
Schedulability Analysis for Controller Area Network (CAN) with FIFO Queues
Priority Queues and Gateways

Robert I. Davis
Real-Time Systems Research Group,

Department of Computer Science,
University of York, YO10 5DD, York, UK

rob.davis@cs.york.ac.uk

Steffen Kollmann, Victor Pollex, Frank Slomka
Institute of Embedded Systems / Real-Time Systems

Ulm University, Albert-Einstein-Allee 11, 89081 Ulm,
Germany

{steffen.kollmann, victor.pollex, frank.slomka} @uni-ulm.de

Abstract
Controller Area Network (CAN) is widely used in

automotive applications. Existing schedulability analysis for
CAN is based on the assumption that the highest priority
message ready for transmission at each node on the network
will be entered into arbitration on the bus. However, in
practice, some CAN device drivers implement FIFO rather
than priority-based queues invalidating this assumption. In
this paper, we introduce response time analysis and optimal
priority assignment policies for CAN messages in networks
where some nodes use FIFO queues while other nodes use
priority queues. We show, via a case study and experimental
evaluation, the detrimental impact that FIFO queues have
on the real-time performance of CAN. Further, we show that
in gateway applications, if it is not possible to implement a
priority queue, then it is preferable to use multiple FIFO
queues each allocated a small number of messages with
similar transmission deadlines.

Extended version
This paper forms an extended version of "Controller Area
Network (CAN) Schedulability Analysis with FIFO queues”
by Davis et al. (2011) published in ECRTS. The analysis
given in that paper has been extended via the inclusion of
the following new material:
• In Section 1.2 we have added examples of CAN devices

that provide hardware support for FIFO queues.
• Section 4.6 has been added, providing formal proofs

that the schedulability tests given in Sections 4.1, 4.2
and 4.3 are sufficient (Theorems 2 and 3) and self-
sustainable (Theorems 4 and 5). This section also
shows how more precise analysis can be achieved when
the priorities of messages in a FIFO queue span those of
messages in a priority queue or another FIFO queue,
which is often the case in practice.

• In Section 5.2, we have added a formal proof that
transmission deadline monotonic priority ordering is
optimal when all messages have the same maximum
transmission time (Theorem 7).

• In Section 7, we have extended the experimental
evaluation to show how the performance degradation
due to FIFO queues depends on the number of
messages in each queue.

• Sections 6.1 and 7.1 have been added, exploring the
effects of implementing one or more FIFO queues in

gateway nodes that are responsible for transferring
messages from one network to another.

1. Introduction
Controller Area Network (CAN) (Bosch, 1991; ISO

11898-1, 1993) was designed as a simple, efficient, and
robust, broadcast communications bus for in-vehicle
networks. Today, typical mainstream family cars contain
25-35 Electronic Control Units (ECUs), many of which
communicate using CAN. As a result of this wholesale
adoption of CAN by the automotive industry, annual sales
of CAN nodes (8, 16 and 32-bit micro-controllers with on-
chip CAN controllers) have grown from under 50 million in
1999 to around 750 million in 20101.

In automotive applications, CAN is typically used to
provide high speed networks (500Kbits/s) connecting
chassis and power-train components, for example engine
management and transmission control. It is also used for
low speed networks (100 or 125Kbits/s) connecting body
and comfort electronics. Data required by nodes on different
networks is typically transferred between the different CAN
buses by a gateway node connected to both.

CAN is an asynchronous multi-master serial data bus
that uses Carrier Sense Multiple Access / Collision
Resolution (CSMA/CR) to determine access to the bus. The
CAN protocol requires that nodes wait for a bus idle period
before attempting to transmit. If two or more nodes attempt
to transmit messages at the same time, then the node with
the message with the lowest numeric CAN Identifier will
win arbitration and continue to send its message. The other
nodes will cease transmitting and must wait until the bus
becomes idle again before attempting to re-transmit their
messages. (Full details of the CAN physical layer protocol
are given by Bosch (1991), with a summary given by Davis
et al. (2007). In effect CAN messages are sent according to
fixed priority non-pre-emptive scheduling, with the
identifier (ID) of each message acting as its priority.
1.1. Related work

Tindell and Burns (1994) showed how research into
fixed priority scheduling for single processor systems could
be adapted and applied to the scheduling of messages on
CAN. The analysis of Tindell et al. provided a method of
calculating the maximum queuing delay and hence the

1 Figures from the CAN in Automation (CiA) website www.can-cia.org

worst-case response time of each message on the network.
(Tindell and Burns, 1994; Tindell et al., 1994; Tindell et al.,
1995) also recognised that with fixed priority scheduling, an
appropriate priority assignment policy is key to obtaining
effective real-time performance. Tindell et al. suggested that
messages should be assigned priorities in ‘Deadline minus
Jitter’ monotonic priority order (Zuhily and Burns, 2007).

The seminal work of Tindell et al. lead to a large body of
research into scheduling theory for CAN (Rufino et al.,
1998; Broster et al., 2002; Broster and Burns, 2003; Broster,
2003; Broster et al., 2005; Ferreira et al., 2004; Hansson et
al., 2002; Nolte et al., 2002; Nolte et al., 2003; Nolte, 2006),
and was used as the basis for commercial CAN
schedulability analysis tools (Casparsson et al., 1998).

Davis et al. (2007) found and corrected significant flaws
in the schedulability analysis given by Tindell and Burns,
(1994), Tindell et al., (1994), and Tindell et al., (1995).
These flaws could potentially result in the original analysis
providing guarantees for messages that could in fact miss
their deadlines during network operation. Further, Davis et
al. (2007) showed that the ‘Deadline minus Jitter’
monotonic priority ordering, claimed by Tindell et al. to be
optimal for CAN, is not in fact optimal; and that Audsley’s
Optimal Priority Assignment (OPA) algorithm (Audsley,
1991, 2001) is required in this case.

Prior to the advent of schedulability analysis and
appropriate priority assignment policies for CAN, message
IDs were typically assigned simply as a way of identifying
the data and the sending node. This meant that only low
levels of bus utilisation, typically around 30%, could be
obtained before deadlines were missed. Further, the only
means of obtaining confidence that message deadlines
would not be missed was via extensive testing. Using the
systematic approach of schedulability analysis, combined
with a suitable priority assignment policy, it became
possible to engineer CAN based systems for timing
correctness, providing guarantees that all messages would
meet their deadlines, with bus utilisations of up to about
80% (Davis and Burns, 2009a; Casparsson et al., 1998).
1.2. Motivation

Engineers using schedulability analysis to analyse
network / message configurations must ensure that all of the
assumptions of the specified scheduling model hold for their
particular system. Specifically, when using the analysis
given by Davis et al. (2007), it is important that each CAN
controller and device driver is capable of ensuring that
whenever message arbitration starts on the bus, the highest
priority message queued at that node is entered into
arbitration. This behaviour is essential if message
transmission is to take place as if there were a single global
priority queue and for the analysis to be correct.

As noted by Di Natale (2008), there are a number of
potential issues that can lead to behaviour that does not
match that required by the scheduling model given by Davis
et al. (2007). For example, if a CAN node has fewer
transmit message buffers than the number of messages that
it transmits, then the following properties of the CAN

controller hardware can prove problematic:
(i) internal message arbitration based on transmit

buffer number rather than message ID (Fujitsu
MB90385/90387, Fujitsu 90390, Intel 87C196
(82527), Infineon XC161CJ/167 (82C900));

(ii) non-abortable message transmission: Philips
82C200, (Di Natale, 2006);

(iii) less than 3 transmit buffers: Philips 8xC592
(SJA1000), Philips 82C200, (Meschi et al., 1996).

CAN controllers which avoid these potential problems
include, the Atmel AT89C51CC03 / AT90CAN32/64 the
Microchip MPC2515, and the Motorola MSCAN on-chip
peripheral, all of which have at least 3 transmit buffers,
internal message arbitration based on message ID rather
than transmit buffer number, and abortable message
transmission.

The CAN device driver / software protocol layer
implementation also has the potential to result in behaviour
which does not match that required by the standard
scheduling model (Davis et al., 2007). Issues include, delays
in refilling a transmit buffer (Khan et al., 2010), and FIFO
queuing of messages in the device driver or CAN controller.

A number of CAN controller hardware implementations
provide specific support for FIFO queues. These include:
o The BXCAN and BECAN for the ST7 and ST9

Microcontrollers from STMicroelectronics, which
includes hardware support for both priority-queued and
FIFO-queued message transmission
(STMicroelectronics, 2001).

o The XILINX CAN Controller Core (LogiCORE IP AXI
Controller) which provides a transmit buffer FIFO of
configurable depth (up to 64 messages) and a single
additional high priority transmit buffer that takes
precedence over the FIFO (XILINX, 2010).

o The Microchip PIC32MX (Microchip Technology Inc.,
2009) which has 32 FIFOs each of which can hold up to
32 messages. Arbitration between the individual FIFOs
takes place on the basis of a priority assigned to each
FIFO or the FIFO number in the case of ties, hence all
of the messages in a high priority FIFO are sent before
any of the messages in a lower priority FIFO. (We note
that as there are 32 FIFOs, the PIC32MX can
effectively provide priority-based queuing for up to 32
transmit messages, each utilising an individual FIFO).

o The Avnet MC-ACT-XCANF which is a small FPGA
footprint CAN Controller for use with Actel
programmable logic devices (Avnet, 2006). The MC-
ACT-XCANF has a single transmit FIFO and a single
receive FIFO.

o The Renesas R32C/160 (Renesas, 2010) is a
microcontroller from the M16C family, specific to
vehicle network applications. The on-chip CAN
peripheral has 32 message buffers / mailboxes and
provides the option of a FIFO mailbox mode. In this
mode, 4 mailboxes are configured as a 4-stage transmit
FIFO and 4 mailboxes as a 4-stage receive FIFO.
Otherwise the buffers may be configured for

transmission based on either message priority or buffer
number.

We note that the more sophisticated CAN controllers offer
the option of hardware support for FIFO queues while also
fully supporting priority queues, thus leaving the choice of
which queuing policy to use up to the device driver /
software protocol layer implementation.

Di Natale (2008) noted that using FIFO queues in CAN
device drivers / software protocol layers can seem an
attractive solution, “because of its simplicity and the illusion
that faster queue management improves the performance of
the system”. This is unfortunate, because FIFO message
queues undermine the priority-based bus arbitration used by
CAN. They can introduce significant priority inversion and
result in degraded real-time performance. Nevertheless,
FIFO queues are a reality in some commercial CAN device
drivers / software protocol layers.

One area in which the use of FIFO queues can have a
particularly detrimental effect is in gateway applications.
The number of messages transmitted onto a network by a
gateway node can easily exceed the number of hardware
transmit buffers available in the CAN controller it uses. A
simple design solution to this problem is to use a single
FIFO queue for all of these messages; however, such a
choice can significantly degrade the real-time performance
of the network.

As far as we are aware, there is no published research2

integrating FIFO queues into response time analysis for
CAN. This paper focuses on the issue of FIFO queues. We
provide response time analysis and appropriate priority
assignment policies for Controller Area Networks
comprising some nodes that use FIFO queues and other
nodes that use priority queues.
1.3. Organisation

The remainder of this paper is organised as follows: In
Section 2, we introduce the scheduling model, notation, and
terminology used in the rest of the paper. In Section 3 we
recap on the sufficient schedulability analysis for CAN
given by Davis et al. (2007). Section 4 then extends this
analysis to networks where some nodes implement priority-
based queues while others implement FIFO queues. Section
5 discusses priority assignment for mixed sets of FIFO-
queued and priority-queued messages. Section 6 presents
the results of a case study exploring the impact of FIFO
queues on message response times and network
schedulability. Section 7 evaluates the effect of priority
assignment and FIFO queues on the maximum achievable
network utilisation. Finally, Section 8 concludes with a
summary and recommendations.

2. System Model, Notation and Terminology
In this section we describe a system model and notation

that can be used to analyse the worst-case response times of
CAN messages. This model is based on that used by Davis

2 The commercial tool NETCAR-Analyzer (www.realtimeatwork.com)
addresses the case of FIFO queues.

et al. (2007) with extensions to describe FIFO queues. A
summary of the notation used is given in Table 1 for easy
reference. Here we give only a high level description
necessary to understand the message scheduling behaviour
of CAN. Readers interested in the underlying lower level
CAN protocol and its terminology are directed to Section
2.1 of (Davis et al., 2007).

The system is assumed to comprise a number of nodes
(microprocessors) connected to a single CAN bus. Nodes
are classified according to the type of message queue used
in their device driver. Thus FQ-nodes implement a FIFO
message queue, whereas PQ-nodes implement a priority
queue. PQ-nodes are assumed to be capable of ensuring that,
at any given time when bus arbitration starts, the highest
priority message queued at the node is entered into
arbitration. FQ-nodes are assumed to be capable of ensuring
that, at any given time when bus arbitration starts, the oldest
message in the FIFO queue is entered into arbitration.

The system is assumed to contain a static set of hard
real-time messages, each statically assigned to a single node
on the network. Each message m has a distinct fixed
Identifier (ID) and hence a unique priority. As priority
uniquely identifies each message, in the remainder of the
paper we will overload m to mean either message m or
priority m as appropriate. We use)(mhp to denote the set
of messages with priorities higher than m, and similarly,

)(mlp to denote the set of messages with priorities lower
than m.

Each message m has a maximum transmission time of
mC (see (Davis et al., 2007) for details of how to compute

the maximum transmission time of messages on CAN,
taking into account the number of data bytes and bit-
stuffing).

The event that triggers queuing of message m is assumed
to occur with a minimum inter-arrival time of mT , referred
to as the message period. Each message m has a hard
deadline mD , corresponding to the maximum permitted
time from occurrence of the initiating event to the end of
successful transmission of the message, at which time the
message data is assumed to be available on the receiving
nodes that require it. Tasks on the receiving nodes may
place different timing requirements on the data, however in
such cases we assume that mD is the shortest such time
constraint. We assume that the deadline of each message is
less than or equal to its period (mm TD ≤). Each message m
is assumed to be queued by a software task, process or
interrupt handler executing on the sending node. This task is
either invoked by, or polls for, the event that initiates the
message, and takes a bounded amount of time, between 0
and mJ , before the message is in the device driver queue
available for transmission. mJ is referred to as the queuing
jitter of the message and is inherited from the overall
response time of the task, including any polling delay3. The

3 In the best case, the task could arrive the instant the event occurs and
queue the message immediately, whereas in the worst-case, there could be
a delay of up to the task’s period before it arrives and then a further delay
of up to the task’s worst-case response time before it queues the message.

transmission deadline mE of message m is given
by mmm JDE −= , and represents the maximum permitted
time from the message being queued at the sending node to
it being received at other nodes on the bus.

The maximum queuing delay mw , corresponds to the
longest time that message m can remain in the device driver
queue or CAN controller transmit buffers, before
commencing successful transmission on the bus.

In this paper, we define the worst-case response time
mR of a message m as the maximum possible transmission

delay from the message being queued until it is received at
the receiving nodes4. Hence:

mmm CwR += (1)
As noted by Broster (2003), receiving nodes can access

message m following the end of (message) frame marker
and before the 3-bit inter-frame space. The analysis given in
the remainder of this paper is therefore slightly pessimistic
in that it includes the 3-bit inter-frame space in the
computed worst-case response times. To remove this small
degree of pessimism, it is valid to simply subtract 3 bitτ
from the computed response time values, where bitτ is the
transmission time for a single bit on the bus.

A message is said to be schedulable if its worst-case
response time is less than or equal to its transmission
deadline)(mm ER ≤ . A system is said to be schedulable if
all of the messages in the system are schedulable.

The following additional notation is used to describe the
properties of a set of messages that are transmitted by the
same FQ-node and so share a FIFO queue. The FIFO group

)(mM is the set of messages that are transmitted by the FQ-
node that transmits message m. The lowest priority of any
message in the FIFO group)(mM is denoted by mL .

MAX
mC and MIN

mC are the transmission times of the longest
and shortest messages in the FIFO group, while SUM

mC is
the sum of the transmission times of all of the messages in
the group. MIN

mE is the shortest transmission deadline of any
message in the group.

We use mf to denote the maximum buffering time from
message m being queued until it is able to take part in
priority-based arbitration. For a FIFO-queued message mf
equates to the time from the message being entered into the
FIFO queue to it becoming the oldest message in that queue.
For a priority-queued message 0=mf .

As well as determining message schedulability given a
particular priority ordering, we are also interested in
effective priority assignment policies.
Definition 1: Optimal priority assignment policy: A priority
assignment policy P is referred to as optimal with respect to
a schedulability test S and a given network model, if and
only if there is no set of messages that are compliant with
the model that are deemed schedulable by test S using
another priority assignment policy, that are not also deemed

4 Note this is a different way of defining response time to that used by
Davis et al. (2007) which includes queuing jitter. To compensate for not
including queuing jitter in the response time, in this paper we compare
response times with transmission deadlines to determine schedulability.

schedulable according to test S using policy P.
We note that the above definition is applicable to both

sufficient schedulability tests such as those given in
Sections 3 and 4, as well as exact schedulability tests.

A scheduling algorithm is said to be sustainable (Baruah
and Burns, 2006) with respect to a system model, if and
only if schedulability of any set of messages compliant with
the model implies schedulability of the same set of
messages modified by: (i) decreasing transmission times,
(ii) increasing periods or inter-arrival times, and (iii)
increasing deadlines. Similarly, a schedulability test is
referred to as sustainable if these changes cannot result in a
set of messages that was previously deemed schedulable by
the test becoming unschedulable. We note that the modified
set of messages may not necessarily be deemed schedulable
by the test. A schedulability test is referred to as self-
sustainable (Baker and Baruah, 2009) if such a modified set
of messages is always deemed schedulable by the test.

Table 1: Notation

Symbol Meaning
mB Blocking factor at priority m.
mC Longest transmission time of message m.

MAX
mC Max. transmission time of a message in)(mM .
MIN
mC Min. transmission time of a message in)(mM .
SUM
mC Sum of transmission times of messages in

)(mM .
mD Deadline of message m.
mE Transmission deadline of message m.

MIN
mE Min. transmission deadline of any message in

)(mM
mf Buffering delay for message m.

)(mhp Set of messages with higher priority than
message m.

mJ Release jitter of message m.
)(mlp Set of messages with lower priority than

message m.
mL Lowest priority of any message in)(mM .

m Message m (also its priority).
)(mM The set of messages sharing a FIFO queue with

message m.
mR Worst case response time for message m.

bitτ Transmission time for one bit.
mT Minimum inter-arrival time or period of

message m.
mw Queuing delay for message m.

3. Schedulability Analysis with Priority Queues
In this section, we recapitulate the simple sufficient

schedulability analysis given by Davis et al. (2007). For
networks of PQ-nodes, complying with the scheduling
model given in Section 2, CAN effectively implements
fixed priority non-pre-emptive scheduling. In this case,
Davis et al. (2007) showed that an upper bound on the
response time mR of each message m can be found by
computing the maximum queuing delay mw using the

following fixed-point iteration:

k
mhpk k

bitk
n
m

mm
n
m C

T
Jw

CBw ∑
∈∀

+











 ++
+=

)(

1),max(
τ

 (2)

where bitτ is the transmission time for a single bit, and mB
is the blocking factor described below. Iteration starts with a
suitable initial value such as mm Cw =0 , and continues until
either mm

n
m ECw >++1 in which case the message is not

schedulable, or n
m

n
m ww =+1 in which case the message is

schedulable and its worst-case response time is given by:

m
n
mm CwR += +1 (3)

As CAN message transmission is non-pre-emptable, the
transmission of a single lower priority message can cause a
delay of up to mB (referred to as direct blocking) between
message m being queued and the first time that message m
could be entered into arbitration on the bus. mB represents
the maximum blocking time due to lower priority messages:

)(max
)(

kmlpkm CB
∈∀

= (4)

Alternatively, in some cases, the transmission of the
previous instance of message m could delay transmission of
a higher priority message causing a similar delay (referred
to as push-through blocking5) of up to mC . Both direct and
push-through blocking are accounted for by the 1st term on
the RHS of (2). The 2nd term represents interference from
higher priority messages that can win arbitration over
message m and so delay its transmission. Note that once
message m starts successful transmission it cannot be pre-
empted, so the message’s overall response time is simply
the queuing delay plus its transmission time (given by (3)).

Using (2) and (3), engineers can determine upper
bounds6 on worst-case response times and hence the
schedulability of all messages on a network comprising
solely PQ-nodes. Although the analysis embodied in (2) and
(3) is pseudo-polynomial in complexity in practice it is
tractable on a desktop PC for complex systems with
hundreds of messages. (A number of techniques are also
available for increasing the efficiency of such fixed point
iterations (Davis et al., 2008)).

4. Schedulability Analysis with FIFO Queues
In this section, we derive sufficient schedulability

analysis for messages on networks with both PQ-nodes and
FQ-nodes. The analysis we introduce is FIFO-symmetric, by
this we mean that the same worst-case response time is
attributed to all of the messages in a FIFO group. We note
that FIFO-symmetric analysis incurs some pessimism in
terms of the worst-case response time attributed to the
higher priority messages in a FIFO group; however, in
practice this pessimism is likely to be small. This is because
the order in which messages are placed in a FIFO queue is
undefined, and so in the worst case, the highest priority
message in a FIFO group has to wait for an instance of each

5 See Davis et al. (2007) for an explanation of why push-through blocking
is important.
6 Equation (2) is sufficient rather than exact due to the fact that push
through blocking may not necessarily be possible.

lower priority message in the group to be transmitted.
4.1. Priority-queued messages

We now derive an upper bound on the worst-case
queuing delay for a priority-queued message m, in a system
with both PQ-nodes and FQ-nodes.

In the case of systems with only PQ-nodes, Davis et al.
(2007) showed that the worst-case queuing delay for a
priority-queued message m occurs for an instance of that
message queued at the beginning of a priority level-m busy
period7 that starts immediately after the longest lower
priority message begins transmission. Further, this maximal
busy period begins with a so-called critical instant where
message m is queued simultaneously with all higher priority
messages and then each of these higher priority messages is
subsequently queued again after the shortest possible time
interval. Equation (2) provides a sufficient upper bound on
this worst-case queuing delay.

The analysis embodied in (2) assumes that higher
priority messages are able to compete for access to the bus
(i.e. enter bus arbitration) as soon as they are queued;
however, this assumption does not hold for FIFO-queued
messages. Instead a FIFO-queued message k may have to
wait for up to a maximum time kf before it becomes the
oldest message in its FIFO queue, and can enter priority-
based arbitration. A FIFO-queued message k can therefore
be thought of as becoming priority queued after an
additional delay of kf . Stated otherwise, in terms of its
interference on lower priority messages, a FIFO-queued
message k can be viewed as if it were a priority-queued
message with its jitter increased by kf . (Note, we will
return to how kf is calculated for FIFO-queued messages
later). An upper bound on the queuing delay for a priority-
queued message m can therefore be calculated via the fixed
point iteration given by (5).

k
mhpk k

bitkk
n
m

mm
n
m C

T
fJw

CBw ∑
∈∀

+











 +++
+=

)(

1),max(
τ

 (5)

As with (2), iteration starts with a suitable initial value such
as mm Cw =0 , and continues until either mm

n
m ECw >++1 in

which case the message is not schedulable, or n
m

n
m ww =+1 in

which case its response time is given by:

m
n
mm CwR += +1 (6)

Note that the queuing delay and response time are only
valid with respect to the values of kf used. We return to
this point later.
4.2. FIFO-queued messages

We now derive an upper bound on the worst-case
queuing delay for a FIFO-queued message m, in a system
with both PQ-nodes and FQ-nodes.

As our analysis is FIFO-symmetric, we will attribute the
same upper bound response time to all of the messages sent
by the same FQ-node. Our analysis derives this sufficient

7 A priority level-m busy period is a contiguous interval of time during
which there is always at least one message of priority m that has not yet
completed transmission.

response time by considering an arbitrary message from the
FIFO group)(mM . For the sake of simplicity, we will still
refer to this message as message m; however our analysis
will be independent of the exact choice of message from the
FIFO group. At each stage in our analysis we will make
worst-case assumptions, ensuring that the derived response
time is a correct upper bound. For example, we will frame
our calculation of the queuing delay mw by assuming the
lowest priority mL of any message in the FIFO group.
 As every message j in)(mM has jj TD ≤ then in a
schedulable system, when any arbitrary message from

)(mM is queued, there can be at most one instance of each
of the other messages in)(mM ahead of it in the FIFO
queue. The maximum transmission time of these messages,
and hence the maximum interference on an arbitrary
message m, due to messages sent by the same FQ-node, is
therefore upper bounded by:

MIN
m

SUM
m CC − (7)

Indirect blocking could also occur due to the non-pre-
emptive transmission of a previous instance of any one of
the messages in)(mM . This indirect blocking is upper
bounded by MAX

mC . As an alternative, direct blocking could
occur due to transmission of any of the messages of lower
priority than mL sent by other nodes. Finally, in terms of
interference from higher priority messages sent by other
FQ-nodes and PQ-nodes, the argument about increased jitter
made in the previous section applies, and so the interference
term from (5) can again be used.

Considering all of the above, an upper bound on the
queuing delay for an arbitrary message m belonging to the
FIFO group)(mM is given by the solution to the following
fixed point iteration:

+−+=+)(),max(1 MIN
m

SUM
m

MAX
mL

n
m CCCBw

m

k
mMkLhpk k

bitkk
n
m C

T
fJw

m

∑
∉∧∈∀ 










 +++

)()(

τ
 (8)

Iteration starts with a value of),max(0 MAX
mLm CBw

m
=

)(MIN
m

SUM
m CC −+ and continues until either

MIN
m

MIN
m

n
m ECw >++1 in which case the set of messages

)(mM is declared unschedulable, or n
m

n
m ww =+1 in which

case all of the messages in)(mM are deemed to have a
response time of:

MIN
m

n
mm CwR += +1 (9)

Equations (8) and (9) make the worst-case assumption
that interference from higher priority messages can occur up
to a time MIN

mC before transmission of message m
completes. We note that this is a pessimistic assumption
with respect to those messages belonging to the FIFO group
that have transmission times8 longer than MIN

mC .

8 In practice all messages sent on CAN often have the maximum length (8
data bytes) so as to minimise the relative overheads of the other fields in
the message (ID, CRC etc). In this case, no additional pessimism is
introduced by this assumption.

4.3. Schedulability test with arbitrary priorities
We now derive a schedulability test from (5) & (6) and

(8) & (9). The basic idea is to avoid having to consider the
potentially complex interactions between the FIFO queues
of different nodes. This is achieved by abstracting the FIFO
behaviour of messages sent by other nodes as simply
additional jitter kf before each message k can enter priority
based arbitration on the bus. When calculating the response
time of a given message, we therefore need only consider
the behaviour of the node that sends that message (PQ-node
or FQ-node) and the buffering delays of messages sent by
other nodes9.

An upper bound on the buffering time mf of a FIFO-
queued message m is:

MIN
mmm CRf −= (10)

1 repeat = true
2 initialise all kf = 0
3 while(repeat){
4 repeat = false
5 for each priority m, highest first{
6 if (m is FIFO-queued){
7 calc mR according to Eqs (8) & (9)
8 if(mR > MIN

mE) {
9 return unschedulable
10 }
11 if(mf mw<){
12 mm wf =
13 repeat = true;
14 }
15 }
16 else {
17 calc mR according to Eqs (5) & (6)
18 if(mR > mE) {
19 return unschedulable
20 }
21 }
22 }
23 }
24 return schedulable

Algorithm 1: FIFO Symmetric Schedulability Test

When the priorities of messages in different FIFO
groups are interleaved, this leads to a circular dependency in
the response time calculations. For example, let m and k be
the priorities of messages in two different FIFO groups with
interleaved priorities (i.e.)(mLhpk ∈ and)(kLhpm∈).
The response time kR of message k, and hence its buffering
time kf , depend on the buffering time mf of message m as

)(kLhpm∈ ; however, the buffering time mf of message m
depends on its response time mR which in turn depends on

kf as)(mLhpk ∈ . This apparent problem can be solved by

9 If the message belongs to a PQ-node, then the other messages sent by the
same node have buffering delays of zero, if it belongs to an FQ-node, then
the buffering delays for other messages sent by the same node are not
needed in the calculations (8) &(9).

noting that the response times calculated via (5) & (6) and
(8) & (9) are monotonically non-decreasing with respect to
the buffering times, and that the buffering times given by
(10) are monotonically non-decreasing with respect to the
response times calculated via (8) & (9). Hence by using an
outer loop iteration, and repeating response time
calculations until the buffering times no longer increase, we
can compute correct upper bound response times and hence
schedulability for all messages, as shown in Algorithm 1.
(Note, to speed up the schedulability test, for each message
m, the value of mw computed on one iteration of the while
loop (lines 3 to 23) can be used as an initial value on the
next iteration).

Algorithm 1 provides a sufficient schedulability test for
FIFO-queued and priority-queued messages in any arbitrary
priority ordering.
4.4. Partial priority ordering within a FIFO group

In this section, we consider an appropriate priority
ordering for messages within a FIFO group.
Definition 2: A FIFO-adjacent priority ordering is any
priority ordering whereby all of the messages sharing a
FIFO queue are assigned adjacent priorities.
Theorem 1: If a priority ordering Q exists that is
schedulable according to the FIFO-symmetric schedulability
analysis of Algorithm 1 then a schedulable FIFO-adjacent
priority ordering P also exists.
Proof: Let m be a FIFO-queued message that is not the
lowest priority message in its FIFO group. Now consider a
priority transformation whereby message m is shifted down
in priority so that it is at a priority level immediately above
that of the lowest priority message in its FIFO group. We
will refer to the old priority ordering as Q and the new
priority ordering as Q’.

We observe from (5) and (8), that given the same fixed
set of buffering times kf , then (i) the response time
computed for message m is the same for both priority
orderings, and (ii) the response times computed for all other
messages are no larger in priority ordering Q’ than they are
in priority ordering Q. Due to the mutual monotonically
non-decreasing relationship between message buffering
times and response times, and the fact that Algorithm 1
starts with all the buffering times set to zero, this means that
on every iteration of Algorithm 1, the response times and
buffering times computed for each message under priority
ordering Q’ are no larger than those computed on the same
iteration for priority ordering Q. Hence if priority ordering
Q is schedulable, then so is priority ordering Q’.

Applying the priority transformation described above to
every FIFO-queued message that is not the lowest priority
message in its FIFO group transforms any schedulable
priority ordering Q into a FIFO-adjacent priority ordering P,
without any loss of schedulability □
Theorem 1 tells us that regardless of the priority assignment
applied to priority-queued messages, we should ensure that
all of the messages that share a single FIFO queue have
adjacent priorities. In terms of CAN message IDs we note

that this does not require that consecutive values are used
for the IDs, only that there is no interleaving with respect to
the priorities of other messages. In practice message IDs can
be chosen to meet these requirements, while also providing
appropriate bit patterns for message filtering.
4.5. Schedulability test for FIFO-adjacent priorities

In this section, we derive an improved schedulability
test that is valid for FIFO-adjacent priority orderings.

Recall that Davis et al. (2007) showed that the worst-
case queuing delay for a priority-queued message m occurs
within the priority level-m busy period that starts with a
critical instant. Provided that a FIFO-adjacent priority
ordering is used, then the same situation also represents the
worst-case scenario when higher priority messages are sent
by either PQ-nodes or FQ-nodes. This can be seen by
considering the interference on a priority-queued message m
from a higher priority FIFO-queued message k. As message
k is of higher priority than message m, then so are all of the
other messages in the same FIFO group (i.e.)(kM). Thus
any message in)(kM that is queued prior to the start of
transmission of message m will be sent on the bus before
message m, irrespective of the order in which the messages
in)(kM are placed in the FIFO queue. In effect all of the
additional jitter on message k is already accounted for by
interference on message m from other messages in the same
FIFO group ()(kM). In this case, there is no additional
jitter on message k caused by messages of lower priority
than m. Hence for each FIFO message k, we can set kf = 0,
and use (5) & (6) to calculate the queuing delay and worst-
case response time of each message m. The same argument
applies when we consider the schedulability of a FIFO-
queued message m. In this case we can use (8) & (9) to
calculate the queuing delay and worst-case response time,
with all buffering times kf = 0. Further, as the buffering
times are all fixed at zero, a single pass over the priority
levels is all that is needed to determine schedulability. In
other words, lines 11-14 of Algorithm 1 can be omitted
when considering FIFO-adjacent priority orderings. This
revised schedulability test therefore dominates the test given
in Section 4.3 (i.e. Algorithm 1 with lines 11-14 present).

The simplified analysis given in this section is similar to
that provided for FP/FIFO scheduling of flows by Martin et
al., (2007) and for OSEK/VDX tasks by Bimbard and
George (2006) and Hladik et al. (2007).
4.6. Sufficiency and sustainability of the FIFO-

symmetric schedulability tests
In this section, we prove that treating all of the

messages in a FIFO queue as having the lowest priority mL
of any message in that queue, leads to a worst-case response
time that is no smaller than the actual worst-case response
time of each message. Thus, we show that the FIFO-
symmetric schedulability test given in Section 4.2, by (8)
and (9) (i.e. Algorithm 1), is sufficient in the case of a
general priority ordering (Theorem 2), and also in the case
of a FIFO-adjacent priority ordering when the buffering
delays are set to zero (Theorem 3). We also show that the

FIFO-symmetric schedulability test is self-sustainable
(Baker and Baruah, 2009) in these two cases (Theorems 4
and 5).

Recall from Section 2 that the property of self-
sustainability implies sustainability of the schedulability
test. Sustainability is an important property as it means that
any set of messages that are deemed schedulable by the test
remain schedulable if their transmission times are reduced,
for example by bit-stuffing which is less than the worst-case
assumed by the analysis, or their periods or deadlines are
increased.
Lemma 1: Consider a system G comprising a set of nodes
connected via a CAN bus, with a static set of hard real-time
messages sent on the bus. We assume that the node
transmitting message m is an FQ-node, which transmits a
FIFO-group of messages)(mM , and that messages from all
other nodes are priority queued. Further, the priorities of the
messages in the FIFO-group)(mM are arbitrary, with a
lowest priority of mL . Let H be a system that is identical to
system G, with the exception that all of the messages in the
FIFO-group)(mM have priority mL . The worst-case
response time of each message in)(mM in system G is no
greater than the worst-case response time of the equivalent
message under system H.
Proof: We prove a stronger hypothesis: that for any valid
sequence of message releases, the response time of every
instance of every message in)(mM is no greater in system
G than it is in system H.
 We observe that for any valid sequence of message
releases, the duration of each priority level mL busy period
(during which there are ready messages of priority mL or
higher) is the same in both systems. This is the case because
fixed priority non-pre-emptive scheduling is work-
conserving, message release times are the same in both
systems, and the only difference between them is the
priority ordering of messages with priorities no lower than

mL . As a consequence, the times at which messages with
priorities lower than mL start to be transmitted are the same
in both systems. Note the order in which messages of
priority mL and higher are sent in a priority level mL busy
period may be different in the two systems.
 We prove the hypothesis by contradiction: For some
arbitrary sequence of message releases, let x be the first
instance of a message in)(mM with a longer response time
in system G than it has in system H. To compare the
response times of message instance x in the two systems, we
need only consider the priority level mL busy period that
contains transmission of x. Let t be the start of this busy
period. The time s at which x starts to be transmitted in
system H is given by:

∑
∉∧∈∀

+++=
)()(

)()(
mMkLhpk

k
m

tItCPBts (11)

where B is blocking due to a lower priority message (if any)
that starts transmission at the start of the busy period,)(tCP
is the total transmission time for instances of messages in

)(mM released during the busy period prior to the release
of x, and)(tIk is the total transmission time of instances of

higher priority message k released during the busy period,
prior to time s.

As (11) holds for system H, it must be the case in system
G that x can start transmission no later than s, as its priority
is no lower than mL . This contradicts the hypothesis that x
is the first instance of a message in)(mM with a longer
response time in system G than it has in system H. Hence
there can be no such instance x □
Theorem 2: The FIFO-symmetric schedulability test given
in Section 4.2, (8) and (9), is sufficient.
Proof: Lemma 1 shows that the worst-case response times
for a set of FIFO-queued messages)(mM with arbitrary
priorities, the lowest of which is mL , are upper bounded by
the worst-case response times of those same messages
computed for a system that is equivalent except for the fact
that all of the messages in)(mM have priority mL .
Sufficient values for the worst-case response times of FIFO-
queued messages may therefore be calculated according to
these assumptions as described in Section 4.2. Note that the
assumption that all messages sent by other nodes are priority
queued is dealt with by (8) via modelling each message k
sent by another FQ-node as a priority queued message with
release jitter increased by the buffering delay kf □

Next we show that in the case of a FIFO-adjacent
priority ordering, the FIFO-symmetric schedulability test
given by Algorithm 1 is sufficient with the buffering delays
set to zero. Further, we show that in systems where not all
of the priorities of messages in FIFO-groups are adjacent,
then some specific buffering delays can still be assumed to
be zero, improving the precision of the analysis.

We use the concepts of spanning and partitioning to
describe how the priorities of messages in different FIFO
groups are interleaved. We say that a FIFO-group)(mM
spans a priority level j if there is at least one message in the
group with a priority higher than j and at least one message
in the group with a priority lower than j. Similarly, a FIFO-
group)(kM spans another FIFO group)(jM if there is a
message in)(kM with a priority higher than jL (the lowest
priority of a message in)(jM) and another message in

)(kM with a priority lower than jL . If no FIFO-groups
span priority level j, then we say that priority level j,
partitions the FIFO-groups. In this case, all messages in the
same FIFO-group either have priorities that are higher than j
or lower than j. Similarly, a FIFO-group)(jM is said to
partition the other FIFO groups if the lowest priority level

jL of the FIFO-group partitions the other FIFO-groups. In a
FIFO-adjacent priority ordering each FIFO-group partitions
all of the other FIFO-groups, and no FIFO group spans
another FIFO-group or a priority queued message.
Lemma 2: Let j be a priority queued message and)(kM a
FIFO group where all of the messages in)(kM have higher
priorities than j, i.e.)(kLlpj∈ . The worst-case response
time of message j can be computed according to (5) and (6)
with the interference from messages in)(kM calculated
with their buffering delays assumed to be zero.
Proof: As)(kLlpj∈ , then all of the messages in FIFO-

group)(kM have a higher priority than message j. Thus all
of the ready messages in FIFO-group)(kM must be sent
prior to the start of transmission of message j. It follows that
the worst-case interference from messages in)(kM occurs
when all of those messages are queued simultaneously at the
start of a priority level-j busy period and are queued again as
soon as possible. Further, at any given time there can be no
messages in)(kM of priority higher than j that are ready
but waiting in the FIFO queue behind a message of priority j
or lower. Therefore the worst-case scenario for interference
from messages in higher priority FIFO-group)(kM is the
same as the priority-queued case. (Note that buffering
delays can still occur, but their only effect is to re-order the
transmission of messages in)(kM , without changing the
total interference on the message at priority level j) □
Lemma 3: Let)(jM be a FIFO-group and)(kM another
FIFO-group such that all of the messages in)(kM have
higher priorities than the lowest priority message in)(jM ,
i.e.)(kj LlpL ∈ . The worst-case response time for messages
in)(jM can be computed according to (8) and (9) with the
interference from messages in)(kM calculated with their
buffering delays assumed to be zero.
Proof: (Follows the logic of the proof of Lemma 2). Lemma
1 tells us that we can upper bound the worst-case response
times of messages in)(jM by assuming that they are all
transmitted at priority jL . As)(kj LlpL ∈ , then all of the
messages in FIFO-group)(kM have a higher priority than

jL . Thus all of the ready messages in FIFO-group)(kM
must be sent prior to the start of transmission of any
message at priority jL . It follows that the worst-case
interference from messages in)(kM occurs when all of
those messages are queued simultaneously at the start of a
priority level- jL busy period and are queued again as soon
as possible. Further, at any given time there can be no
messages in)(kM of priority higher than jL that are ready
but waiting in the FIFO queue behind a message of priority

jL or lower. Therefore the worst-case scenario for
interference from messages in FIFO-group)(kM is the
same as the priority-queued case. (Note that buffering
delays can still occur, but their only effect is to re-order the
transmission of messages in)(kM , without changing the
total interference on messages at priority level jL) □
Theorem 3: For any priority queued message (or FIFO-
group) that partitions the other FIFO groups, the worst-case
response time can be computed according to (5) and (6) (or
(8) and (9)) with the buffering delays of messages in higher
priority FIFO-groups assumed to be zero. Further, for any
FIFO-group)(jM that does not partition the other FIFO-
groups, then the worst-case response time of messages in

)(jM can be computed with non-zero buffering delays
used only for those messages in FIFO-groups that span
priority level jL . Similarly, for a priority queued message j
that does not partition the FIFO-groups, then the worst-case
response time of message j can be computed using (5) and
(6) with non-zero buffering delays used only for those
messages in FIFO groups that span priority level j.

Proof: Follows from the proofs of Lemma 1 and Lemma 2,
Lemma 3, and analysis of the priority queued case □
Corollary 1: With a FIFO-adjacent priority ordering the
FIFO-symmetric schedulability test given by Algorithm 1 is
sufficient with all buffering delays assumed to be zero.
(This corollary follows from Theorem 3).

For sets of messages that are not all in FIFO-adjacent
priority order, then the schedulability test given by
Algorithm 1 must be used with lines 11-14 present. This is
because at least one priority queued message or FIFO-group
will need to have its worst-case response time computed
using non-zero buffering delays, and hence repeated
calculation is required to account for the circular
dependency that this may imply.

Theorem 3 allows for more precise analysis of worst-
case response times when there are constraints on message
priorities that prevent the use of a FIFO-adjacent priority
ordering. This is illustrated by Figure 1 which shows, as
brackets, the maximum and minimum priority of messages
in the various FIFO-groups, as well as the priorities of two
priority queued messages. Theorem 3 tells us that when
computing the worst-case response time for messages in
FIFO-4, then we may assume a buffering delay of zero for
messages in FIFO-2 and FIFO-1, because all of the
messages in those FIFO-groups have higher priorities than
the lowest priority message in FIFO-4. However, we must
compute and use non-zero buffering delays for messages in
FIFO-6 as this group spans the lowest priority level of group
FIFO-4. Further, when computing the worst-case response
time for messages in FIFO-6, we can assume the buffering
delays for messages in FIFO-1, FIFO-2 and FIFO-4 are
zero, but must use the computed non-zero values for the
buffering delays for messages in FIFO-7. When computing
the worst-case response time of priority queued message
PRI-5, we can assume the buffering delays for messages in
FIFO-1 and FIFO-2 are zero, but must use the computed
non-zero buffering delays for messages in FIFO-4 and
FIFO-6. Finally, when computing the worst-case response
time for messages in FIFO-7, we may assume a buffering
delay of zero for all messages in FIFO-1, FIFO-2, FIFO-4,
and FIFO-6.

P
rio

rit
y

FIFO-1

FIFO-4

 PRI-3

FIFO-6

FIFO-7

 PRI-5

FIFO-2

Figure 1: Priorities spanning FIFO groups

Note that whether we can assume buffering delays of
zero or not for messages in a particular FIFO-group (e.g.
FIFO-6) depends on which messages we are computing the
worst-case response time for (e.g. FIFO-4, PRI-5, and
FIFO-7).
Theorem 4: With a FIFO-adjacent priority ordering, the
FIFO-symmetric schedulability test of Section 4.5
(Algorithm 1 with lines 11-14 omitted) is self-sustainable
(Baker and Baruah, 2009). Meaning that any set of
messages deemed schedulable by the test will also be
deemed schedulable by the test if those messages are
modified by: (i) decreasing transmission times, (ii)
increasing periods or inter-arrival times, and (iii) increasing
deadlines.
Proof: The proof is in three parts:
(i) Decreasing transmission times. Proof of this aspect of
self-sustainability follows from the fact that the queuing
delay mw of message m, given by (5) and (8), is non-
increasing with respect to any decrease in the transmission
time of message m or any other messages. Note that in (8),
the transmission time MIN

mC of the shortest message in the
FIFO queue cannot become smaller by an amount x without
at least an equivalent reduction in the sum of the message
transmission times SUM

mC , hence the value of
MIN
m

SUM
m CC − cannot increase. From (6) and (9), it follows

that the message response time mR is also non-increasing
with respect to a decrease in message transmission times,
and so the test is self-sustainable with respect to reductions
in message transmission times.
(ii) Increasing periods or inter-arrival times. As message
periods appear only in the denominator of the ceiling
functions in (5) and (8), increases in these values cannot
result in an increase in message queuing delays or response
times. Hence the test is self-sustainable with respect to
increases in message periods.
(iii) Increasing deadlines. As increases in message deadlines
can only increase the transmission deadlines mE and MIN

mE ,
such increases cannot result in a message that was

previously schedulable according to the test becoming
unschedulable according to the test. Hence the test is self-
sustainable with respect to increases in message deadlines □
Theorem 5: The FIFO-symmetric schedulability test of
Section 4.5 (Algorithm 1 with lines 11-14 present) is self-
sustainable (Baker and Baruah, 2009) in the general case
with an arbitrary priority ordering.
Proof: Follows from the proof of Theorem 4, noting that the
buffering delay mf is equal to the queuing delay mw (see
(9) and (10)), and so mf is also non-increasing with respect
to any decrease in message transmission times, or increase
in message periods. □
Note that the proof of Theorem 5 does not require any
changes to the priority order of the messages. They will still
remain schedulable according to the FIFO-symmetric
schedulability test with the original priority ordering.
4.7. Buffer sizes

Assuming that all messages have constrained deadlines,
and that the network is schedulable, then irrespective of the
queuing policy, two instances of the same message cannot
be present in the queue at the same time; otherwise the first
instance would have missed its deadline. The worst-case
buffer usage is therefore equal to the number of messages
that use that queue, and this occurs when all of the messages
are queued at the same time.

5. Priority Assignment Policies
The schedulability test presented in Section 4.5 is

applicable irrespective of the overall priority ordering,
provided that messages sharing the same FIFO queue are
assigned adjacent priorities. Choosing an appropriate
priority ordering among the priority-queued messages and
the FIFO groups is however an important aspect of
achieving overall schedulability and hence effective real-
time performance.

In this section, we consider the assignment of messages
to priority bands, where a priority band comprises either a
single priority level containing one priority-queued
message, or a number of adjacent priority levels containing
a FIFO group of messages. We derive priority assignment
policies that are optimal with respect to the schedulability
analysis given in Section 4.5.
5.1. Optimal priority assignment

Davis et al. (2007), showed that, assuming solely
priority queuing, Audsley’s Optimal Priority Assignment
(OPA) algorithm (Audsley, 1991, 2001) provides the
optimal priority assignment for CAN messages. We now
show that with an appropriate modification to handle FIFO
groups, Audsley’s algorithm is also optimal with respect to
the schedulability test given in Section 4.5. The pseudo code
for this OPA-FP/FIFO algorithm is given in Algorithm 2.
Note that only one message from each FIFO group is
considered in the initial list, as once this message is assigned
to a priority band, then so are the other messages in the
same FIFO group.

for each priority band k, lowest first
{

for each message msg in the initial list {
 if msg is schedulable in priority band k according to

 schedulability test S with all unassigned priority-
 queued messages / other FIFO groups assumed to be
 in higher priority bands {

 assign msg to priority band k
if msg is part of a FIFO group {

 assign all other messages in the FIFO group
 to adjacent priorities within priority band k

 }
 break (continue outer loop)
 }
}
 return unschedulable

}
return schedulable

Algorithm 2: Optimal Priority Assignment
(OPA-FP/FIFO)

Davis and Burns (2009b, 2011) showed that Audsley’s
OPA algorithm is optimal with respect to any schedulability
test that meets three specific conditions. According to
Theorem 1, we need only consider the priority bands
assigned to each priority-queued message, and each FIFO
group (as all messages in a FIFO group have adjacent
priorities in an optimal priority ordering). We therefore re-
state these three conditions in the context of priority-queued
messages and FIFO groups.

The three conditions refer to properties or attributes of
the messages. Message properties are referred to as
independent if they have no dependency on the priority
assigned to the message. For example the longest
transmission time, deadline, and minimum inter-arrival time
of a message are all independent properties, while the worst-
case response time typically depends on the message’s
priority and so is a dependent property.
Condition 1: The schedulability of a message / FIFO group
identified by m, may, according to test S, depend on any
independent properties of other messages / FIFO groups in
higher priority bands than m, but not on any properties of
those messages / FIFO groups that depend on their relative
priority ordering.
Condition 2: The schedulability of a message / FIFO group
identified by m may, according to test S, depend on any
independent properties of the messages / FIFO groups in
lower priority bands than m, but not on any properties of
those messages / FIFO groups that depend on their relative
priority ordering.
Condition 3: When the priorities of any two adjacent
priority bands are swapped, then the message / FIFO group
being assigned the higher priority band cannot become
unschedulable according to test S, if it was previously
schedulable in the lower priority band. (As a corollary, the
message / FIFO group being assigned the lower priority
band cannot become schedulable according to test S, if it
was previously unschedulable in the higher priority band).

Theorem 6: The OPA-FP/FIFO algorithm is an optimal
priority assignment algorithm with respect to the FIFO-
symmetric schedulability test of Section 4.5 (Algorithm 1
with lines 11-14 omitted).
Proof: It suffices to show that conditions 1-3 hold with
respect to the schedulability test given by Algorithm 1 with
lines 11-14 omitted.
Condition 1: Inspection of (5) & (6) and (8) & (9), assuming
all kf are fixed at zero, shows that the response time of
each message m is dependent on the set of messages in
higher priority bands, but not on their relative priority
ordering.
Condition 2: Inspection of (5) & (6) and (8) & (9), shows
that the response time of each message m is dependent on
the set of messages in lower priority bands via the direct
blocking term, but not on their relative priority ordering.
Condition 3: Inspection of (5) & (6) and (8) & (9), assuming
all kf are fixed at zero, shows that increasing the priority
band of message m cannot result in a longer response time.
This is because although the direct blocking term can get
larger with increasing priority this is always counteracted by
a decrease in interference that is at least as large; hence the
length of the queuing delay cannot increase with increasing
priority, and so neither can the response time □

For N priority-queued messages / FIFO groups, the
OPA-FP/FIFO algorithm performs at most N(N-1)/2
schedulability tests and is guaranteed to find a schedulable
priority assignment if one exists. It does not however
specify an order in which messages should be tried in each
priority band. This order heavily influences the priority
assignment chosen if there is more than one ordering that is
schedulable. In fact, a poor choice of initial ordering can
result in a priority assignment that leaves the system only
just schedulable. We suggest that, as a useful heuristic,
priority-queued messages and FIFO groups are tried at each
priority level in order of transmission deadline (i.e. mE or

MIN
mE), largest value first. This will result in a priority

ordering reflecting transmission deadlines if such an
ordering is schedulable. Alternatively, approaches which
result in a robust priority assignment can be developed from
the techniques described by Davis and Burns (2009a).
5.2. TDMO-FP/FIFO priority assignment

In industrial practice, CAN configurations are
sometimes designed such that all of the messages are of the
same maximum length (8 data bytes). This is done to
ameliorate the effects of the large overhead of the other
fields (arbitration, CRC etc) in each message.
Definition 3: Transmission deadline monotonic priority
ordering for FP/FIFO (TDMPO-FP/FIFO) is a priority
assignment policy that assigns priority bands to priority
queued messages and FIFO groups according to their
transmission deadlines; with a shorter transmission deadline
implying a higher priority. (Recall that the transmission
deadline of a FIFO group is given by the shortest
transmission deadline of any message in that group).
Figure 2 illustrates the TDMPO-FP/FIFO priority

assignment policy. In this section, we show that the
TDMPO-FP/FIFO priority assignment policy is optimal,
with respect to the sufficient schedulability test given in
Section 4.5 (i.e. Algorithm 1 with lines 11-14 omitted) when
all messages have the same worst-case transmission time
(C).
Corollary 2: For networks where all of the message
transmission times are the same, then the blocking factor,
used in both the sufficient schedulability test given by Davis
et al. (2007) (recapitulated in Section 3) and the sufficient
schedulability tests given in Section 4 of this paper, is the
same for every message, and is equal to the worst-case
message transmission time (C).
Lemma 4: Let i and j be the indices of two adjacent priority
bands in a priority ordering that is schedulable according to
the sufficient schedulability test given in Section 4.5 (i.e.
Algorithm 1 with lines 11-14 omitted). Assume that i is of
higher priority than j, and that the transmission deadline

XE of the priority-queued message / FIFO group (X)
initially in priority band i is longer than the transmission
deadline YE of priority-queued message / FIFO group (Y)
initially in priority band j. If the priorities of X and Y are
swapped, so that X is in the lower priority band j, and Y is in
the higher priority band i, then X remains schedulable,
provided that the set of messages all have the same worst-
case transmission time (C).
Proof: Let jYR , be the response time of Y in priority band j,
(with X in the higher priority band i). Similarly, let jXR , be
the response time of X in priority band j, (with Y in the
higher priority band i). As Y is schedulable when it is in the
lower priority band, then, YjY ER ≤, , thus as XY EE < , it
follows that to prove the Lemma, we need only show that

jYjX RR ,, ≤ . Further, as all messages have the same worst-
case transmission time (C), and so the response times are
equal to the queuing delays plus C, we need only compare
the two queuing delays, referred to for convenience as jXw ,
and jYw , . Below we give formulae for jXw , and jYw ,
based on (5) & (6) and (8) & (9). We have separated out the
interference terms for X and Y. Further, we use)(jB to
represent the blocking factor, and),(wiI to represent the
interference from messages in higher priority bands.

CCBjB j ==),max()(

C
T

JwwiI
ihpk k

bitk∑
∈∀








 ++
=

)(
),(τ

(i) Queuing delay jXw , (simplified by cancelling out the
blocking factor C and the –C from (CC SUM

X −)) is given
by:

),(,
,1

,
n

jX
Yk k

bitk
n

jXSUM
X

n
jX wiIC

T
Jw

Cw +










 ++
+= ∑

∈∀

+ τ
 (12)

Note, in (12), if X is a priority-queued message, then
CC SUM

X = , also, if Y is a priority-queued message, then
there is only one message Yk ∈ present in the summation
term; similarly for (13) below.
(ii) Queuing delay jYw , :

),(,
,1

,
n

jY
Xk k

bitk
n

jYSUM
Y

n
jY wiIC

T
Jw

Cw +










 ++
+= ∑

∈∀

+ τ
 (13)

We can simplify (13) by noting that as Y is schedulable
according to the assumption given in the Lemma, then it
must be the case that:

Xk
kk

Xk
kkXYjYjY JTJDEERCw

∈∀∈∀
−≤−=<≤=+)min()min(,,

As bitC τ> , we have Xk ∈∀ : kbitkjY TJw <++ τ, , and
so the ceiling function in (13) evaluates to one in each case;
indicating that only one instance of each message in X can
contribute to the interference term. Hence (13) simplifies to:

),(,
1

,
n

jY
SUM
X

SUM
Y

n
jY wiICCw ++=+ (14)

Now let us consider a simplification of (12) that is valid for
values of CEw YjX −≤, .
As)(min)(min kkYkkkYkY JTJDE −≤−=

∈∀∈∀
 and bitC τ> then

we have Yk ∈∀ : kbitkjX TJw <++ τ, and so the ceiling
function in (12) evaluates to one in each case; indicating
that only one instance of each message in Y can contribute
to the interference term. Hence, provided that

CEw YjX −≤, , then (12) reduces to:
),(,

1
,

n
jX

SUM
Y

SUM
X

n
jX wiICCw ++=+ (15)

Equations (14) and (15) are equivalent. As we know that
(14) converges on a value CECRw YjYjY −≤−= ,, , then
(15) and hence (12) must also converge on the same value,
thus jYjX ww ,, = , and jYjX RR ,, = □
Theorem 7: TDMPO-FP/FIFO is an optimal policy for
assigning priority-queued messages and FIFO groups to
priority bands, with respect to the sufficient schedulability
test given in Section 4.5 (Algorithm 1 with lines 11-14
omitted), provided that all messages have the same worst-
case transmission time.
Proof: We prove the theorem by showing that any ordering
Q of priority bands that is schedulable according to the
sufficient schedulability test given in Section 4.5 can be
transformed into a TDMPO-FP/FIFO priority ordering
without any loss of schedulability.
 Let i and j be the indices of two adjacent priority bands
in an ordering that is schedulable according to the sufficient
schedulability test given in Section 4.5. Assume that i is of
higher priority than j, and that the transmission deadline

XE of the priority-queued message / FIFO group (X) in
priority band i is longer than the transmission deadline YE
of the priority-queued message / FIFO group (Y) in priority
band j.

We now consider what happens to the schedulability of
all of the messages in the system when we swap the
priorities of X and Y (i.e. when we place X in the lower
priority band j, and Y in the higher priority band i) to create
priority ordering Q’. There are four cases to consider:
1. Priority bands with higher priority than i ()(ihph∈):

Inspection of (5) & (6) and (8) & (9) shows that the
response times of each of the messages in these bands is
the same in priority ordering Q’ as it is in priority

ordering Q. This is because the priority ordering of the
messages with higher priorities than h is unchanged and
the direct blocking factor due to the set of messages
with lower priority than h depends only on the set of
messages)(hlp and not on their relative priority
ordering, and is in any case equal to C for all priority
bands. All of the messages in bands with priorities
higher than j are therefore schedulable in priority
ordering Q’.

2. Priority band i: Y was previously schedulable in the
lower priority band j. Shifting Y up in priority above X
results in no change to the blocking factor, but removes
interference due to X, hence the worst-case response
time for Y can be no greater than it was in priority
ordering Q, Y is therefore schedulable in priority
ordering Q’.

3. Priority band j: Lemma 4 proves that X is schedulable
in priority band j.

4. Priority bands with lower priority than j ()(jhpl ∈):
Inspection of (5) & (6) and (8) & (9) shows that the
response times of each of these messages is the same in
priority ordering Q’ as it is in priority ordering Q. This
is because the set of messages in higher priority bands
is the same in both orderings, and the interference due
to higher priority messages does not depend on their
relative priority ordering. Further, the blocking factor
due to the set of messages with lower priority than l
depends only on the set of messages)(llp and not on
their relative priority ordering, and is in any case equal
to C for all priority bands. All of the messages in bands
with priorities lower than j are therefore schedulable in
priority ordering Q’.

By repeatedly swapping the priorities of any two
adjacent priority bands that are not in TDMPO-FP/FIFO
priority order, any arbitrary schedulable priority ordering Q
can be transformed into a TDMPO-FP/FIFO priority
ordering without any loss of schedulability □.
Corollary 3: For the case where all nodes use priority
queues and all messages have the same worst-case
transmission time, TDMPO-FP-FIFO reduces to
transmission deadline monotonic priority ordering, which is
therefore an optimal priority assignment policy with respect
to the sufficient schedulability test given by Davis et al.
(2007) (recapitulated in Section 3).

Note that transmission deadline (i.e. Deadline minus
Jitter) monotonic priority ordering has also been shown to
be an effective heuristic policy in the general case with
mixed length messages (Davis and Burns, 2009a).
5.3. Priority inversion

All of the messages in a FIFO group need to have
sufficiently high priorities that the message with the shortest
transmission deadline in the group can still meet its
deadline. We have shown that with the FIFO-symmetric
schedulability analysis introduced in this paper, the most
effective way to achieve this is to assign adjacent priorities
to all of the messages in a FIFO group. Despite this, we note

that the use of FIFO queues still typically results in priority
inversion with respect to the priority assignment that would
be used if all nodes implemented priority queues.

The problem of priority inversion can be seen by
considering priority assignment according to the TDMPO-
FP/FIFO policy, see Figure 2 below. With only PQ-nodes,
the priority assigned to each message would depend only on
its transmission deadline, with a longer deadline implying
lower priority. With FIFO queues, there are two forms of
priority inversion: internal and external. Internal priority
inversion takes place within a FIFO queue when messages
with longer transmission deadlines enter the queue before,
and so are transmitted ahead of, messages with shorter
transmission deadlines. External priority inversion occurs
because all of the messages in a FIFO group effectively
obtain priorities based on the shortest transmission deadline
of any message in that group. This has the effect of creating
priority inversion with respect to messages sent by other
nodes that have transmission deadlines between the
maximum and minimum transmission deadlines of
messages in the FIFO group. This is illustrated in Figure 2,
where messages causing external priority inversion are
shaded in grey.

PQ-msg1: E = 5

FQ-group1: EMIN = 10
FQ-msg1: E = 10

FQ-group2: EMIN = 50

PQ-msg2: E = 10

PQ-msg3: E = 20

PQ-msg4: E = 50

PQ-msg5: E = 100

PQ-msg6: E = 250

PQ-msg7: E = 250

PQ-msg8: E = 500

FQ-msg2: E = 25
FQ-msg3: E = 100

FQ-msg4: E = 50
FQ-msg5: E = 125
FQ-msg6: E = 1000
FQ-msg7: E = 1000
FQ-msg8: E = 1000

Higher
priority

Lower
priority

FIFO group1

FIFO group2

Figure 2: TDMPO-FP/FIFO priority ordering

In Figure 2, observe that the messages within each
FIFO group have their priorities assigned according to
transmission deadline monotonic priority assignment. We
recommend this approach as although it does not alter the
sufficient worst-case response times of the messages as
calculated by our analysis, it could result in lower actual
worst-case response times for those messages in the group
that have shorter transmission deadlines.

6. Case Study: Automotive
To show that our priority assignment policies and

schedulability analysis work with a real application we
analysed a CAN bus architecture from the automotive
domain, first presented by Kollmann et al., (2010). Figure 3
shows this architecture. The system consists of a CAN bus
connecting 10 ECUs. There are a total of 85 messages sent
on the bus. The number of messages sent by each ECU is
given by the annotations in Figure 3. All messages are sent
strictly periodically and share a common release time. The

intended bus speed for this network was 500 kBit/s. We
assumed that the queuing jitter for each message was 1% of
its period.

Figure 3: CAN bus architecture

We initially compared five different configurations of the
system:

Expt. 1: All ECUs used priority queues.
Expt. 2: ECU3 and ECU6 used FIFO queues and the

remaining ECUs used priority queues.
Expt. 3: All ECUs used FIFO queues.
Expt. 4: All ECUs used priority queues, but the priority

ordering was that established by Expt 3.
Expt. 5: All ECUs used priority queues, but the priority

ordering used was random.
In each experiment we determined the lowest bus speed
commensurate with a schedulable system. The minimum
bus speed was found by a binary search with the message
priorities assigned according to the OPA-FP/FIFO algorithm
(Algorithm 2) using transmission deadline monotonic
priority ordering as the reverse ordering for the initial list.
(For each FIFO group, only the message with the shortest
transmission deadline was included in the initial list). We
simulated the system assuming a bus running at the
minimum bus speed, and using the priority ordering
obtained during analysis. The simulated network operating
time was 1 hour. We used the commercial simulator from
Inchron (chronSIM) to produce the simulation results.

There are three lines plotted on each of the graphs. The
lines give the following information for each message:
(i) Transmission deadline;
(ii) Worst-case response time computed using the

analysis given in Section 4.5, assuming the
minimum schedulable bus speed for the
configuration.

(iii) Maximum observed response time found by
simulation, assuming the minimum schedulable
bus speed found by analysis.

All of this data is plotted in ms on the y-axis using a
logarithmic scale. The x-axis on the graphs represents the
priority order of the messages. Hence data for the message
assigned the highest priority in a particular configuration
appears on the LHS of the graph, while data for the lowest
priority message appears on the RHS. Note the priority
order is different in each experiment.

Figure 4 depicts the results of Expt. 1, where all ECUs
used priority queues. In this case, the minimum bus speed
was 277 kBit/s, and the corresponding bus utilisation 84.5%.
We observe that with this bus speed, the 26th highest priority
message only just meets its deadline. Further, the results of
analysis and simulation are close together. This is because

the messages share a common release time, and all of the
ECUs used priority-based queues, hence there is very little
pessimism in the analysis, and the simulation captures the
worst-case scenario well.

Figure 5 depicts the results of Expt. 2, where ECU3 and
ECU6 used FIFO queues and the other ECUs used priority
queues. In this case, the minimum bus speed was 389 kBit/s,
and the corresponding bus utilisation 60.1%. Our analysis
attributes the same worst-case response time to all of the
messages in a FIFO queue; this results in the horizontal
segments of the analysis lines in Figure 5. The first FIFO
queue is the 12 messages sent by ECU3, and the second, the
6 messages sent by ECU6. The minimum transmission
deadline for both FIFO queues was 13.8 ms. Observe that in
Figure 5 the results of analysis and simulation are close
together for the messages sent via priority queues, whereas
for the messages sent via FIFO queue there are larger gaps.
These gaps are predominantly due to the simulation not
capturing the worst-case scenario for all of the FIFO-queued
messages. This is evident from the variability of the
maximum response times obtained via simulation for
messages in the same FIFO group.

Figure 4: Response Times (PQ only)

Figure 5: Response Times (FQ and PQ)

Figure 6: Response Times (FQ only)

Figure 7: Response Times (PQ only, FQ priorities)

Figure 8: Response Times (PQ only, random
priorities)

Figure 6 depicts the results of Expt. 3, where all ECUs
used FIFO queues. In this case, the minimum bus speed was
654 kBit/s, and the corresponding bus utilisation only
35.8%. In contrast to the Expt. 1 & 2, this configuration is
not schedulable at the intended bus speed for the network of

500 kBit/s. In Expt. 3 (Figure 6), some of the maximum
response times observed in the simulation are very low
compared to the worst-case response times computed by the
analysis. This is caused by differences in the order in which
messages enter the FIFO queues in the simulation,
compared to the assumptions made by the analysis.

Figure 7 depicts the results of Expt. 4 which used the
priority ordering obtained in Expt. 3, but assumed priority
queues rather than FIFO queues. In this case, the minimum
bus speed required was 608 kBit/s, and the corresponding
bus utilisation 38.5%. Comparison of these results with
those from Expt. 1 and Expt. 3 shows that the majority of
the performance degradation caused by using FIFO queues
occurs as a result of unavoidable external priority inversion
in the form of a disrupted priority ordering, rather than as a
consequence of internal priority inversion or pessimistic
schedulability analysis for FIFO queues.

Finally, Expt. 5 examined 1000 random priority
orderings with no correlation between message priority and
transmission deadline. This experiment simulates assigning
priorities to messages on the basis of the type of data or
ECU, or indeed any other metric that has little or no
correlation with message transmission deadlines. In this
case, the mean value for the minimum bus speed required
was 731 kBit/s (min. 618 kBit/s, max. 750 kBit/s), and the
corresponding bus utilisation 32.0% (max. 37.8%, min.
31.2%). Figure 8 depicts the results of Expt. 5 for the worst
of the random priority orderings, which required a minimum
bus speed of 750 kBit/s in order to be schedulable. It is clear
from the graph, that it is the assignment of a low priority
(80th highest priority) to a message with a short transmission
deadline that results in the need for such a high bus speed.
Expt. 5 is directly comparable with Expt. 1 and shows the
importance of appropriate priority assignment. In this case,
arbitrary priority assignment increased the minimum bus
speed required by 163% while reducing the maximum
schedulable bus utilisation from 84.5% to 32.0% (figures for
the average case).

The results of the experiments are summarised in
Table 2 below.

Table 2: Case Study: FIFO queues: Summary of
results

Expt. Node
type

Priority order Min bus
speed

Max
bus util.

1 All PQ OPA 277 Kbit/s 84.5%
2 2 FQ,

8 PQ
OPA-FP/FIFO 389 Kbit/s 60.1%

3 All FQ OPA-FP/FIFO 654 Kbit/s 35.8%
4 All PQ Priority ordering

from Expt. 3
608 Kbit/s 38.5%

5 All PQ Random10 731 Kbit/s 32.0%

6.1. Gateways and multiple FIFO queues
Our case study is typical of automotive applications in

10 Values are the average for 1000 random orderings.

that it includes a gateway ECU, which is connected to two
CAN buses and used to transfer data between them.

The gateway ECU has 38 messages to transmit, which is
far more than the number of transmit buffers available in
most CAN controllers. A seemingly attractive design
solution for the gateway is to use a single FIFO queue;
however, as we will see, such a choice can significantly
degrade the real-time performance of the network,
compared to implementing a priority queue. If a priority
queue implementation is not possible, then a viable
alternative may be to implement multiple FIFO queues, each
of which uses a separate hardware transmit buffer in the
gateway’s CAN controller to send its messages. We note
that some CAN devices such as the PIC32MX provide
specific hardware support for multiple FIFO queues in this
way.

In this section, we report the results of three further
experiments examining the use of FIFO queues in the
gateway ECU. In each of these experiments, ECUs 1-9 all
used priority queues; however, we varied the behaviour of
the gateway ECU as follows:

Expt. 6: The gateway used a single FIFO queue.
Expt. 7: The gateway used two FIFO queues. The 18
messages with the same (shortest) transmission deadline
of less than 20 ms shared the 1st FIFO queue and the rest
of the messages sent by the gateway shared the 2nd
FIFO queue.
Expt. 8: The gateway used three FIFO queues. The first
18 messages by transmission deadline shared the 1st
FIFO queue, the next 14 messages the 2nd FIFO queue,
and the remaining messages the 3rd FIFO queue.

Note the allocation of messages to FIFO queues was done
on the basis of grouping messages with similar transmission
deadlines together, as this minimises priority inversion.

Table 3 summarises the results of the three experiments.

Table 3: Case Study: Gateway multiple FIFO
queues: Summary of results

Expt. Gateway Priority order Min bus
speed

Max
bus util.

6 1-FQ OPA-FP/FIFO 388 Kbit/s 60.3%
7 2-FQ OPA-FP/FIFO 285 Kbit/s 82.1%
8 3-FQ OPA-FP/FIFO 277 Kbit/s 84.5%

The results for Expt. 1 where the gateway used a
priority queue are shown in Figure 4. Figure 9 shows that
using a single FIFO queue for the gateway increased the
minimum schedulable bus speed from 277 Kbit/s (in the
case of a priority queue) to 388 Kbit/s, and reduced the
maximum achievable bus utilisation from 84.5% to 60.3%.
Using two FIFO queues made a significant improvement,
reducing the priority inversion caused by the sub-set of
gatewayed messages with transmission deadlines greater
than 20 ms. This decreased the minimum schedulable bus
speed to 285 Kbit/s, and increased the maximum achievable
bus utilisation to 82.1%, as shown in Figure 10. Finally,
using three FIFO queues produced results that were
equivalent in performance terms to using a priority queue,

see Figure 11.
Note, in Figure 9, Figure 10, and Figure 11, the

transmission deadlines of messages sent by the gateway are
colour coded to show which FIFO they belong to.

Figure 9: Response Times (Gateway 1-FQ)

Figure 10: Response Times (Gateway 2-FQ)

Figure 11: Response Times (Gateway 3-FQ)
These experiments show that, for the case-study, a

configuration where the gateway uses three FIFO queues is
far more effective than the default option of using just one

FIFO queue. In this case, using multiple FIFO queues and
grouping messages by transmission deadline greatly reduces
the amount of priority inversion, and significantly improves
the real-time performance of the network with respect to just
using one FIFO queue.

7. Experimental Evaluation
In this section we explore further the effects that FIFO

queues and priority assignment policies have on the
maximum bus utilisation. Our experimental evaluation
examined a system with 8 nodes and 80 messages connected
via a single CAN bus. We considered five different
configurations of this network. In Config. #1, all of the
nodes used priority queues. Configs. #2, #3, and #4
increased the number of nodes using FIFO queues from 2, to
4 to 8 (1/4, 1/2 and all nodes respectively). In Configs. #1–
#4, message priorities were assigned according to the
TDMPO-FP/FIFO policy as depicted in Figure 2. (As all the
messages were of the same length, this priority ordering was
optimal). In contrast, in Config. #5, message priorities were
assigned at random, and all nodes used priority queues.

To examine the performance of these five
configurations, we randomly generated 10,000 sets of
messages as follows:
o The period of each message was chosen according to a

log-uniform distribution from the range 10-1000ms;
thus generating an equal number of messages in each
time band (e.g. 10-100ms, 100-1000 ms etc.).

o The deadline of each message was equal to its period.
o The jitter of each message was chosen according to a

uniform random distribution in the range 2.5ms to 5ms.
o Each message contained 8 data bytes.
o Each message was randomly allocated to one of the 8

nodes on the network, thus on average, each node
transmitted 10 messages.

o All messages were assumed to have 11-bit identifiers.
For each configuration, we computed the maximum bus

utilisation for each message set. This was done via a binary
search combined with the schedulability analysis given in
Sections 3 and 4. A bin size of 1% was used in the
frequency distribution plots, with message sets with
maximum bus utilisations in the range 50.00% to 50.99%
recorded in the 50% bin.

The solid lines in Figure 12 illustrate the frequency
distribution of the maximum bus utilisation across the
10,000 message sets for each of the five configurations.
From Figure 12, it is clear that the use of FIFO queues
significantly degrades the real-time performance of the
network. With all eight nodes using priority queues (#1), the
mean value of the maximum bus utilisation was 89.5%.
With a quarter of the nodes using FIFO queues (#2), this
reduced to 62.7%, and with half of the nodes using FIFO
queues (#3) it further reduced to 44.9%. Finally, with all
eight nodes using FIFO queues (#4) the mean value of the
maximum bus utilisation degraded to just 28.4%. Worse still
was random priority assignment (# 5) with a mean value of
just 18.4%; despite using priority queues.

Figure 12 also shows results for the priority orderings

obtained from Configs. #2, #3, and #4, assuming that all
nodes use priority queues. These results are labelled #2a,
#3a, and #4a respectively (dashed lines). The differences
between Configs. #1, #2a, #3a, and #4a are indicative of the
performance degradation caused by the FIFO queues due to
external priority inversion (i.e. priority inversion with
respect to messages sent by other nodes). By contrast, the
difference between the pairs of Configs. #2–#2a, #3–#3a,
and #4–#4a are indicative of the performance degradation
caused by the FIFO queues due to internal priority inversion
(i.e. priority inversion with respect to messages sent by the
same node), and also potential pessimism in the
schedulability analysis for FIFO queues. As expected, the
degradation in performance due to external priority
inversion is much larger than that due to internal priority
inversion, which affects only a limited number of messages.

We repeated our experimental evaluation of an 8 node
system for message sets of size 20 and 40. The form of the
results and the broad conclusions that can be drawn from
them remained the same as with message sets of size 80.
However, with fewer messages to randomly allocate to each
node, the performance degradation due to each FIFO queue
became somewhat smaller. (This is expected as in the limit,
with just one message per node, FIFO and priority queues
are equivalent). Results for 8 nodes and message sets of
sizes 20, 40 and 80 are summarised in Table 4 and depicted
for message sets of sizes 80 and 20 in Figure 12 and Figure
13.

#1 PQ (No FIFO
nodes)

#2 FQ and PQ
(Quarter FIFO

nodes)

#3 FQ and PQ (Half
FIFO nodes)

#4 FQ (All FIFO
nodes)

#5 PQ - Random
Priorities

0

200

400

600

800

1000

1200

1400

1600

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Breakdown Utilisation

Fr
eq

ue
nc

y

#1 PQ (No FIFO nodes)
#2 FQ and PQ (Quarter FIFO nodes)
#2a PQ (Priorities from 2.)
#3 FQ and PQ (Half FIFO nodes)
#3a PQ (Priorities from 3.)
#4 FQ (All FIFO nodes)
#4a PQ (Priorities from 4.)
#5 PQ - Random Priorities

Figure 12: Frequency distribution of max. bus
utilisation (8 nodes, 80 messages, 10,000 message

sets)

#1 PQ (No FIFO
nodes)

#2 FQ and PQ
(Quarter FIFO

nodes)
#3 FQ and PQ (Half

FIFO nodes)

#4 FQ (All FIFO
nodes)

#5 PQ - Random
Priorities

0

100

200

300

400

500

600

700

800

900

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Breakdown Utilisation

Fr
eq

ue
nc

y

#1 PQ (No FIFO nodes)
#2 FQ and PQ (Quarter FIFO nodes)
#2a PQ (Priorities from 2.)
#3 FQ and PQ (Half FIFO nodes)
#3a PQ (Priorities from 3.)
#4 FQ (All FIFO nodes)
#4a PQ (Priorities from 4.)
#5 PQ - Random Priorities

Figure 13: Frequency distribution of max. bus
utilisation (8 nodes, 20 messages, 10,000 message

sets)

Table 4: Evaluation: 8 nodes, varying the number
of messages per node

Config. Node
types

Priority
order

Mean of Max. bus util.
n=20 n=40 n=80

1 All PQ TDMPO 86.8% 88.4% 89.5%
2 1/4 FQ,

3/4 PQ
TDMPO-
FP/FIFO

72.7% 68.1% 62.7%

3 1/2 FQ,
1/2 PQ

TDMPO-
FP/FIFO

61.6% 53.6% 44.9%

4 All FQ TDMPO-
FP/FIFO

46.5% 36.9% 28.4%

5 All PQ Random 26.1% 21.5% 18.4%
We also repeated our experimental evaluation for 16 and

24 node systems with message sets of size 160 and 240
respectively. As the average number of messages per node
was the same as the case with 8 nodes and 80 messages, the
results were also similar. Results for message sets of sizes
80, 160 and 240 are summarised in Table 5 and depicted for
message sets of sizes 80 and 240 in Figure 12 and Figure 14.

As the average number of message per node was
constant in these experiments, the average of the maximum
achievable bus utilisation varied only a small amount.
However, with more messages the frequency distributions
became sharper, and the maximum achievable bus
utilisation increased slightly. The latter effect is due to the
fact that with more messages, message transmission times
are smaller with respect to overall response times, and so the
effect of non-pre-emptive transmission becomes less
pronounced, and so schedulability improves.

In the case of Config. #5, using a random priority order,
the average achievable bus utilisation decreased as the
number of nodes and messages increased, even though the
average number of messages per node remained constant.
This was due to the fact that with a larger number of
messages, there is a smaller probability that none of the
messages with short deadlines will be assigned low

priorities (for example in the lowest 5% of messages by
priority), hence the frequency distribution is less spread out
towards higher utilisation values, and has a lower mean.

Table 5: Evaluation: varying number of nodes and
messages with the same average number of

messages per node
Config. Node

types
Priority

order
Mean of Max. bus util.

8
nodes
n=80

16
nodes
n=160

24
nodes
n=240

1 All PQ TDMPO 89.5% 90.3% 90.7%
2 1/4 FQ,

3/4 PQ
TDMPO-
FP/FIFO

62.7% 65.6% 67.0%

3 1/2 FQ,
1/2 PQ

TDMPO-
FP/FIFO

44.9% 47.2% 48.3%

4 All FQ TDMPO-
FP/FIFO

28.4% 29.8% 30.6%

5 All PQ Random 18.4% 16.3% 15.4%

#1 PQ (No FIFO
nodes)

#2 FQ and PQ
(Quarter FIFO

nodes)

#3 FQ and PQ (Half
FIFO nodes)

#4 FQ (All FIFO
nodes)

#5 PQ - Random
Priorities

0

500

1000

1500

2000

2500

3000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Breakdown Utilisation

Fr
eq

ue
nc

y

#1 PQ (No FIFO nodes)
#2 FQ and PQ (Quarter FIFO nodes)
#2a PQ (Priorities from 2.)
#3 FQ and PQ (Half FIFO nodes)
#3a PQ (Priorities from 3.)
#4 FQ (All FIFO nodes)
#4a PQ (Priorities from 4.)
#5 PQ - Random Priorities

Figure 14: Frequency distribution of max. bus
utilisation (24 nodes, 240 messages, 10,000

message sets)

Overall, our experimental evaluation shows that real-
time network performance, measured in terms of the
maximum achievable bus utilisation is sensitive to the
following:
• the proportion of nodes on the network implementing

FIFO queues;
• the number of messages sent by FQ-nodes, and
• the range of transmission deadlines of messages in each

FIFO group compared to other messages sent on the
network.

Increasing any / all of these factors increases priority
inversion, to the detriment of network performance.
7.1. Gateways and multiple FIFO Queues

We now explore further the effect that using FIFO
queues in gateway applications has on the maximum
achievable bus utilisation.

To investigate this, we evaluated a network with 120

messages in total, 48 of which were sent by a gateway node.
All other messages were assumed to be sent by nodes
implementing priority queues, hence the results hold
independent of the number of non-gateway nodes on the
network. The message parameters were generated as
described previously, with 48 messages allocated to the
gateway and the remainder to the other nodes.

We considered seven different configurations of the
gateway node. In Config. #1, the gateway used a priority
queue. In Configs. #2 to #6, the gateway implemented 16, 8,
4, 2, and 1 FIFO queues respectively, which were used to
transmit its 48 messages. In Configs. #1 to #6, message
priorities were assigned according to the TDMPO-FP/FIFO
policy as depicted in Figure 2. (As all the messages were of
the same length, this priority ordering was optimal). In
contrast, in Config. #7, message priorities were assigned at
random, and the gateway again used a priority queue.

When the gateway used more than one FIFO queue, then
the messages sent by the gateway were sorted according to
their transmission deadlines, and the FIFOG Nn / messages
with the shortest transmission deadlines were assigned to
the first FIFO queue, where Gn is the number of messages
sent by the gateway, and FIFON is the number of FIFO
queues it uses. The next FIFOG Nn / messages, ordered by
transmission deadline, were assigned to the 2nd FIFO queue,
and so on. This simple allocation heuristic ensured that all
of the FIFO queues had a small number of messages, and
that the messages in each FIFO queue had broadly similar
transmission deadlines.

#1 PQ - Optimal
Priorities

#2 Gateway 16-FQ

#3 Gateway 8-FQ

#4 Gateway 4-FQ

#5 Gateway 2-FQ

#6 Gateway 1-FQ

#7 PQ - Random
Priorities

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Breakdown Utilisation

Fr
eq

ue
nc

y

#1 PQ - Optimal Priorities
#2 Gateway 16-FQ
#3 Gateway 8-FQ
#4 Gateway 4-FQ
#5 Gateway 2-FQ
#6 Gateway 1-FQ
#7 PQ - Random Priorities

Figure 15: Frequency distribution of max. bus
utilisation for different gateway configurations
(120 messages, 48 sent by the gateway, 10,000

message sets)

Figure 15 shows the frequency distribution of the
maximum achievable bus utilisation for the seven different
configurations, and the 10,000 randomly generated sets of
messages used. It is evident from Figure 15 that, with the
gateway sending a large number of messages with diverse
transmission deadlines, using a single FIFO queue results in
poor network performance. The average value for the

maximum achievable bus utilisation in this case was just
34.2%. However, performance was significantly improved
by implementing multiple FIFO queues in the gateway.
Using two FIFO queues improved the average value for the
maximum achievable bus utilisation to 62.3%. While
utilising 4, 8 or 16 FIFO queues, resulted in performance
approaching that of a priority queue. A summary of these
results is given in Table 6.

Table 6: Evaluation: gateway configurations
Config. Gateway Priority order Mean of Max.

bus util.
#1 PQ TDMPO 90.0%
#2 16-FQ TDMPO-FP/FIFO 89.1%
#3 8-FQ TDMPO-FP/FIFO 87.4%
#4 4-FQ TDMPO-FP/FIFO 83.1%
#5 2-FQ TDMPO-FP/FIFO 62.3%
#6 1-FQ TDMPO-FP/FIFO 34.2%
#7 PQ Random 17.1%

We note that the results of our evaluation are based on
the use of a simple heuristic for allocating messages to FIFO
queues. We expect that in many cases, improved
performance could be obtained with fewer FIFO queues by
using a more sophisticated message allocation policy. This
is borne out by the results of the case study. Investigation of
such policies is however beyond the scope of this paper.

8. Summary and Conclusions
The major contribution of this paper is the derivation of

sufficient response time analysis for CAN where some of
the nodes on the network implement FIFO queues, while
others implement priority queues. This analysis is FIFO-
symmetric in that it attributes the same worst-case response
time (measured from the time a message is queued in the
sending node until it is received by other nodes on the bus)
to all of the messages that share the same FIFO. For this
schedulability analysis, we proved that it is optimal to
assign adjacent priorities to messages that share the same
FIFO. We modified Audsley’s Optimal Priority Assignment
algorithm to provide an overall priority assignment policy
(OPA-FP/FIFO) that is optimal with respect to our analysis
for both priority-queued messages and groups of messages
that share a FIFO. Further, we showed that a simple policy
based on transmission deadlines (TDMPO-FP/FIFO),
depicted in Figure 2, is optimal with respect to our analysis
for the specific case when all messages are of the same
length.

Although this paper provides schedulability analysis for
CAN assuming FIFO queues, we cannot recommend the use
of such queues. By comparison with priority queues, FIFO
queues inevitably cause priority inversion which is
detrimental to real-time performance.

Using appropriate optimal priority assignment policies in
both cases, we were able to make a like-for-like comparison
between the use of priority queues and FIFO queues, thus
determining the specific penalty incurred by the latter in
terms of network performance. We found that the use of
FIFO queues significantly increases the minimum bus speed

necessary to ensure that all deadlines are met. This was
illustrated in our case study where allowing just two ECUs
(sending 18 out of the 85 messages) to use FIFO queues
increased the minimum bus speed required from 277 kBit/s
with priority queues to 389 kBit/s, a 40% increase. With all
ECUs using FIFO queues, the minimum bus speed required
increased to 654 kBit/s; an increase of over 130%. Using
FIFO queues reduces the maximum bus utilisation
achievable before any deadlines are missed, thus limiting
the scope for extending a system by adding further messages
without having to increase bus speed. In our case study, the
maximum bus utilisation with priority queues was 84.5%,
this reduced to 60.1% when two ECUs used FIFO queues,
and to just 35.8% when all of the ECUs used FIFO queues.
These figures were backed-up by our experimental
evaluation of an eight node system with 80 messages. This
evaluation of 10,000 randomly generated message sets
showed a degradation in the mean value of the maximum
bus utilisation from 89.5% with all nodes using priority
queues, to 62.7% with two nodes using FIFO queues, to
44.9% with four nodes using FIFO queues, to just 28.4%
with all eight nodes using FIFO queues. Such reductions in
achievable utilisation not only increase the minimum bus
speed required to obtain a schedulable network, but also
decrease the robustness of the network to errors that result
in message re-transmission.

We recommend that CAN device drivers / software
protocol layers implement priority-based queues, rather than
FIFO queues whenever possible. FIFO queues are appealing
because they are simpler to implement and make the device
driver appear more efficient; however, this perceived local
gain typically comes at the expense of undermining the
priority-based message arbitration scheme used by CAN,
and significantly degrading the overall real-time
performance capability of the network.

We note that the degree of priority inversion caused and
hence the degradation in performance due to using FIFO
queues is lower when only a few messages use each FIFO
queue or alternatively when the messages that use each
FIFO queue have similar transmission deadlines. Under
these circumstances, the use of FIFO queues along with
appropriate priority assignment may result in a satisfactory
solution. If on the other hand, FIFO queues are used for
large numbers of messages with a wide range of
transmission deadlines, then this can be expected to have a
significant detrimental impact on network performance.

For ECUs that act as a gateway from one CAN bus to
another and thus have a large number of messages to
transmit, if a priority queue implementation is not possible,
then system designers may wish to consider using multiple
FIFO queues each utilising a separate hardware transmit
buffer. An allocation of messages to these multiple FIFO
queues can then aim to avoid assigning messages with
widely differing transmission deadlines to the same FIFO
queue, while also keeping the number of messages in each
FIFO queue relatively small. This approach can result in
significantly higher network performance than the

alternative of using a single FIFO queue. The schedulability
analysis and priority assignment policies given in this paper
provide the tools necessary to investigate such trade-offs.
This was demonstrated in a further configuration of our case
study (described in Section 7.1), where the minimum bus
speed required reduced from 388 kBit/s when the gateway
implementation used a single FIFO queue, to 285 kBit/s
when it used two FIFO queues, to 277 kBit/s when it used
three FIFO queues (assuming all other nodes used priority
queues). This compares favourably with the minimum bus
speed of 277 kBit/s required when the gateway used a
priority queue. These figures equate to maximum achievable
bus utilisations of 60.3% with one FIFO queue, 82.1% with
two FIFO queues, 84.5% with three FIFO queues, and the
same 84.5% with a priority queue. These figures were
backed up via further empirical evaluation showing that
reducing priority inversion via the use of multiple FIFO
queues, rather than a single FIFO queue, within a gateway
node is effective in reducing the minimum required bus
speed and so increasing the maximum achievable bus
utilisation.

Finally, both our case study and experimental
evaluation confirmed that appropriate priority assignment is
vital to obtaining effective real-time performance from
Controller Area Networks. Using a random priority
assignment policy, representative of priority assignment
based on the type of data and ECU, or indeed any other
metric that has little or no correlation with transmission
deadlines, increased the minimum bus speed required from
277 kBit/s to 731 kBit/s, and reduced the maximum bus
utilisation from 84.5% to just 32.0% in the case study, as
compared to an optimal priority assignment policy. This
data was backed up by our evaluation of an eight node
system with 80 messages. Here, for message sets of size 80,
a random priority assignment policy resulted in values for
the maximum bus utilisation, for 10,000 randomly generated
message sets, in the range 8% to 45% with a mean of just
18.4%, compared to a range of 69% to 96% and a mean of
89.5% when an optimal priority assignment policy was
used. We therefore strongly recommend that in Controller
Area Networks, message IDs are assigned using an optimal
or near optimal priority ordering reflecting message
transmission deadlines.
8.1. Recommendations and further research

The research presented in this paper serves two main
purposes. Firstly, it highlights the detrimental effect that
using FIFO queues can have on network performance. Here,
our aim was to inform the design choices made by system
integrators and designers, thus ensuring that newly
developed systems implement priority queues whenever
possible. Secondly, we recognise that due to other factors
influencing or constraining design choices, some automotive
networks will continue to be built using some ECUs that
implement FIFO queues. In this case, the analysis presented
in this paper can be used to determining network
schedulability. Given that it may not always be possible to
avoid using FIFO queues, our results on priority assignment

and the use of multiple FIFOs show how to make the most
effective use of them.

Further, we highlighted the detrimental effect that using
a sub-optimal message ID allocation (priority assignment)
can have. We acknowledge that there are sometimes design
constraints on priority assignment, for example due to the
inclusion of legacy components; however, we hope that our
work in this area will motivate system integrators to fully
consider priority assignment for messages on CAN,
debunking the meme11 of CAN bus utilisation, that one
cannot run CAN reliably at more than 35% utilisation
(Buttle, 2012).

We note that the analysis described in this paper has
been generalised by Davis and Navet (2012) to messages
with arbitrary deadlines, and work-conserving queuing
policies12, of which FIFO is an example. Davis and Navet
(2012) showed that for messages with constrained
deadlines, the analysis given in this paper holds not only for
FIFO queues but also for work-conserving queuing policies
in general.

Finally, we note that many automotive systems make
use of offsets between message transmission times as a
means of reducing the peak load on the network and hence
improving message schedulability. The analysis of FIFO
queues in this paper was derived for systems where all of
the messages can potentially be queued simultaneously. As
such, it provides upper bounds on the response times of
messages with offsets; however, this is an area where
further research would be useful in obtaining tighter upper
bounds on message response times.

Acknowledgements
The authors would like to thank Alan Burns for his

comments on a previous draft of this paper. This work was
partially funded by the UK EPSRC funded Tempo project
(EP/G055548/1), the EU funded ArtistDesign Network of
Excellence, the German Research Foundation, and the Carl
Zeiss Foundation.

References
Avnet (2006), “Avnet core datasheet” version 1.0 July 2006.
Audsley N.C., (1991) "Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times", Technical Report
YCS 164, Dept. Computer Science, University of York, UK, Dec.
1991.
Audsley N.C., (2001) “On priority assignment in fixed priority
scheduling”, Information Processing Letters, 79(1): 39-44, May
2001.
Baker T.P., Baruah S.K., (2009) “Sustainable multiprocessor
scheduling of sporadic task systems”. In Proceedings of the
EuroMicro Conference on Real-Time Systems, pp. 141-150.
Baruah S.K., Burns A., (2006) “Sustainable Scheduling Analysis”.
In Proceedings of the 27th Real-time Systems Symposium,, pp.
159-168.

11 A meme is something believed but not true.
12 A work-conserving queuing policy is one which ensures that whenever
the node has any messages in its transmit queue and the bus becomes idle
then there is a message ready to be transmitted.

Bosch, (1991) “CAN Specification version 2.0”. Robert Bosch
GmbH, Postfach 30 02 40, D-70442 Stuttgart.
Bimbard F., George L., (2006) “FP/FIFO feasibility conditions
with kernel overheads for periodic tasks on an event driven OSEK
system”. In Proceeding of ISORC.
Broster I., Burns A., Rodríguez-Navas G., (2002) “Probabilistic
Analysis of CAN with Faults”, In Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS'02), pp. 269-278.
Broster I., Burns A., (2003) “An Analysable Bus-Guardian for
Event-Triggered Communication”. In Proceedings of the 24th
Real-time Systems Symposium, pp. 410-419.
Broster I., (2003) “Flexibility in dependable communication”. PhD
Thesis, Department of Computer Science, University of York, UK,
August 2003.
Broster I., Burns A., Rodriguez-Navas G., (2005) “Timing analysis
of real-time communication under electromagnetic interference”,
Real-Time Systems, 30(1-2) pp. 55-81.
Buttle D., (2012) “Real-Time in the Prime Time” Keynote talk at
the EuroMicro Conference on Real-Time Systems. Presentation
available from http://ecrts.eit.uni-kl.de/index.php?id=69.
Casparsson L., Rajnak A., Tindell K., Malmberg P., (1998)
“Volcano - a revolution in on-board communications”. Volvo
Technology Report, 1998/1.
chronSIM. http://www.inchron.com
Davis R.I., Burns A., Bril R.J., Lukkien J.J., (2007) “Controller
Area Network (CAN) Schedulability Analysis: Refuted, Revisited
and Revised”. Real-Time Systems, Volume 35, Number 3, pp. 239-
272.
Davis R.I., Zabos A., Burns A., (2008) "Efficient Exact
Schedulability Tests for Fixed Priority Real-Time Systems”. IEEE
Transactions on Computers IEEE Computer Society Digital
Library. IEEE Computer Society, Vol. 57, No. 9, pp. 1261-1276.
Davis R.I., Burns A., (2009a) "Robust priority assignment for
messages on Controller Area Network (CAN)”. Real-Time
Systems, Volume 41, Issue 2, pages 152-180.
Davis R.I., Burns A., (2009b) “"Priority Assignment for Global
Fixed Priority Pre-emptive Scheduling in Multiprocessor Real-
Time Systems”. In proceedings Real-Time Systems Symposium
(RTSS), pages 398-409.
Davis R.I., Burns A., (2011) "Improved Priority Assignment for
Global Fixed Priority Pre-emptive Scheduling in Multiprocessor
Real-Time Systems”. Real-Time Systems, Volume 47, Issue 1,
pages 1-40.
Davis R.I., Kollmann S., Pollex V., Slomka F., (2011) "Controller
Area Network (CAN) Schedulability Analysis with FIFO queues”.
In proceedings 23rd Euromicro Conference on Real-Time Systems,
pages 45-56.
Davis R.I., Navet N., (2012) “Controller Area Network (CAN)
Schedulability Analysis for Messages with Arbitrary Deadlines in
FIFO and Work-Conserving Queues”. In proceedings 9th
Workshop on Factory Communication Systems, pp. 33-42.
Di Natale M., (2006) “Evaluating message transmission times in
Controller Area Networks without buffer preemption”, In
proceedings 8th Brazilian Workshop on Real-Time Systems.
Di Natale M., (2008) “Understanding and using the Controller
Area network” inst.eecs.berkeley.edu/~ee249/fa08/Lectures/
handout_canbus2.pdf.
Ferreira J., Oliveira A., Fonseca P., Fonseca J. A.. (2004) “An
Experiment to Assess Bit Error Rate in CAN”. In Proceedings of
3rd International Workshop of Real-Time Networks, pp. 15-18.

http://www.cs.unc.edu/~baruah/Papers/2009-bakerBaruah-ECRTS.pdf
http://www.cs.unc.edu/~baruah/Papers/2009-bakerBaruah-ECRTS.pdf

Hansson H., Nolte T., Norstrom C., Punnekkat S., (2002)
“Integrating Reliability and Timing Analysis of CAN-based
Systems”. IEEE Transaction on Industrial Electronics, 49(6):
1240-1250.
Hladik P., Deplanche A., Faucou S., Trinquet Y.,
(2007)“Schedulability analysis of OSEKNVDX applications”. In
Proceedings International Conference on Real-Time and Network
Systems.
ISO 11898-1, (1993) “Road Vehicles – interchange of digital
information – controller area network (CAN) for high-speed
communication”, ISO Standard-11898, International Standards
Organisation (ISO).
Khan D.A., Bril R.J., Navet N., (2010) "Integrating hardware
limitations in CAN schedulability analysis," In proceedings
Workshop on Factory Communication Systems pp.207-210.
Kollmann S., Pollex V., Kempf K., Slomka F., Traub M., Bone T.,
Becker J. (2010). "Comparative Application of Real-Time
Verification Methods to an Automotive Architecture". In
proceedings International Conference on Real-Time and Network
Systems.
Martin S., Minet P., George L., (2007) “Non pre-emptive Fixed
Priority scheduling with FIFO arbitration: uniprocessor and
distributed cases”, Technical Report No. 5051, INRIA
Rocquencourt.
Meschi A., Di Natale M., Spuri M., (1996) “Priority inversion at
the network adapter when scheduling messages with earliest
deadline techniques,” In proceedings Euromicro Conference on
Real-Time Systems.
Microchip Technology Inc. (2009) “PIC32MX Family Reference
Manual” DS-61155A.
Nolte T., Hansson H., Norstrom C., (2002) “Minimizing CAN
response-time analysis jitter by message manipulation”. In
Proceedings 8th IEEE Real-Time and Embedded Technology and
Applications Symposium, pp 197-206.
Nolte T., Hansson H., Norstrom C., (2003) "Probabilistic worst-
case response-time analysis for the Controller Area Network." In
Proceedings of the 9th IEEE Real-Time and Embedded Technology
and Applications Symposium, pp. 200-207.
Nolte T., (2006)“Share-driven scheduling of embedded networks”,
PhD Thesis, Malardalen University Press.
Renesas, (2010) “R32C/160 Group Hardware Manual Renensas
MCU M16C Family/ R32C/100 series”. Rev. 1.02, Feb 2010.
Rufino J., Verissimo P., Arroz G., Almeida C., Rodrigues L.,
(1998) “Fault-tolerant broadcasts in CAN”. In Digest of Papers,
The 28th IEEE International Symposium on Fault-Tolerant
Computing. pp. 150-159.
STMicroelectronics, (2001) “AN1077 Application note. Overview
of enhanced CAN controllers for the ST7 and ST9 MCUS”
(available from www.st.com).
Tindell K.W., Burns A.. (1994) “Guaranteeing message latencies
on Controller Area Network (CAN)”, In proceedings of 1st
International CAN Conference, pp. 1-11.
Tindell K.W., Burns A., Wellings A. J., (1995) “Calculating
Controller Area Network (CAN) message response times”. Control
Engineering Practice, 3(8): 1163-1169.
Tindell K.W., Hansson H., Wellings A.J., (1994) “Analysing real-
time communications: Controller Area Network (CAN)”. In
Proceedings 15th Real-Time Systems Symposium, pp. 259-263.
XILINX, (2010) “LogiCORE IP AXI Controller Area Network
(axi_can) (v1.01.a) product specification DS791.

Zuhily A., Burns A., “(2007) “Optimality of (D-J)-Monotonic
Priority Assignment”. Information Processing Letters, No. 103, pp.
247-250.

Biographies

Robert I. Davis is a Senior Research Fellow in
the Real-Time Systems Research Group at the
University of York, and a Director of Rapita
Systems Ltd. He received his DPhil in
Computer Science from the University of York
in 1995. Since then he has founded three start-
up companies, all of which have succeeded in
transferring real-time systems research into
commercial products. Robert’s research
interests include scheduling algorithms and

schedulability analysis for real-time systems and networks.

Steffen Kollmann studied computer science
with the focus on embedded systems and
micro-robotics at the University of Oldenburg.
In 2012 he received his doctoral degree at Ulm
University. Currently he is working at BTC
Embedded Systems AG. His scientific interests
include model driven development of
embedded systems and corresponding
verification methods like schedulability
analysis. He mainly applies his scientific
results to the automotive domain.

Victor Pollex is a PhD candidate at the Institute
of Embedded Systems/Real-Time Systems at
Ulm University. He received his Diploma in
Computer Science from Ulm University in
2009. His research interests are schedulability
analysis for real-time systems and networks
including real-time calculus.

Frank Slomka holds a diploma degree (Dipl.-
Ing.) in electrical engineering from the
Technical University of Braunschweig. After
three years developing real-time software for
DECT telephones he was with the University
of Erlangen-Nuremberg. In 2002 he receives
the Phd (Dr.-Ing.) with a thesis on design space
exploration in telecommunication systems.
From 2002 until 2007 he was an assistant
professor for embedded systems at the
University of Oldenburg. Since 2007 he is full
professor of embedded systems/real-time

systems at Ulm University. His research interests are real-time analysis
and real-time calculus, design-space exploration, hardware-software
co-design and design methodologies and metrics for distributed
embedded real-time systems.

	Abstract
	Extended version
	1. Introduction
	1.1. Related work
	1.2. Motivation
	1.3. Organisation

	2. System Model, Notation and Terminology
	3. Schedulability Analysis with Priority Queues
	4. Schedulability Analysis with FIFO Queues
	4.1. Priority-queued messages
	4.2. FIFO-queued messages
	4.3. Schedulability test with arbitrary priorities
	4.4. Partial priority ordering within a FIFO group
	4.5. Schedulability test for FIFO-adjacent priorities
	4.6. Sufficiency and sustainability of the FIFO-symmetric schedulability tests
	4.7. Buffer sizes

	5. Priority Assignment Policies
	5.1. Optimal priority assignment
	5.2. TDMO-FP/FIFO priority assignment
	5.3. Priority inversion

	6. Case Study: Automotive
	6.1. Gateways and multiple FIFO queues

	7. Experimental Evaluation
	7.1. Gateways and multiple FIFO Queues

	8. Summary and Conclusions
	8.1. Recommendations and further research

	Acknowledgements
	References
	Biographies

