
Schedulability Analysis of CAN with Non-abortable
Transmission Requests

Dawood A. Khan
INRIA / INPL

Vandoeuvre, France
dawood.khan@inria.fr

Robert I. Davis
Department of Computer Science

University of York, UK
rob.davis@cs.york.ac.uk

Nicolas Navet
INRIA / RealTime-at-Work (RTaW)

Vandoeuvre, France
nicolas.navet@inria.fr

Abstract—The analysis of the real-time properties of an em-
bedded communication system relies on finding upper bounds on
the Worst-Case Response Time (WCRT) of the messages that are
exchanged among the nodes on the network. The classical WCRT
analysis of Controller Area Network (CAN) implicitly assumes
that at any given time, each node is able to enter its highest
priority ready message into arbitration. However, in reality,
CAN controllers may have some characteristics, such as non-
abortable transmit buffers, which may break this assumption.
This paper provides analysis for networks that contain nodes
with non-abortable transmit buffers, as well as nodes that meet
the requirements of the classical analysis. The impact on message
WCRTs due to a limited number of transmission buffers with
non-abortable behaviour is examined via two case-studies.

I. INTRODUCTION

Controller Area Network (CAN) was specifically designed
for use in the automotive domain and has become a de-
facto standard. Today, high-end cars can contain as many as
70 CAN controllers [1]. CAN has been extensively used in
other areas as well, including industrial automation, especially
networked control systems [2], because of its interesting real-
time properties and low-cost. Whatever the domain, existing
schedulability analyses of real-time applications distributed
over CAN assume that:

1. If a CAN node has to send out a stream of messages
having the highest priority on the bus, it should be able to do so
without releasing the bus between two consecutive messages,
despite the arbitration process that takes place at the end of
each transmission.

2. If on a CAN node more than one message is ready
to be sent, the highest priority message will be sent first.
This means that the internal organization and message arbi-
tration of the CAN node is such that this is possible. These
assumptions put some constraints on the architecture of the
CAN controllers and on the whole protocol stack. Sometimes,
because of the CAN controller or protocol layers, priority
inversion among messages can occur. This can happen when
the controller sends more distinct messages than the number
of transmission buffers available and transmission requests
(for low-priority messages) cannot be cancelled. Indeed, some
CAN controller hardware implementations have internal orga-
nization such that they send messages independent of CAN
message ID (Microchip MCP2515, Freescale MC68HC912),
send messages in a FIFO order (Infineon XC161CS), or do

not have enough transmit buffers (Philips SJA1000). More-
over, the transmit buffers may be managed without abortion
(Philips 82C200) [3], or the support for abort mechanisms
may be missing at the device driver level or, finally, the
communication stack may be configured such that it does not
support cancelling transmission (see “transmit cancellation” in
an AUTOSAR stack, page 37 in [4]). As a result, a message
can be delayed for a longer time than is expected by classical
analyses [5], [6] and the response time increases accordingly.

II. PREVIOUS WORK

Timing analyses of CAN developed over the years model
the network as an infinite priority queue where each node
is inserting its messages according to their priority. It is
then assumed that the highest priority message in the queue
wins the arbitration, be it in the deterministic [5], [6], [7] or
stochastic case [8], [9]. However, this model does not hold
when hardware and software constraints, like limited numbers
of transmission buffers in the CAN controller and copy-time of
messages from device drivers, are considered then the Worst-
Case Response Time (WCRT) increases as compared to the
traditional analyses. To the best of our knowledge, this issue
was first identified and analysed in [10].

Some work has already been carried out to identify and
analyse the effects of limited transmission buffers, in [10],
[3], [11] and [12]. In [11], Natale classifies and explains all
the cases leading to priority inversion due to hardware and
software limitations, that were not covered by the existing
analyses. In [10] Meschi et al. show that at least three trans-
mission buffers are needed to avoid priority inversions when
the copy-time of a message from the queue to the controller is
neglected. However, analysis in [10] only addresses the case
when transmission requests are abortable. In [12], Khan et al.
address the case of priority inversion in an abortable CAN
controller when copy-time of messages and the architecture
of a device driver is taken into account. In [13], Davis et al.
provide schedulability analysis when device drivers use FIFO
transmission queues. However, the analyses provided in [12],
[13] do not investigate the non-abortable CAN controller case.
In [3] Natale provides an analysis for integrating the increase
in WCRT due to priority inversion in non-abortable CAN
controllers. However, the analysis provided in [3] takes into
account interference from all lower priority messages when



computing the WCRT of the message which suffers from
priority inversion, which may not be the case as is shown
in this paper. Furthermore, it does not consider the fact that
the increase in the WCRT (additional delay) of a message
manifests itself as a jitter for lower priority messages.

Contributions of the paper: Here, we address the 3 or
more buffer case when it is impossible to cancel a transmission
request and we derive a worst-case response time analysis for
it. The case addressed here is meaningful because in practice
most CAN controllers have more than three buffers and the
ability to cancel a transmission request may not be supported
by them, the device drivers or the higher level communication
stack. This work provides tighter bounds on the WCRT than
derived in [3] by identifying more precisely the interference
brought about by lower priority messages. It also identifies
and integrates the jitter due to this interference in the analysis,
which may increase the response time for some messages.

III. SYSTEM MODEL

We assume a set M of m messages µ1, µ2, . . ., µm,
where m ∈ N. Each message µi is characterized by a
period Ti ∈ R+, an activation jitter Ji ∈ R+, a worst-
case transmission time Ci ∈ R+, and a (relative) deadline
Di ∈ R+, where Di ≤ Ti. For notational convenience, we
assume that the messages are given in order of decreasing
priority, i.e. µ1 has highest priority and µm has the lowest
priority. Moreover, we assume a set C of n CAN controllers
CC1, CC2, . . ., CCn, where n ∈ N. Each CAN controller
CCc has a finite number of transmission buffers kc ∈ N.

A total function CC : M → C defines which message is
sent by which CAN controller. The set of messages Mc sent
by controller CCc is defined as

Mc = {µ ∈M|CC(µ) = CCc}. (1)

Similarly, Mc defines the set of messages not sent by CCc,
i.e.

Mc = {µ ∈M|CC(µ) 6= CCc} =M\Mc. (2)

Let Hc be the set of highest priority messages in Mc excluding
the kc lowest priority messages. Similarly, let HEc be the
set of highest priority messages in Mc excluding the kc − 1
lowest priority messages. We use µLc

to denote the lowest
priority message in message set HEc, where Lc is its priority.
Furthermore, we assume that multiple transmission buffers on
CAN controllers are not occupied by messages with the same
priority. The assumption is made that nodes can always fill
empty buffers with ready messages in time for the next bus
arbitration.

The WCRT Ri of a message is defined as the maximum
possible time taken by a message to reach the destination
CAN controller, starting from the time of an initiating event
responded to by the sending task. A message µi is said to
be schedulable if and only if its WCRT Ri is less than or
equal to the message relative deadline Di and the system is
schedulable if and only if all of the messages are schedulable.

P
ri
o
ri
ty

Time

CCl

CCl

CCm

µi

µj

µk

0 5 10

B

Figure 1. The message µi suffers a priority inversion as, being the highest
priority message, it should have been transmitted earlier than µk and µj sent
by nodes CCm and CCl respectively. This was not possible because here the
transmission request for µj cannot be aborted on CCl and all buffers were
full. This results in an additional delay for message µiand thus increased
WCRT as compared to existing analyses. The arrows indicate the message
release times.

Definition 1. [Priority inversion] A message µi on a CAN
controller CCl without abort mechanism is said to suffer
from priority inversion when µi is released, if all of the kl
transmission buffers are occupied by the messages with lower
priority than that of µi.

Remark 1. [Limited number of buffers] For any CAN con-
troller CCl with kl transmission buffers the kl lowest priority
messages in the message set Ml will not suffer any priority
inversion. As a corollary, for any CAN controller CCl with kl
transmission buffers, if the number of messages mapped onto
it is less than or equal to kl then no message on CCl can
suffer from priority inversion.

IV. ADDITIONAL DELAY

Figure 1 illustrates the case in which a message µi sent
by CAN controller CCl should have been transmitted after
B, the blocking time of a lower priority message. Here
the message µj blocks µi due to the non-availability of a
transmission buffer in CCl, which only becomes available
after µj finishes its transmission. However, the message µj has
to wait for the higher priority message µk on CAN controller
CCm to be transmitted before it can begin its transmission.
Therefore, the WCRT for µi given by the existing analyses
increases by an amount, called the Additional Delay (AD),
which in this example is equivalent to the sum of the worst-
case transmission times of µk and µj .

Let µi be a high priority message in Mc and let the number
of messages in Mc with a lower priority than i be at least kc.
Moreover, let µj be the highest priority message in the CCc
transmission buffers, such that j > i (i.e. j is of lower priority
than i). When all the transmission buffers of CCc are full, the
longest delay for µi occurs when none of the messages in the
transmission buffers of CCc are currently being transmitted



and µi has to wait until µj has been transmitted for the
release of a buffer on CCc. Moreover, µi also experiences
the normal interference from higher priority messages sent by
CAN controllers other than CCc.

Algorithm 1 Algorithm for finding additional delay and
additional jitter. The inputs to the algorithm are the number
of CAN controllers (c), the number of transmission buffers on
each CAN controller c (kc), and the set of all messages on
the CAN network (M ). The algorithm returns the additional
delay and additional jitter for all messages.
Input: c, k = {kl|l = 1 . . . c}, M
Output: AD = {ADi|i = 1 . . . size(M)}, Ĵ = {Ĵi|i =
1 . . . size(M)}
AD = 0 //initialization of AD for all messages
Ĵ = J //initialization of AJ for all messages
for each CCl| l ∈ {1, 2 . . . , c}

K = size(Ml) //size(Ml) returns # of messages in Ml

Hl = {∀µi ∈ M |CC(µi) == l ∧ i ≤ K − kl} //set of
messages with AD

if K ≤ kl //more buffers available than the # of messages
AD = 0

else
HEl = {∀µi ∈ M |CC(µi) == l ∧ i ≤ K − kl +

1} //message set Hl including µLl

compute R∗j∀µj ∈ HEl //using equations (3 & 5)
∀µi ∈ Hl find ADi //using equation (6)
∀µi ∈ Hl find Ĵi = Ji+AJi //using equations (7 & 8)

end
end
return(AD and Ĵ)

Before transmission (i.e. when µj is in the CAN controller
transmission buffer blocking µi), µj can be directly blocked
by at most one message µlj with lj > j sent by another
CAN controller, or alternatively, subject to indirect or push-
through blocking due to at most one message µlj with lj > j
sent by the same CAN controller. Similarly, µj can experience
interference from higher priority messages µhj

with hj < j.
Message µj cannot experience direct interference from higher
priority messages µhj

with hj < j on controller CCc,
because µj is the highest priority message in the transmission
buffers of CCc and µj cannot be aborted. However, such
messages could if transmitted prior to the time at which µj
fills the buffer, cause indirect interference by delaying the
transmission of higher priority messages sent by other nodes,
which then increases the time taken for message µj to be
sent. To account for this indirect interference, we first include
messages µhj with hj < j on controller CCc in the fixed point
calculation of the queuing delay, so that the correct amount
of interference is obtained for messages from other nodes.
Later, when computing the additional jitter, we subtract out
the interference from the messages sent by controller CCc as
these transmissions cannot occur after µj fills the transmission
buffer.

The time duration for which µi has to wait depends on the
response time of µj , called the modified response time1 and
denoted by R∗j for µj and computed as follows

ŵn+1
j = max(Bj , Cj) +

∑
∀µk∈M∧k<j

⌈
Ĵk + ŵnj + τbit

Tk

⌉
Ck

(3)
where Bj is the maximum blocking time of message µj given
by:

Bj = max{0,max{Ck|k > i}}. (4)

Where Ĵk is the jitter2 of higher priority messages computed
using equation (7) by algorithm 1. A suitable starting value
for the recurrence relation given in equation (3) is ŵ0

j = B̄j .
This relation keeps on iterating until ŵn+1

j = ŵnj or ŵn+1
j +

Cj > Dj , which is the case when µj is not schedulable. The
modified WCRT of µj is given by:

R∗j = ŵj + Cj (5)

There are some aspects that need to be taken into account in
order to determine the additional delay experienced by µi, due
to the non-availability of a transmission buffer. First, the jitter
Jj of µj should not be accounted for in the modified WCRT
R∗j of µj , because that is irrelevant for the delay of µi as µj
is already in the transmission buffer.

Second, because the interference of messages µhi
with

1 ≤ hi < i will re-appear when we compute the worst-case
response time of µi, we have to subtract this interference from
R∗j , in order to prevent the double inclusion of interference
from the messages µhi

with 1 ≤ hi < i sent by other CAN
controllers (i.e. M̄c).

The additional delay ADi of µi, due non-availability of
transmission buffer, is therefore found by subtracting the
interference of the messages µhi with 1 ≤ hi < i and µhk

with 1 ≤ hk < j contained in R∗j , i.e.

ADi = max
∀k>i∧µk∈HEc

(R∗k −
∑

1≤hi<i∧µhi
∈M̄c

⌈
R∗k − Ck + Ĵhi + τbit

Thi

⌉
Chi

−
∑

1≤hk<k∧µhk
∈Mc

⌈
R∗k − Ck + Ĵhk

+ τbit

Thk

⌉
Chk

) (6)

The reason for taking max in equation (6) is that the
additional delay for the message µi can be due to each message
µk ∈ HEc where i < k ≤ Lc, and it may be different due to
each of these messages. Moreover, for all messages µk, such
that i < k ≤ Lc , having similar higher priority interference

1The modified response time of message µj is not its actual response time
because the message jitter is missing.

2To begin with Ĵk = Jk for all messages, in order to find the first
value of ADi. After computing ADi, it will appear as jitter to all messages
{µk|k > i} necessitating recalculation of ADi, which is done iteratively
until it does not change any more or a message becomes unschedulable, found
using algorithm 1.



Time

r1 a1

P
ri
or
it
y

µ3

µ4

µ5µ5

µ4

µ3

µ2 µ2

µ1µ1

0 1 2 3 4 5 6 7 8 9 10

Figure 2. Example of how the WCRT of a lower priority message µ5 is
affected by the additional jitter caused by priority inversion that is suffered
by a higher priority message µ1.

to that of µLc
(i.e. R∗k−Ck is equal to R∗Lc

−CLc
) the worst-

case ADi is obtained by taking into account the message µk
with the largest worst-case transmission time (i.e. Ck > CLc ),
as µk will give more additional delay than µLc . Thus taking
the maximum over all messages which could block µi enables
us to find the message µk with i < k ≤ Lc which gives the
worst-case additional delay to µi. The algorithm to find the
additional delay is described in algorithm 1. The algorithm
will keep on iterating until AD converges or it is greater than
the deadline, i.e. WCRT of the message becomes greater than
its deadline (in which case the message set is not schedulable).

ri

Ji

aQi ai

AJi

Figure 3. The time line of message µi from its initiating event until it is
able to participate in bus arbitration.

V. ADDITIONAL JITTER

The release jitter (Ji) is defined traditionally as the time
interval between the occurrence of an event that will trigger
sending of the message (ri) and placing the message in a
transmission queue (Q) or a transmission buffer. However,
with non-abortable transmit buffers, priority inversion occurs,
and the message µi triggered by the event at ri is not able
to participate in arbitration until the time ai, as it may be
blocked by messages with lower priority than i. Therefore, the
messages on other nodes see the interference of µi after time
ai and the jitter of this message is not limited to Ji. Instead,
the total jitter seen for µi, by the messages with lower priority
than i, is given by:

Ĵi = Ji +AJi (7)

where AJi is the time µi has to wait for the buffer to be
emptied, see figure 3. Where AJi is computed as:

AJi = max
∀k>i∧µk∈HEc

(R∗k −
∑

1≤hk<k∧µhk
∈Mc

⌈
R∗k − Ck + Ĵhk

+ τbit

Thk

⌉
Chk

) (8)

where R∗k is found using equation (5). Note that interference
from higher priority messages sent by the same node is
subtracted out, as this interference cannot occur after message
µk has filled the transmit buffer. The above equation upper
bounds the amount of time that a message µk can spend in a
transmit buffer, with all other buffers filled by lower priority
messages; hence it upper bounds the additional delay caused
by message µk on message µi .

Table I
CHARACTERISTICS OF MESSAGES.

Frames CAN controller T J C
µ1 CC1 5C 0 C
µ2 CC2 6C 0 C
µ3 CC2 6C 0 C
µ4 CC2 6C 0 C
µ5 CC1 4C 0 C

Example 1. Consider a system of two CAN controllers CC1

and CC2 with 5 messages, as described in table I. Let
CC1 have a single transmission buffer and let CC2 have an
unlimited number of transmission buffers. Assume that µ5

is in the buffer of CC1 and µ1 is released along with all
other messages at time t = 0, see figure 2. Since CC1 has
a single buffer, µ1 is blocked until µ5 releases the buffer
at time t = 4. The messages with lower priority than that
of µ1 on CC2 are not aware of release at t = 0 of µ1, as
they do not see it participating in arbitration from t = 0 to
a1 when it occupies the buffer in CC1. Once µ1 is in the
buffer it is able to participate in arbitration at time t = 4 and
wins. The release of the second instance of message µ5 suffers
interference from two instances of message µ1, between time
t = 4 and t = 6. The inter-arrival time expected for µ1 was
5C, however, because µ1 suffered an additional delay of 4C
due to priority inversion, the interval between two instances
of message µ1 being sent on the bus is reduced to 1C. The
additional delay suffered by µ1 is seen as a jitter of 4C by
µ5. The WCRT of µ5 given by existing analyses is 5C, but
if we include the jitter of 4C for µ1 we obtain the WCRT of
6C for µ5 as seen in figure 2.

VI. RESPONSE TIME ANALYSIS

This section provides a method for computing the worst-
case response time of messages on the CAN network. The
computed values are then used to check the schedulability
of the system by comparing the WCRTs against the message
deadlines. The analysis given in this paper provides a simple
and non-necessary schedulability condition directly inspired
by [6]. It assumes no errors on the bus but they can be included



as done in [5]. Following the analyses given in [5], [6] the
worst-case response time can be described as a composition
of three elements:

1) the queuing jitter Ji, is the maximum time between the
sending task being released and a message being queued.

2) the queuing delay wi, is the longest time for which
a message can remain in the device driver queue or
transmission buffers before successful transmission,

3) the worst-case transmission time Ci, is the longest time
a message can take to be transmitted.

A bound on the worst-case response time of a message µi is
therefore given by:

Ri = Ji + wi + Ci (9)

When computing a bound on the response time, we can
distinguish three cases i) messages which are safe from priority
inversion ii) messages which suffer from priority inversion due
to non-abortion of the messages in transmission buffers and
iii) messages which suffer from priority inversion due to copy-
time and message swapping issues. In this paper, we cover case
(i) and case (ii), while the third case has already been analysed
in [12].

The queuing delay wiis composed of:
1) blocking delay3 B̂i, is either the delay Bi due to the non-

preemptivity of lower priority messages in transmission
when µi was ready for arbitration or the additional delay
ADi, computed using equation (6), due to the priority
inversion i.e.

B̂i = max(max(Bi, Ci), ADi) (10)

2) the delay due to interference of higher priority messages
which may win arbitration and be transmitted before µi.

A. Case 1: safe from any priority inversion

We note that the higher priority messages on each CAN
controller CCl are more susceptible to priority inversion than
lower priority messages on the same CAN controller. Indeed,
the kl lowest priority messages on CCl will not suffer from
any priority inversion as not all of the transmission buffers can
be occupied by messages with lower priority than any of these
kl messages, thus these messages are not suffering from any
additional delay. However, these messages are still affected by
the additional delay of higher priority messages, as it is seen
by them as additional jitter. For these messages or the CAN
controllers which support abort mechanisms, the worst-case
queuing delay, using the model in [6], is given by:

wn+1
i = max(Bi, Ci) +

∑
∀k<i∧µk∈M

⌈
Ĵk + wni + τbit

Tk

⌉
Ck

(11)

3The additional delay ADi of a message µi appears as an additional
blocking delay due to messages with lower priority than that of µi.

where Ĵk is computed using (7) and Bi is the maximum
blocking time due to lower priority messages which occurs
when a lower priority message of the largest size has just
started to be transmitted when µi arrives, i.e.

Bi = max
∀k>i∧µk∈M

{Ck} (12)

A suitable starting value for the recurrence relation given
above is w0

i = Ci. This relation keeps on iterating until
wn+1
i = wni or Ji+wn+1

i +Ci > Di, which is the case when
the message is not schedulable. If the message is schedulable
its WCRT is given by (9).

We observe that the existing priority assignment algorithms,
see [14], may not be optimal in this case as they require that
the relative order among the higher priority messages does
not matter while checking the schedulability of lower priority
messages. However, such a condition is not satisfied, for the
scenario discussed in this paper, as the order among the higher
priority messages may impact their additional delay, i.e. the
jitter Ĵ seen by lower priority messages, thus having an impact
on the response time of lower priority messages.

Algorithm 2 Algorithm for finding WCRT. The inputs to the
algorithm are the number of CAN controllers (c), the number
of transmission buffers on each CAN controller c (i.e. kc),
and the set of all messages on the CAN network (M ). The
algorithm returns the WCRT of message set.
Input: c, k = {kl|l = 1 . . . c}, M
Output: WCRT of message set M
AD, ADold = 0 // initialization of AD for all messages
ADnew = C
Ĵ = J // initialization of jitter for all messages
while(ADnewnot equal to ADold)

ADold = ADnew

Compute Ĵ , ADnew via algorithm 1
if(ADnew is greater than deadlines)

return(unschedulable)
end

end
AD = ADnew

if(J + wn+1 + C ≤ D) //for case 1 and case 2 using
equations (9, 11 & 13)

return(J + wn+1 + C)
else

return(unschedulable)
end

B. Case 2: not safe from priority inversion

Once we have the additional delay of message µi, suscep-
tible to priority inversion, we can compute its WCRT. The
worst-case queuing delay for message µi is given by:

wn+1
i = B̂i +

∑
∀k<i∧µk∈M

⌈
Ĵk + wni + τbit

Tk

⌉
Ck (13)



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

1

2

3

4

5

6

Frame ID

W
C

R
T

(m
s
)

 

 

WCRT analysis with priority inversion (Di Natale)

using WCRT analysis of this paper

WCRT analysis without priority inversion 

Figure 4. This figure shows the WCRT of messages from SAE benchmark computed using analysis which does not account for priority inversion, analysis
in [3] and the analysis developed in this paper. Our analysis assumes each CAN controller has 3 transmission buffers. Some of the messages have lower
WCRT with Di Natale’s analysis (for example IDs 13, 15 and 17) because the equation used in [3] to compute the WCET is slightly different.

where Ĵk is computed using (7) and B̂i is computed using
(10). A suitable starting value for the recurrence relation given
above is w0

i = Ci+ADi. This relation keeps on iterating until
wn+1
i = wni or Ji+wn+1

i +Ci > Di, which is the case when
the message is not schedulable. If the message is schedulable
its WCRT is given by (9).

However, as we established in section V the computed
additional jitter for µi now impacts all the messages with
lower priority than i and therefore we have to re-compute the
WCRT4 for all lower priority messages as well.

The process used to re-compute WCRT for the messages
remains the same as described in sections VI-A and VI-B.
A simple procedure is used to find the WCRT by computing
additional delay first (for all messages susceptible to priority
inversion) and then computing the WCRT for all of the
messages, as shown in algorithm 2.

Example 2. In section V we showed, with the aid of an
example, how the additional delay of a message manifests
itself as a jitter for lower priority messages and how existing
analyses fail to integrate the same. We return to the same
example to illustrate how the analysis developed in this paper
integrates the additional delay and the additional jitter. The
message µ1 is blocked by µ5 and therefore the additional
delay for µ1 calculated using equation (6) is 4C. The WCRT

4It is important to note that the additional delays effectively increase the
jitter of affected messages, and this then leads to higher interference and a
larger computed response time. However, in practice, the messages cannot
obtain their maximum jitter (additional delays) all at the same time and
therefore the analysis can be pessimistic. An improvement to the analysis
is to upper bound the WCRT by the longest busy period at the lowest priority
level, since no response time can be larger than that with any non-idling
policy.

for µ1 computed by equation (13) is 5C. Similarly, the
WCRT of message µ5 when computed using equation (11)
(by accounting for the additional jitter of message µ1) is 6C,
which can be verified from figure 2.

VII. COMPARATIVE EVALUATION

The analysis developed in this paper is compared against
the existing analyses which do not account for priority inver-
sion, and the analysis developed in [3] which accounts for
priority inversion. The case-study in this paper assumes 3 or
more transmission buffers on each CAN controller, with non-
abortable transmission requests.

A. SAE benchmark

The evaluation of the analysis developed in this paper is
done by comparing against SAE benchmark results published
in [3] and in [15]. The SAE benchmark, see [15], [3] for
details, describes a message set mapped on to seven different
CAN controllers in a prototype car and the requirements for
the schedulability of the messages. The network connecting
the car subsystems handles 53 periodic and sporadic real-time
signals. The signals have been grouped and the entire set has
been reduced to 17 messages (for details, refer to [15]). To
analyse the schedulability of the message set at 250 kbps we
compute the worst-case transmission time for this bus-speed,
which for consistency is computed as in [3]. The results of the
comparative WCRT analyses have been depicted in figure 4.
The message set is schedulable with the analysis given in [3]
and with the analysis provided in this paper. However, a
significant difference in the response time computed by the
analysis in this paper and the analysis in [3] can be observed
in figure 4. The reason for such a difference is that the analysis



0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

 

 

Frame ID

W
C

R
T

(m
s
e

c
)

16 buffers

without buffer constraints

20 buffers

12 buffers

Figure 5. WCRT on a typical 125 kbits/s automotive body network (assuming each CAN controller has 12, 16 and 20 transmission buffers and cancellation
of transmit request is not possible) computed using analysis which does not account for priority inversion (lower curve) and analysis developed in this paper.

in [3] does not consider the number of transmission buffers
and computes the additional delay of the messages using the
lowest priority message from the message set mapped onto
that CAN controller, thus resulting in a pessimistic WCRT.
Moreover, it has been established in [12] and this paper that
the number of transmission buffers does have an effect on the
WCRT. Applying the criteria developed for priority inversion
in this paper we find only one message in the benchmark may
suffer from priority inversion (ID = 1), since there is only
one CAN controller that has more than three messages mapped
to it (see message mapping details in [3]). Thus, the WCRT
only increases for the message with ID = 1 as the rest of the
messages are safe from priority inversion and they only take
into account the additional jitter of the message with ID = 1.
The worst-case for message ID = 1 is when the transmission
buffers are filled with messages of ID = 8, 12, 15. The
first message to transmit from the buffers is then ID = 8,
which contributes towards the worst-case additional delay for
message ID = 1, as in the worst-case it may have to wait for
higher priority messages from other CAN controllers to be
transmitted first (i.e. ID = 2, 3, 4, 5, 6, 7 contribute additional
delay, computed using equation (6)).

B. Automotive body network

The limitation of the SAE benchmark is that it is out-
dated with respect to current in-vehicle systems. Moreover,
the SAE benchmark has only one node with more than 3
messages mapped onto it, thus making it difficult to compare
the analyses. Therefore, we illustrate the new analysis on
an typical 125Kbit/s automotive body network. To generate
a realistic test configuration we used the Netcarbench [16]
benchmark generator. The generated periodic message set
under study consists of 79 CAN messages mapped over
17 ECUs with deadlines equal to periods and data payload

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

CAN controller ID

N
u

m
b

e
r 

o
f 

m
e

s
s
a

g
e

s

 

 
Number of messages mapped
Number of CAN controller buffers

Figure 6. Figure showing number of messages mapped onto each CAN
controller. The CAN controllers with more messages than the number of
transmission buffers are susceptible to priority inversion.

ranging from 1 to 8 bytes. The total periodic load is equal
to 64.26%. Figure 6 shows the message load distribution
over the ECUs highlighting the ECUs with more than three
messages susceptible to priority inversion, in the case where
each node has three buffers. Figure 5 shows the worst-case
response time of the CAN messages with and without priority
inversion. We observe the impact on the WCRT of messages
when priority inversion is taken into account. For instance, the
message set is unschedulable when 3 transmission buffers per
node is considered. Moreover, in figure 5, the WCRT for the
message with ID=32 when considering 12 transmission buffers
raises from 30.64ms without priority inversion to 66.29ms.
The underlying reason for such an increase in the WCRT is
the additional delay of 19.46ms encountered by frame ID=32.
This is because the frame which is blocking message ID=32
in the worst-case scenario has ID=69 and the number of
frames on other ECUs having ID between ID=69 and ID=32
is 27. Therefore, in the worst-case additional delay scenario,



27 messages may be transmitted before message ID=69 could
be transmitted and then subsequently release the buffer for
message ID=32.

We also note that the choice of priorities greatly influences
the amount of additional delay. For example, if the priorities
were such that the message blocking the message with ID=32
in worst-case had ID=44, then the number of messages on
other ECUs blocking message ID=32 would have been reduced
to 10 from 27, resulting in a smaller additional delay.

VIII. CONCLUSION

The paper provides an analytical model of schedulability
analysis for CAN controllers when the transmission requests
cannot be aborted. The model developed in this paper provides
understanding of the consequences of architectural limitations
in CAN. Here, we derive a more realistic response time
analysis in the typical case where controllers have three or
more transmission buffers and do not possess the ability to
cancel transmission requests. This analysis is of particular
interest to automotive sector where multiple Tier 1 suppliers
provide ready-to-use ECUs in an automobile. The lack of
knowledge at system design level about the limitations of
the CAN controller used or device driver provided by tier
1 suppliers can have serious consequences. A first follow-
up to this paper is to come up with an analysis valid in the
arbitrary deadline case. Another direct follow-up to this study
is to investigate the case where, due to a larger message copy
time, the nodes are not always able to fill empty buffers with
ready messages in time for the next arbitration. The choice of
the priorities has a direct effect on the additional delay due to
requests that cannot be aborted. Therefore, in a future work,
we aim to develop a priority assignment algorithm based on
the schedulability test in this paper, which could reduce the
amount of additional delay in the case where a message suffers
from priority inversion. Also, we will study the choice of
offsets on ECUs so that messages are not released at the same
moment, reducing priority inversion in the CAN controller.

ACKNOWLEDGMENTS

The authors would like to thank Reinder J. Bril (Eindhoven
University of Technology) for the useful discussions on an
earlier version of this paper.

REFERENCES

[1] N. Navet, Y.-Q. Song, F. Simonot Lion, and C. Wilwert, “Trends in
Automotive Communication Systems,” Proceedings of the IEEE, vol. 93,
pp. 1204–1223, Jun 2005.

[2] P. Marti and, A. Camacho, M. Velasco, and M. El Mongi Ben Gaid,
“Runtime Allocation of Optional Control Jobs to a Set of CAN-
Based Networked Control Systems,” IEEE Transactions on Industrial
Informatics, vol. 6, pp. 503–520, November 2010.

[3] M. D. Natale, “Evaluating message transmission times in Controller
Area Networks without buffer preemption,” in 8th Brazilian Workshop
on Real-Time Systems, 2006.

[4] AUTOSAR, “Specification of CAN driver.” Autosar Release 4.0 Rev1.
Available at http://www.autosar.org, 2009.

[5] K. Tindell, A. Burns, and A. Wellings, “Calculating Controller Area
Network (CAN) message response times,” Control Engineering Practice,
vol. 3, no. 8, pp. 1163 – 1169, 1995.

[6] R. Davis, A. Burn, R. Bril, and J. Lukkien, “Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-
Time Systems, vol. 35, pp. 239–272, 2007.

[7] M. Grenier and N. Navet, “Fine-tuning MAC-level protocols for op-
timized real-time QoS,” IEEE Transactions on Industrial Informatics,
vol. 4, pp. 6 –15, February 2008.

[8] H. Zeng, M. Di Natale, P. Giusto, and A. Sangiovanni-Vincentelli,
“Using Statistical Methods to Compute the Probability Distribution of
Message Response Time in Controller Area Network,” IEEE Transac-
tions on Industrial Informatics, vol. 6, pp. 678 –691, November 2010.

[9] H. Hansson, T. Nolte, C. Norstrom, and S. Punnekkat, “Integrating Relia-
bility and Timing Analysis of CAN-Based Systems,” IEEE Transactions
on Industrial Electronics, vol. 49, pp. 1240–1250, Dec. 2002.

[10] A. Meschi, M. D. Natale, and M. Spuri, “Priority inversion at the
network adapter when scheduling messages with earliest deadline tech-
niques,” in 8th Euromicro Workshop on Real-Time Systems, pp. 243–248,
June 1996.

[11] M. D. Natale, “Understanding and using the Controller Area Network.”
Handout of a lecture at U.C. Berkeley available at http://inst.eecs.
berkeley.edu/~ee249/fa08/, October 2008.

[12] D. A. Khan, R. J. Bril, and N. Navet, “Integrating hardware limitations
in CAN schedulability analysis,” in Wip paper at the 8th IEEE Inter-
national Workshop on Factory Communication Systems (WFCS 2010),
pp. 207–210, May 2010.

[13] R. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Controller Area
Network (CAN) schedulability Analysis with FIFO queues,” in 23rd
Euromicro Conference on Real-Time Systems (ECRTS), pp. 45–56, 5-
8th July 2011.

[14] R. Davis and A. Burns, “Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems,”
Real-Time Systems, vol. 47, pp. 1–40, 2011.

[15] K. Tindell and A. Burns, “Guaranteeing message latencies on Controller
Area Network (CAN),” in Proceedings of 1st international CAN confer-
ence, pp. 1–11, 1994.

[16] C. Braun, L. Havet, and N. Navet, “NETCARBENCH: a benchmark for
techniques and tools used in the design of automotive communication
systems,” in 7th IFAC International Conference on Fieldbuses and
Networks in Industrial and Embedded Systems, pp. 321–328, 2007.
Available at http://www.netcarbench.org.


