
Memory Architectures for NoC-Based 
Real-Time Mixed Criticality Systems
!
 
	
 	
 Neil Audsley 
 
	
 	
 Real-Time Systems Group 
	
 	
 Computer Science Department
 University of York
 York 
	
 	
 United Kingdom 

2011-12
!1

Overview

§ Motivation: 
 Examine provision of memory hierarchy for MC
!

§ Structure: 
 1. A Story  
 2. Memory Hierarchy  
 3. Colourful Digression 
 4. Issues / Requirements 
 5. Memory Tree for NoC

!2

A Story ….

!3

Data Good / Bad

C
P
U

M
E
M
O
R
Y

C
P
U

C
P
U

C
P
U

Access to memory strictly TDMA

Not allowed to compute application if dont have TDMA slot

Fundamental Trade-off

!4

Efficient Resource Usage  

v  
 

Physical Resource Separation

§ Must maintain Safety Properties - stop bad things happening
!Hard for memory

!Issues of single fault (bit flip) causing system failure, correct MMUs …
!Need performance

!Especially as we move to many / multi-core architectures

Memory Hierarchy

!5

PROCESSOR

REGISTERS

CPU CACHE

PHYSICAL MEMORY (RAM / DDR etc)

SOLID STATE MEMORY (Non-volatile Flash-based memory)

Embedded
Real-Time
Systems

Increasing
Latency

Worst-­‐Case	
 Execu/on	
 Time	
 	

increasingly	
 hard	
 to	

calculate:	

	
 -­‐	
 Caches	

	
 -­‐	
 Shared	
 memory	

	
 -­‐	
 File	
 system	
 access

Memory and Mixed Criticality

§ Sufficient physical partitioning to meet safety requirements
!Impact upon system architecture
!

§ MC analysis - WCET up as criticality increases
! Exploit “pessimism” in modelling / analysis for WCET

• System architecture unchanged
! And / Or allow architecture to provide increased physical separation as

criticality increases
• Increase conservatism - increase latencies / end-to-end memory access times

!6

Intel Xeon Phi (Knights Landing)

§ Regular
structure
!

§ Replicated
CPU unit
!

§ Not suited
to shared
bus
!

§ Many
other
examples

!7

Network-on-Chip Architecture

§ Network is mesh
!Arbiters / Routers
!Local connections

between CPU and
arbiter 

§ Packet Switched
! Worm-hole routing

prevalent
!

§ CPU local memory
! Often assume local

memory big enough for
all code / data

• no cache misses

!8

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPUCPU CPU CPU CPU

CPU

CPU

CPU

Network-on-Chip Architecture - External Memory

§ Memory transactions
via contended
network

!9

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPUCPU CPU CPU CPU

CPU

CPU

CPU

 SDRAM

Network-on-Chip Architecture - Memory Tree

§ CPU has connections to
!inter-CPU mesh
!memory tree

!
§ Memory requests are

multiplexed through the tree
!End-to-end depends on arbitration

policy at MUX
!

§ Full-duplex
!

§ Supports CPU cache / SPM
operations

!reduces local memory sizes

!10

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Arbitration
§ ALTERNATE policy

!Requests arriving one same clock
cycle take turns

!Fixed arbitration pattern

!11

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Arbitration
§ ALTERNATE policy

!Requests arriving one same clock
cycle take turns

!Fixed arbitration pattern

!12

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Arbitration
§ ALTERNATE policy

!Requests arriving one same clock
cycle take turns

!Fixed arbitration pattern

!13

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Arbitration
§ ALTERNATE policy

!Requests arriving one same clock
cycle take turns

!Fixed arbitration pattern

!14

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Arbitration
§ ALTERNATE policy

!Requests arriving one same clock
cycle take turns

!Fixed arbitration pattern

!15

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Arbitration
§ ALTERNATE policy

!Requests arriving one same clock
cycle take turns

!Fixed arbitration pattern
!

§ Latched in memory controller
during:

! cycle 2
! cycle 3
! cycle 4
! cycle 5 - exhibits WC

!16

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Arbitration
§ PRIORITISE policy

!Set arbitration (dynamically)
according to system requirement

!Eg. criticality
!

! High
! Medium
! Medium
! Low
!

!Secondary arbitration for equal
criticality, eg. ALTERNATE

!Can be set dynamically
• eg. at context switch
• eg. per memory request

!17

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Arbitration
§ PRIORITISE policy

!Set arbitration (dynamically)
according to system requirement

!Eg. criticality
!

! High
! Medium
! Medium
! Low
!

§Danger of Priority Inversion

!18

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Arbitration
§ PRIORITISE policy

!Set arbitration (dynamically)
according to system requirement

!Eg. criticality
!

! High
! Medium
! Medium
! Low
!

§Danger of Priority Inversion

!19

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Arbitration
§ PRIORITISE policy

!Set arbitration (dynamically)
according to system requirement

!Eg. criticality
!

! High
! Medium
! Medium
! Low
!

§Danger of Priority Inversion

!20

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Arbitration
§ PRIORITISE policy

!Set arbitration (dynamically)
according to system requirement

!Eg. criticality
!

! High
! Medium
! Medium
! Low
!

§Danger of Priority Inversion

!21

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Arbitration
§ PRIORITISE policy

!Set arbitration (dynamically)
according to system requirement

!Eg. criticality
!

! High
! Medium
! Medium
! Low
!

§Danger of Priority Inversion
!Investigating priority inheritance

across a MUX

!22

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Timing - Worst-Case
§ Worst-case

!2 cycles to cross each MUX from CPU to SDRAM
!Delay at external memory controller & physical

SDRAM
!1 cycle to cross each MUX from SDRAM to CPU
!

§ End-to-end depends on arbitration policy
at MUX & SDRAM scheduling

! defines “blocking time” at each MUX
!ALTERNATE  

- max 1 cycle per MUX on request

!23

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Timing - Worst-Case
§ CPU blocked on a cache miss

!typical characteristic of CPUs
!limits contending memory transactions
!

§ SPM loads must complete before
next can be issued

!ie. blocking

!24

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Timing - Worst-Case
§ Burst requests supported

!One memory request from CPU converted into a
number of sequential accesses at memory
controller

!Worst-case time in SDRAM for sequential requests
much better than random

!Currently 1/2/4/8 supported

!25

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Timing - Worst-Case
§ Burst requests supported

!One memory request from CPU converted into a
number of sequential accesses at memory
controller

!Worst-case time in SDRAM for sequential requests
much better than random

!Currently 1/2/4/8 supported

!
§ Bandwidth control within memory 

 memory controller (TUE)
!Effectively multiple channels / bandwidths can be

set up
• Currently max 4

!Note still one channel between memory controller
and SDRAM

!26

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

Memory Tree Timing - Worst-Case
§ Dual port “cache” provided between

CPU and MUX
!Allow CPU and memory tree to access local

memory at same time

!27

CPUCPUCPU

 MUX MUX

 MUX

CPU

 SDRAM

§ Being extended to limit
bandwidth of request
issued by CPU

!Mechanism can also be
used to limit effect of
“babbling idiot”

Xilinx
MicroBlaze

Bluetiles
Router

Home
Interface

Cache
Control

FSL1

FSL0

SPM

Data
Cache

Instru
ction

Cache
ILMB

DLMB

MUX

Cache Data Path
External Memory Bus FIFO Buffer

Control Path

Bluetree
Multiplexer

Server0/1
Interface

§ 16 CPU
!

§ Mesh, tree
in middle

!28

NoC & Overlayed Memory Mesh

!29

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPUCPU CPU CPU CPU

CPU

CPU

CPU

NoC & Overlayed Memory Mesh

!30

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPUCPU CPU CPU CPU

CPU

CPU

CPU

 SDRAM

 MUX

 MUX MUX

 MUX

 MUX

 MUX

 MUX

 MUX

 M

U
X

 M

U
X

 M
U

X
 M

U
X

 MUX

 MUX
 MUX

Summary

§ Mixed criticality memory systems based on predictable
memory systems (physical separation)
!

§ Can support:
!Per-latency analysis
!Bandwidth analysis - (current work) 

more amenable to improved average case

!31

Summary

§ Mixed criticality memory systems based on predictable
memory systems (physical separation)
!

§ Can support:
!Per-latency analysis
!Bandwidth analysis - (current work) 

more amenable to improved average case
!

§ Mixed Criticality Systems:
!a safety-critical system with a high performance average case system trying

to get out?

!32

