
Analysis-Runtime Co-design for
Adaptive Mixed Criticality Scheduling

Iain Bate, Alan Burns, Robert Davis,
Real-Time Systems Research Group, University of York, UK

◼ Focus of this research
◼ Runtime scheduling protocols and their

schedulability analysis
◼ Traditional approach

◼ Runtime protocol designed first
◼ Typically this is done without considering

the difficulties involved in providing
analysis for it

◼ Schedulability analysis comes later, often in
the form of a simple tractable test that is
sufficient, but not exact

◼ Subsequent work then tends to focus on ever
more precise analysis, trading off
complexity for greater precision

◼ Finally, exact analysis, if it can be developed
at all, is often intractable, and may also be
quite difficult to understand

2

Background: Analysis-Runtime Co-design

Runtime Protocol

Simple Analysis

Complex Analysis

Exact Analysis

◼ Industrial perspective
◼ Industry has a strong preference for simple

solutions
◼ Simple analysis may well be:

“good enough for industrial use”
◼ Marginal gains of more complex analysis may

not be worthwhile, given that it is usually
much harder to understand and to build upon

◼ Mantra: “Don’t let the perfect be the
enemy of the good”
◼ Often attributed to Voltaire
◼ More likely attributable to Charles-Louis de

Secondat, Baron de La Brède et de
Montesquieu

◼ "Le mieux est le mortel ennemi du bien" or
“The better is the mortal enemy of the good”

3

Background: Analysis-Runtime Co-design

Runtime Protocol

Simple Analysis

Complex Analysis

Exact Analysis

◼ Basic idea
◼ Retain the simple analysis along with the

schedulability guarantees that it provides
◼ Refine the runtime protocol so that it has

improved performance with respect to other
important metrics while still complying
with the assumptions of the analysis

4

Background: Analysis-Runtime Co-design

Modified
Runtime Protocol

Simple Analysis

Original
Runtime Protocol

Improved runtime performance

◼ System model
◼ Tasks are characterized by their criticality level either HI or LO
◼ LO-criticality tasks have a single LO-criticality estimate of their WCET, Ci(LO)
◼ HI-criticality tasks have an additional HI-criticality estimate Ci(HI)

◼ Timing Assurance Requirements
◼ Requirement R1: (Normal behaviour) If all jobs of the tasks comply with their LO-

criticality WCET estimates Ci(LO), then all jobs must be guaranteed to meet their
deadlines.

◼ Requirement R2: (Abnormal behaviour) If a job of a HI-criticality task executes for
its LO-criticality WCET estimate Ci(LO) without completing, then only jobs of HI-
criticality tasks are required to meet their deadlines.

5

Mixed Criticality Systems

◼ Runtime protocol for AMC
◼ Based on Fixed Priority Pre-emptive Scheduling
◼ System starts in normal mode where all tasks can release jobs
◼ If a HI-criticality job executes for its Ci(LO) without completing then the system

enters degraded mode
◼ In degraded mode, HI-criticality tasks can release new jobs, whereas new jobs of

LO-criticality tasks are abandoned and do not execute
◼ On an idle instant, the system returns to normal mode

6

Adaptive Mixed Criticality (AMC)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Task 1 (LO)

Task 2 (HI)

Task 3 (HI)

Original AMC scheme

Degraded modeNormal mode Normal mode

◼ Key concept in the analysis of fixed priority pre-emptive scheduling
◼ Priority level-i busy period

◼ This is a contiguous interval of time during which jobs of tasks of priority i or higher
execute

◼ It starts at a time s[i] when a job of a task of priority i or higher is released and there
are no jobs of tasks of priority i or higher that currently have any execution pending

◼ It ends at the earliest time t[i] after its start s[i] when there are no jobs of tasks of
priority i or higher that have execution remaining that were released strictly before the
end time t[i]

◼ Useful properties
◼ Longest priority level-i busy period upper bounds the worst-case response time of the

task at priority i

7

Schedulability Analysis: Concepts

◼ Normal behaviour

◼ Abnormal behaviour

8

Analysis for AMC: AMC-rtb test

1. All interfering jobs of higher priority
HI-criticality tasks can execute for their Cj(HI)

2. Jobs of higher priority LO-criticality tasks that are
released by Ri(LO) as measured from the start
of the busy period can cause interference

3. Pessimistic: Once a single
HI-criticality job executes for its
Cj(LO) without completing, then
no more jobs of LO-criticality
tasks can be released

◼ De-facto standard test for AMC
◼ Published in RTSS 2011
◼ Built upon by many subsequent papers,

which extended the original work
◼ Performance of the AMC-rtb test is close

to that of more complex tests, such as
AMC-max

◼ AMC-rtb test is however more suitable for
industrial use due to its simplicity and
effectiveness

◼ Studies into the use of AMC (based on the
AMC-rtb test) have been done by a major
aerospace company: Rolls Royce Control
Systems on a Full Authority Digital
Engine Controller (FADEC)

9

Analysis for AMC: AMC-rtb test

◼ Aim is to reduce the time spent in degraded mode
◼ Reducing how often degraded mode is entered
◼ Waiting longer before entering degraded mode in the first place
◼ Exiting degraded mode quicker

◼ To achieve the main goal: abandon far fewer LO-criticality jobs

10

What can we do to improve upon the
AMC runtime protocol?

Normal mode (R1) Abnormal mode (R2)

Original AMC runtime protocol

Degraded mode

Modified AMC runtime protocol

Degraded mode
Delay entry Earlier exit

Notice the difference between abnormal
mode, which indicates when different
requirements apply, and degraded mode,
which indicates a runtime behaviour

◼ Modify the runtime protocol to closely follow the analysis
◼ Allow jobs of HI-criticality tasks to execute for their Ci(HI), and also permit LO-

criticality tasks to release jobs until some job of a HI-criticality task i reaches a time
Ri(LO) since the start of the priority level-i busy period in which it was released

◼ Key point: Trigger on response times rather than execution times
◼ The system starts in normal mode where all tasks can release jobs
◼ If an active job of a HI-criticality task i reaches a time equal to its Ri(LO) after the

start of the priority level-i busy period in which it was released then the system enters
degraded mode where only HI-criticality tasks can release jobs

◼ When a job of some HI-criticality task j completes and there is no active job of any
other HI-criticality task k that has reached a time equal to its Rk(LO) after the start of
the priority level-k busy period in which it was released then the system returns to
normal mode

11

How can we improve upon the original AMC runtime
protocol?

Proof in the paper that the AMC-rtb test holds for this modified AMC runtime protocol

◼ Advantages
◼ Compatible with the AMC-rtb schedulability test and retains its guarantees
◼ For any given scenario, entry into degraded mode cannot be earlier with the modified

protocol, since Ri(LO) is the latest that the transition could occur when triggering a
change to degraded mode based on execution times

◼ Typically, entry into degraded mode is much later and is often not required at all
◼ Further, exit from degraded mode is typically much earlier than waiting for an idle

instant
◼ Automatically takes advantage of any gain time produced when interfering jobs

execute for less than their worst-case execution time
◼ Also automatically takes advantage of non-worst-case patterns of job arrivals from

higher priority tasks (for example sporadic behaviours and periodic releases that are
not synchronized, i.e. not at a critical instant)

◼ Disadvantages
◼ Exact schedulability is dominated by (i.e. worse than) that for the original AMC

runtime protocol
◼ Not compatible with the improved but still sufficient AMC-max schedulability test

12

Pros and Cons of the modified AMC runtime protocol

◼ Static Slack
◼ Increasing Ci(LO) as far as possible for each HI-criticality task, which delays entry

into degraded mode for the original runtime protocol and also for the modified
runtime protocol via increased Ri(LO) values

◼ Gain Time
◼ Gain time occurs when a job executes for less than its execution time budget
◼ Explicitly accounting for gain time and transferring it to the next lower priority task

can improve the performance of the original runtime protocol
◼ Gain time is automatically taken care of by the modified protocol, since it triggers on

response times
◼ Lazy Execution

◼ Last chance opportunity for LO-criticality jobs that would otherwise be abandoned in
degraded mode to run via a separate background priority queue

◼ Not appropriate for all systems as it can increase blocking effects and impacts mutual
exclusion primitives that are based on priorities

13

Enhancements to AMC scheduling schemes

◼ Configuration
◼ Generated 500 synthetic task sets with utilization 0.8 that were schedulable according

to AMC-rtb, but not schedulable under FPPS as a single-criticality system
◼ Task periods used were either semi-harmonic (typical of automotive and avionics

systems) or non-harmonic
◼ Ci(HI) = 2 Ci(LO)
◼ At runtime, jobs had variable execution times with a probability of exceeding Ci(LO)

of 0.01% (i.e. approx. 1 in 10,000 jobs of HI-criticality tasks exceed their Ci(LO))
◼ Simulation run for each task set was 1013 time units, enough for 106 periods of the

longest task

◼ Performance metrics
◼ HDM Number of HI-criticality task deadline misses – this was always zero, so is not

shown on the graphs
◼ NiD Number of times degraded mode was entered
◼ TiD Total time spent in degraded mode
◼ JNE+LDM Number of LO-criticality jobs that were either not executed or missed

their deadlines 14

Scenario-based Evaluation

◼ Comparison between different families of scheduling schemes
◼ AMC-RA modified runtime protocol with exit from degraded mode on an idle instant
◼ AMC-RH modified runtime protocol with fast exit from degraded mode
◼ AMC+ original runtime protocol with exit from degraded mode on an idle instant
◼ BP Bailout Protocol – based on AMC+ with a faster return to normal mode

◼ Variants
◼ S (Static Slack) e.g. AMC-RAS, AMC-RHS, AMC+S, BPS
◼ G (Gain time) e.g. AMC+SG, BPSG
◼ L (Lazy execution) AMC-RASL, AMC-RHSL, AMC+SGL, BPSGL

15

Scheduling Schemes

◼ Box and whisker plots

16

Presentation of results

50-percentile (median)

5-percentile

95-percentile

75-percentile (upper quartile)

25-percentile (lower quartile)

◼ NiD% (Number of times degraded mode entered)

17

Results
1. Number of times degraded mode entered
reduced to 16.8% and 19.9% respectively of
the mean values for the original protocol

Semi-harmonic periods Non-harmonic periods

Modified AMC-RH

Original AMC+

◼ TiD% (Total time in degraded mode)

18

Results

Semi-harmonic periods Non-harmonic periods

Modified AMC-RH

Original AMC+

2. Total time in degraded mode reduced to
1.7% and 4.1% respectively of the mean
values for the original protocol

◼ JNE%+LDM% (LO-criticality jobs not executed or missed deadline)

19

Results

Semi-harmonic periods Non-harmonic periods

Modified AMC-RH

Original AMC+

3. LO-criticality jobs not executed or missed
deadline reduced to 2.5% and 8.7% respectively
of the mean values for the original protocol

◼ RTOS track busy period start times
◼ Need the start time s[i] of each currently active priority level-i busy period for all

priority levels corresponding to HI-criticality tasks
◼ Track these start times via O(1) operations at each job release
◼ When a new job of task i is inserted into the run queue then if it is inserted at the

head of the run queue s[i] = current time (i.e. the release time of the job) otherwise the
busy period start time is inherited, s[i] = s[k], from that of the task k that is
immediately ahead of task i in the run queue (i.e. next higher priority active task)

◼ RTOS track response time expiries
◼ Require monitoring of response time expiry for all active jobs of HI-criticality tasks
◼ Similar to monitoring deadline expiry and can be integrated with it
◼ It can be implemented using a single timer interrupt and an expiry queue
◼ O(log n) operations at each job release (for queue insertion)
◼ O(1) operations to handle response time expiry (e.g. to switch to degraded mode)
◼ O(1) operations at job completion (e.g. to switch back to normal mode)

20

Implementation of the modified AMC runtime protocol

◼ Retains the schedulability guarantees afforded by the AMC-rtb test
◼ For systems passing the AMC-rtb test, all tasks meet their deadlines according to the

requirements R1 and R2 placed on Mixed Criticality Systems
◼ Substantial improvements in runtime metrics vs original protocol

◼ Reduces the number of times that degraded mode is entered (5-6 fold reduction)
◼ Reduces the total time spent in degraded mode (24-60 fold reduction)
◼ Reduces the number of LO-criticality jobs that are abandoned or miss their deadlines

(11-40 fold reduction)
◼ Larger of these improvements were observed with semi-harmonic periods typical of

automotive and avionics systems
◼ Automatically benefits from gain time and non worst-case job release patterns

◼ Suitable for use by industry
◼ Based on the simple yet effective AMC-rtb test and its guarantees
◼ Substantial improvements in runtime performance, specifically a large reduction in

the number of abandoned LO-criticality jobs
◼ Similar implementation overheads and complexity to policing task deadlines

21

Conclusions:
Modified AMC runtime protocol

◼ Encourage other researchers to explore the idea of
Analysis-Runtime Co-design
◼ Significant research effort typically goes into deriving improved schedulability tests

often for marginal gains
◼ Let’s not forget that other aspects are also important to industry
◼ It can be worthwhile using simple analysis and improving the runtime protocol

instead!

22

And finally…

23

Discussion and Questions?

rob.davis@york.ac.uk

