bus speed required 
was 731 kBit/s (min. 618 kBit/s, max. 750 kBit/s), and the 
corresponding bus utilisation 32.0% (max. 37.8%, min. 
31.2%). Figure 8 depicts the results of Expt. 5 for the worst 
of the random priority orderings, which required a minimum 
bus speed of 750 kBit/s in order to be schedulable. It is clear 
from the graph, that it is the assignment of a low priority 
(80th highest priority) to a message with a short transmission 
deadline that results in the need for such a high bus speed. 
Expt. 5 is directly comparable with Expt. 1 and shows the 
importance of appropriate priority assignment. In this case, 
arbitrary priority assignment increased the minimum bus 
speed required by 163% while reducing the maximum 
schedulable bus utilisation from 84.5% to 32.0% (figures for 
the average case). 

The results of the experiments are summarised in  
Table 2 below. 

Table 2: Case Study: FIFO queues: Summary of 
results 

Expt. Node 
type

Priority order Min bus 
speed 

Max 
bus util.

1 All PQ OPA 277 Kbit/s 84.5%
2 2 FQ,

8 PQ
OPA-FP/FIFO 389 Kbit/s 60.1%

3 All FQ OPA-FP/FIFO 654 Kbit/s 35.8%
4 All PQ Priority ordering 

from Expt. 3
608 Kbit/s 38.5%

5 All PQ Random10 731 Kbit/s 32.0%

6.1. Gateways and multiple FIFO queues 
Our case study is typical of automotive applications in 

10 Values are the average for 1000 random orderings.



that it includes a gateway ECU, which is connected to two 
CAN buses and used to transfer data between them. 

The gateway ECU has 38 messages to transmit, which is 
far more than the number of transmit buffers available in 
most CAN controllers. A seemingly attractive design 
solution for the gateway is to use a single FIFO queue; 
however, as we will see, such a choice can significantly 
degrade the real-time performance of the network, 
compared to implementing a priority queue. If a priority 
queue implementation is not possible, then a viable 
alternative may be to implement multiple FIFO queues, each 
of which uses a separate hardware transmit buffer in the 
gateway’s CAN controller to send its messages. We note 
that some CAN devices such as the PIC32MX provide 
specific hardware support for multiple FIFO queues in this 
way.  

In this section, we report the results of three further 
experiments examining the use of FIFO queues in the 
gateway ECU. In each of these experiments, ECUs 1-9 all 
used priority queues; however, we varied the behaviour of 
the gateway ECU as follows: 

Expt. 6: The gateway used a single FIFO queue. 
Expt. 7: The gateway used two FIFO queues. The 18 
messages with the same (shortest) transmission deadline 
of less than 20 ms shared the 1st FIFO queue and the rest 
of the messages sent by the gateway shared the 2nd 
FIFO queue. 
Expt. 8: The gateway used three FIFO queues. The first 
18 messages by transmission deadline shared the 1st 
FIFO queue, the next 14 messages the 2nd FIFO queue, 
and the remaining messages the 3rd FIFO queue. 

Note the allocation of messages to FIFO queues was done 
on the basis of grouping messages with similar transmission 
deadlines together, as this minimises priority inversion. 

Table 3 summarises the results of the three experiments.  

Table 3: Case Study: Gateway multiple FIFO 
queues: Summary of results 

Expt. Gateway Priority order Min bus 
speed 

Max 
bus util.

6 1-FQ OPA-FP/FIFO 388 Kbit/s 60.3%
7 2-FQ OPA-FP/FIFO 285 Kbit/s 82.1%
8 3-FQ OPA-FP/FIFO 277 Kbit/s 84.5%

The results for Expt. 1 where the gateway used a 
priority queue are shown in Figure 4. Figure 9 shows that 
using a single FIFO queue for the gateway increased the 
minimum schedulable bus speed from 277 Kbit/s (in the 
case of a priority queue) to 388 Kbit/s, and reduced the 
maximum achievable bus utilisation from 84.5% to 60.3%. 
Using two FIFO queues made a significant improvement, 
reducing the priority inversion caused by the sub-set of 
gatewayed messages with transmission deadlines greater 
than 20 ms. This decreased the minimum schedulable bus 
speed to 285 Kbit/s, and increased the maximum achievable 
bus utilisation to 82.1%, as shown in Figure 10. Finally, 
using three FIFO queues produced results that were 
equivalent in performance terms to using a priority queue, 

see Figure 11. 
Note, in Figure 9, Figure 10, and Figure 11, the 

transmission deadlines of messages sent by the gateway are 
colour coded to show which FIFO they belong to.  

Figure 9: Response Times (Gateway 1-FQ) 

Figure 10: Response Times (Gateway 2-FQ) 

Figure 11: Response Times (Gateway 3-FQ) 
These experiments show that, for the case-study, a 

configuration where the gateway uses three FIFO queues is 
far more effective than the default option of using just one 



FIFO queue. In this case, using multiple FIFO queues and 
grouping messages by transmission deadline greatly reduces 
the amount of priority inversion, and significantly improves 
the real-time performance of the network with respect to just 
using one FIFO queue. 

7. Experimental Evaluation 
In this section we explore further the effects that FIFO 

queues and priority assignment policies have on the 
maximum bus utilisation. Our experimental evaluation 
examined a system with 8 nodes and 80 messages connected 
via a single CAN bus. We considered five different 
configurations of this network. In Config. #1, all of the 
nodes used priority queues. Configs. #2, #3, and #4 
increased the number of nodes using FIFO queues from 2, to 
4 to 8 (1/4, 1/2 and all nodes respectively). In Configs. #1–
#4, message priorities were assigned according to the 
TDMPO-FP/FIFO policy as depicted in Figure 2. (As all the 
messages were of the same length, this priority ordering was 
optimal). In contrast, in Config. #5, message priorities were 
assigned at random, and all nodes used priority queues. 

To examine the performance of these five 
configurations, we randomly generated 10,000 sets of 
messages as follows: 
o The period of each message was chosen according to a 

log-uniform distribution from the range 10-1000ms; 
thus generating an equal number of messages in each 
time band (e.g. 10-100ms, 100-1000 ms etc.). 

o The deadline of each message was equal to its period. 
o The jitter of each message was chosen according to a 

uniform random distribution in the range 2.5ms to 5ms. 
o Each message contained 8 data bytes. 
o Each message was randomly allocated to one of the 8 

nodes on the network, thus on average, each node 
transmitted 10 messages. 

o All messages were assumed to have 11-bit identifiers. 
For each configuration, we computed the maximum bus 

utilisation for each message set. This was done via a binary 
search combined with the schedulability analysis given in 
Sections 3 and 4. A bin size of 1% was used in the 
frequency distribution plots, with message sets with 
maximum bus utilisations in the range 50.00% to 50.99% 
recorded in the 50% bin. 

The solid lines in Figure 12 illustrate the frequency 
distribution of the maximum bus utilisation across the 
10,000 message sets for each of the five configurations. 
From Figure 12, it is clear that the use of FIFO queues 
significantly degrades the real-time performance of the 
network. With all eight nodes using priority queues (#1), the 
mean value of the maximum bus utilisation was 89.5%. 
With a quarter of the nodes using FIFO queues (#2), this 
reduced to 62.7%, and with half of the nodes using FIFO 
queues (#3) it further reduced to 44.9%. Finally, with all 
eight nodes using FIFO queues (#4) the mean value of the 
maximum bus utilisation degraded to just 28.4%. Worse still 
was random priority assignment (# 5) with a mean value of 
just 18.4%; despite using priority queues. 

Figure 12 also shows results for the priority orderings 

obtained from Configs. #2, #3, and #4, assuming that all 
nodes use priority queues. These results are labelled #2a, 
#3a, and #4a respectively (dashed lines). The differences 
between Configs. #1, #2a, #3a, and #4a are indicative of the 
performance degradation caused by the FIFO queues due to 
external priority inversion (i.e. priority inversion with 
respect to messages sent by other nodes). By contrast, the 
difference between the pairs of Configs. #2–#2a, #3–#3a, 
and #4–#4a are indicative of the performance degradation 
caused by the FIFO queues due to internal priority inversion 
(i.e. priority inversion with respect to messages sent by the 
same node), and also potential pessimism in the 
schedulability analysis for FIFO queues. As expected, the 
degradation in performance due to external priority 
inversion is much larger than that due to internal priority 
inversion, which affects only a limited number of messages. 

We repeated our experimental evaluation of an 8 node 
system for message sets of size 20 and 40. The form of the 
results and the broad conclusions that can be drawn from 
them remained the same as with message sets of size 80. 
However, with fewer messages to randomly allocate to each 
node, the performance degradation due to each FIFO queue 
became somewhat smaller. (This is expected as in the limit, 
with just one message per node, FIFO and priority queues 
are equivalent). Results for 8 nodes and message sets of 
sizes 20, 40 and 80 are summarised in Table 4 and depicted 
for message sets of sizes 80 and 20 in Figure 12 and Figure 
13. 
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Table 4: Evaluation: 8 nodes, varying the number 
of messages per node 

Config. Node 
types

Priority 
order

Mean of Max. bus util.
n=20 n=40 n=80

1 All PQ TDMPO 86.8% 88.4% 89.5%
2 1/4 FQ,

3/4 PQ
TDMPO-
FP/FIFO

72.7% 68.1% 62.7%

3 1/2 FQ, 
1/2 PQ

TDMPO-
FP/FIFO

61.6% 53.6% 44.9%

4 All FQ TDMPO-
FP/FIFO

46.5% 36.9% 28.4%

5 All PQ Random 26.1% 21.5% 18.4%
We also repeated our experimental evaluation for 16 and 

24 node systems with message sets of size 160 and 240 
respectively. As the average number of messages per node 
was the same as the case with 8 nodes and 80 messages, the 
results were also similar. Results for message sets of sizes 
80, 160 and 240 are summarised in Table 5 and depicted for 
message sets of sizes 80 and 240 in Figure 12 and Figure 14. 

As the average number of message per node was 
constant in these experiments, the average of the maximum 
achievable bus utilisation varied only a small amount. 
However, with more messages the frequency distributions 
became sharper, and the maximum achievable bus 
utilisation increased slightly. The latter effect is due to the 
fact that with more messages, message transmission times 
are smaller with respect to overall response times, and so the 
effect of non-pre-emptive transmission becomes less 
pronounced, and so schedulability improves. 

In the case of Config. #5, using a random priority order, 
the average achievable bus utilisation decreased as the 
number of nodes and messages increased, even though the 
average number of messages per node remained constant. 
This was due to the fact that with a larger number of 
messages, there is a smaller probability that none of the 
messages with short deadlines will be assigned low 

priorities (for example in the lowest 5% of messages by 
priority), hence the frequency distribution is less spread out 
towards higher utilisation values, and has a lower mean. 

Table 5: Evaluation: varying number of nodes and 
messages with the same average number of 

messages per node 
Config. Node 

types 
Priority 

order 
Mean of Max. bus util.

8
nodes 
n=80

16
nodes 
n=160

24
nodes 
n=240

1 All PQ TDMPO 89.5% 90.3% 90.7%
2 1/4 FQ,

3/4 PQ
TDMPO-
FP/FIFO

62.7% 65.6% 67.0%

3 1/2 FQ, 
1/2 PQ

TDMPO-
FP/FIFO

44.9% 47.2% 48.3%

4 All FQ TDMPO-
FP/FIFO

28.4% 29.8% 30.6%

5 All PQ Random 18.4% 16.3% 15.4%
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Figure 14: Frequency distribution of max. bus 
utilisation (24 nodes, 240 messages, 10,000 

message sets) 

Overall, our experimental evaluation shows that real-
time network performance, measured in terms of the 
maximum achievable bus utilisation is sensitive to the 
following: 
• the proportion of nodes on the network implementing 

FIFO queues; 
• the number of messages sent by FQ-nodes, and 
• the range of transmission deadlines of messages in each 

FIFO group compared to other messages sent on the 
network. 

Increasing any / all of these factors increases priority 
inversion, to the detriment of network performance. 
7.1. Gateways and multiple FIFO Queues 

We now explore further the effect that using FIFO 
queues in gateway applications has on the maximum 
achievable bus utilisation.  

To investigate this, we evaluated a network with 120 



messages in total, 48 of which were sent by a gateway node. 
All other messages were assumed to be sent by nodes 
implementing priority queues, hence the results hold 
independent of the number of non-gateway nodes on the 
network. The message parameters were generated as 
described previously, with 48 messages allocated to the 
gateway and the remainder to the other nodes.  

We considered seven different configurations of the 
gateway node. In Config. #1, the gateway used a priority 
queue. In Configs. #2 to #6, the gateway implemented 16, 8, 
4, 2, and 1 FIFO queues respectively, which were used to 
transmit its 48 messages. In Configs. #1 to #6, message 
priorities were assigned according to the TDMPO-FP/FIFO 
policy as depicted in Figure 2. (As all the messages were of 
the same length, this priority ordering was optimal). In 
contrast, in Config. #7, message priorities were assigned at 
random, and the gateway again used a priority queue. 

When the gateway used more than one FIFO queue, then 
the messages sent by the gateway were sorted according to 
their transmission deadlines, and the FIFOG Nn /  messages 
with the shortest transmission deadlines were assigned to 
the first FIFO queue, where Gn  is the number of messages 
sent by the gateway, and FIFON  is the number of FIFO 
queues it uses. The next FIFOG Nn /  messages, ordered by 
transmission deadline, were assigned to the 2nd FIFO queue, 
and so on. This simple allocation heuristic ensured that all 
of the FIFO queues had a small number of messages, and 
that the messages in each FIFO queue had broadly similar 
transmission deadlines. 
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Figure 15: Frequency distribution of max. bus 
utilisation for different gateway configurations 
(120 messages, 48 sent by the gateway, 10,000 

message sets) 

Figure 15 shows the frequency distribution of the 
maximum achievable bus utilisation for the seven different 
configurations, and the 10,000 randomly generated sets of 
messages used. It is evident from Figure 15 that, with the 
gateway sending a large number of messages with diverse 
transmission deadlines, using a single FIFO queue results in 
poor network performance. The average value for the 

maximum achievable bus utilisation in this case was just 
34.2%. However, performance was significantly improved 
by implementing multiple FIFO queues in the gateway. 
Using two FIFO queues improved the average value for the 
maximum achievable bus utilisation to 62.3%. While 
utilising 4, 8 or 16 FIFO queues, resulted in performance 
approaching that of a priority queue. A summary of these 
results is given in Table 6. 

Table 6: Evaluation: gateway configurations 
Config. Gateway Priority order Mean of Max. 

bus util.
#1 PQ TDMPO 90.0%
#2 16-FQ TDMPO-FP/FIFO 89.1%
#3 8-FQ TDMPO-FP/FIFO 87.4%
#4 4-FQ TDMPO-FP/FIFO 83.1%
#5 2-FQ TDMPO-FP/FIFO 62.3%
#6 1-FQ TDMPO-FP/FIFO 34.2%
#7 PQ Random 17.1%

We note that the results of our evaluation are based on 
the use of a simple heuristic for allocating messages to FIFO 
queues. We expect that in many cases, improved 
performance could be obtained with fewer FIFO queues by 
using a more sophisticated message allocation policy. This 
is borne out by the results of the case study. Investigation of 
such policies is however beyond the scope of this paper. 

8. Summary and Conclusions 
The major contribution of this paper is the derivation of 

sufficient response time analysis for CAN where some of 
the nodes on the network implement FIFO queues, while 
others implement priority queues. This analysis is FIFO-
symmetric in that it attributes the same worst-case response 
time (measured from the time a message is queued in the 
sending node until it is received by other nodes on the bus) 
to all of the messages that share the same FIFO. For this 
schedulability analysis, we proved that it is optimal to 
assign adjacent priorities to messages that share the same 
FIFO. We modified Audsley’s Optimal Priority Assignment 
algorithm to provide an overall priority assignment policy 
(OPA-FP/FIFO) that is optimal with respect to our analysis 
for both priority-queued messages and groups of messages 
that share a FIFO. Further, we showed that a simple policy 
based on transmission deadlines (TDMPO-FP/FIFO), 
depicted in Figure 2, is optimal with respect to our analysis 
for the specific case when all messages are of the same 
length. 

Although this paper provides schedulability analysis for 
CAN assuming FIFO queues, we cannot recommend the use 
of such queues. By comparison with priority queues, FIFO 
queues inevitably cause priority inversion which is 
detrimental to real-time performance. 

Using appropriate optimal priority assignment policies in 
both cases, we were able to make a like-for-like comparison 
between the use of priority queues and FIFO queues, thus 
determining the specific penalty incurred by the latter in 
terms of network performance. We found that the use of 
FIFO queues significantly increases the minimum bus speed 



necessary to ensure that all deadlines are met. This was 
illustrated in our case study where allowing just two ECUs 
(sending 18 out of the 85 messages) to use FIFO queues 
increased the minimum bus speed required from 277 kBit/s 
with priority queues to 389 kBit/s, a 40% increase. With all 
ECUs using FIFO queues, the minimum bus speed required 
increased to 654 kBit/s; an increase of over 130%. Using 
FIFO queues reduces the maximum bus utilisation 
achievable before any deadlines are missed, thus limiting 
the scope for extending a system by adding further messages 
without having to increase bus speed. In our case study, the 
maximum bus utilisation with priority queues was 84.5%, 
this reduced to 60.1% when two ECUs used FIFO queues, 
and to just 35.8% when all of the ECUs used FIFO queues. 
These figures were backed-up by our experimental 
evaluation of an eight node system with 80 messages. This 
evaluation of 10,000 randomly generated message sets 
showed a degradation in the mean value of the maximum 
bus utilisation from 89.5% with all nodes using priority 
queues, to 62.7% with two nodes using FIFO queues, to 
44.9% with four nodes using FIFO queues, to just 28.4% 
with all eight nodes using FIFO queues. Such reductions in 
achievable utilisation not only increase the minimum bus 
speed required to obtain a schedulable network, but also 
decrease the robustness of the network to errors that result 
in message re-transmission. 

We recommend that CAN device drivers / software 
protocol layers implement priority-based queues, rather than 
FIFO queues whenever possible. FIFO queues are appealing 
because they are simpler to implement and make the device 
driver appear more efficient; however, this perceived local 
gain typically comes at the expense of undermining the 
priority-based message arbitration scheme used by CAN, 
and significantly degrading the overall real-time 
performance capability of the network. 

We note that the degree of priority inversion caused and 
hence the degradation in performance due to using FIFO 
queues is lower when only a few messages use each FIFO 
queue or alternatively when the messages that use each 
FIFO queue have similar transmission deadlines. Under 
these circumstances, the use of FIFO queues along with 
appropriate priority assignment may result in a satisfactory 
solution. If on the other hand, FIFO queues are used for 
large numbers of messages with a wide range of 
transmission deadlines, then this can be expected to have a 
significant detrimental impact on network performance. 

For ECUs that act as a gateway from one CAN bus to 
another and thus have a large number of messages to 
transmit, if a priority queue implementation is not possible, 
then system designers may wish to consider using multiple 
FIFO queues each utilising a separate hardware transmit 
buffer. An allocation of messages to these multiple FIFO 
queues can then aim to avoid assigning messages with 
widely differing transmission deadlines to the same FIFO 
queue, while also keeping the number of messages in each 
FIFO queue relatively small. This approach can result in 
significantly higher network performance than the 

alternative of using a single FIFO queue. The schedulability 
analysis and priority assignment policies given in this paper 
provide the tools necessary to investigate such trade-offs. 
This was demonstrated in a further configuration of our case 
study (described in Section 7.1), where the minimum bus 
speed required reduced from 388 kBit/s when the gateway 
implementation used a single FIFO queue, to 285 kBit/s 
when it used two FIFO queues, to 277 kBit/s when it used 
three FIFO queues (assuming all other nodes used priority 
queues). This compares favourably with the minimum bus 
speed of 277 kBit/s required when the gateway used a 
priority queue. These figures equate to maximum achievable 
bus utilisations of 60.3% with one FIFO queue, 82.1% with 
two FIFO queues, 84.5% with three FIFO queues, and the 
same 84.5% with a priority queue. These figures were 
backed up via further empirical evaluation showing that 
reducing priority inversion via the use of multiple FIFO 
queues, rather than a single FIFO queue, within a gateway 
node is effective in reducing the minimum required bus 
speed and so increasing the maximum achievable bus 
utilisation. 

Finally, both our case study and experimental 
evaluation confirmed that appropriate priority assignment is 
vital to obtaining effective real-time performance from 
Controller Area Networks. Using a random priority 
assignment policy, representative of priority assignment 
based on the type of data and ECU, or indeed any other 
metric that has little or no correlation with transmission 
deadlines, increased the minimum bus speed required from 
277 kBit/s to 731 kBit/s, and reduced the maximum bus 
utilisation from 84.5% to just 32.0% in the case study, as 
compared to an optimal priority assignment policy. This 
data was backed up by our evaluation of an eight node 
system with 80 messages. Here, for message sets of size 80, 
a random priority assignment policy resulted in values for 
the maximum bus utilisation, for 10,000 randomly generated 
message sets, in the range 8% to 45% with a mean of just 
18.4%, compared to a range of 69% to 96% and a mean of 
89.5% when an optimal priority assignment policy was 
used. We therefore strongly recommend that in Controller 
Area Networks, message IDs are assigned using an optimal 
or near optimal priority ordering reflecting message 
transmission deadlines. 
8.1. Recommendations and further research 

The research presented in this paper serves two main 
purposes. Firstly, it highlights the detrimental effect that 
using FIFO queues can have on network performance. Here, 
our aim was to inform the design choices made by system 
integrators and designers, thus ensuring that newly 
developed systems implement priority queues whenever 
possible. Secondly, we recognise that due to other factors 
influencing or constraining design choices, some automotive 
networks will continue to be built using some ECUs that 
implement FIFO queues. In this case, the analysis presented 
in this paper can be used to determining network 
schedulability. Given that it may not always be possible to 
avoid using FIFO queues, our results on priority assignment 



and the use of multiple FIFOs show how to make the most 
effective use of them. 

Further, we highlighted the detrimental effect that using 
a sub-optimal message ID allocation (priority assignment) 
can have. We acknowledge that there are sometimes design 
constraints on priority assignment, for example due to the 
inclusion of legacy components; however, we hope that our 
work in this area will motivate system integrators to fully 
consider priority assignment for messages on CAN, 
debunking the meme11 of CAN bus utilisation, that one 
cannot run CAN reliably at more than 35% utilisation 
(Buttle, 2012).  

We note that the analysis described in this paper has 
been generalised by Davis and Navet (2012) to messages 
with arbitrary deadlines, and work-conserving queuing 
policies12, of which FIFO is an example. Davis and Navet 
(2012) showed that for messages with constrained 
deadlines, the analysis given in this paper holds not only for 
FIFO queues but also for work-conserving queuing policies 
in general. 

Finally, we note that many automotive systems make 
use of offsets between message transmission times as a 
means of reducing the peak load on the network and hence 
improving message schedulability. The analysis of FIFO 
queues in this paper was derived for systems where all of 
the messages can potentially be queued simultaneously. As 
such, it provides upper bounds on the response times of 
messages with offsets; however, this is an area where 
further research would be useful in obtaining tighter upper 
bounds on message response times.
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