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Overview

§ Motivation: 
     Examine provision of memory hierarchy for MC 
!

§ Structure: 
     1.   A Story  
     2.   Memory Hierarchy  
     3.   Colourful Digression 
     4.   Issues / Requirements 
     5.   Memory Tree for NoC
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A Story ….
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Fundamental Trade-off
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Efficient Resource Usage   

v    
 

Physical Resource Separation

§ Must maintain Safety Properties - stop bad things happening 
!Hard for memory 

!Issues of single fault (bit flip) causing system failure, correct MMUs … 
!Need performance 

!Especially as we move to many / multi-core architectures



Memory Hierarchy
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Memory and Mixed Criticality

§ Sufficient physical partitioning to meet safety requirements 
!Impact upon system architecture 
!

§ MC analysis - WCET up as criticality increases 
! Exploit “pessimism” in modelling / analysis for WCET 

• System architecture unchanged 
! And / Or allow architecture to provide increased physical separation as 

criticality increases 
• Increase conservatism - increase latencies / end-to-end memory access times
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Intel Xeon Phi (Knights Landing)

§ Regular 
structure 
!

§ Replicated 
CPU unit 
!

§ Not suited 
to shared 
bus 
!

§ Many 
other 
examples
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Network-on-Chip Architecture

§ Network is mesh 
!Arbiters / Routers 
!Local connections 

between CPU and 
arbiter 

§ Packet Switched 
! Worm-hole routing 

prevalent 
!

§ CPU local memory 
! Often assume local 

memory big enough for 
all code / data 

• no cache misses
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Network-on-Chip Architecture - External Memory

§ Memory transactions 
via contended 
network
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Network-on-Chip Architecture - Memory Tree

§ CPU has connections to  
!inter-CPU mesh 
!memory tree 

!
§ Memory requests are 

multiplexed through the tree 
!End-to-end depends on arbitration 

policy at MUX 
!

§ Full-duplex 
!

§ Supports CPU cache / SPM 
operations 

!reduces local memory sizes
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Memory Tree Arbitration
§ ALTERNATE policy 

!Requests arriving one same clock 
cycle take turns 

!Fixed arbitration pattern
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Memory Tree Arbitration 
§ ALTERNATE policy 

!Requests arriving one same clock 
cycle take turns 

!Fixed arbitration pattern

!12

CPUCPUCPU

    MUX     MUX

    MUX

CPU

  SDRAM



Memory Tree Arbitration
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Memory Tree Arbitration
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Memory Tree Arbitration
§ ALTERNATE policy 

!Requests arriving one same clock 
cycle take turns 

!Fixed arbitration pattern
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Memory Tree Arbitration
§ ALTERNATE policy 

!Requests arriving one same clock 
cycle take turns 

!Fixed arbitration pattern 
!

§ Latched in memory controller 
during: 

!    cycle 2 
!    cycle 3 
!    cycle 4 
!    cycle 5 - exhibits WC
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Memory Tree Arbitration
§ PRIORITISE policy 

!Set arbitration (dynamically) 
according to system requirement 

!Eg. criticality 
!

!    High 
!    Medium 
!    Medium 
!    Low 
!

!Secondary arbitration for equal 
criticality, eg. ALTERNATE 

!Can be set dynamically 
• eg. at context switch 
• eg. per memory request
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Memory Tree Arbitration
§ PRIORITISE policy 

!Set arbitration (dynamically) 
according to system requirement 

!Eg. criticality 
!

!    High 
!    Medium 
!    Medium 
!    Low 
!

§Danger of Priority Inversion
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Memory Tree Arbitration
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Memory Tree Arbitration
§ PRIORITISE policy 

!Set arbitration (dynamically) 
according to system requirement 

!Eg. criticality 
!

!    High 
!    Medium 
!    Medium 
!    Low 
!

§Danger of Priority Inversion 
!Investigating priority inheritance 

across a MUX 
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Memory Tree Timing - Worst-Case
§ Worst-case 

!2 cycles to cross each MUX from CPU to SDRAM 
!Delay at external memory controller & physical 

SDRAM 
!1 cycle to cross each MUX from SDRAM to CPU 
!

§ End-to-end depends on arbitration policy 
at MUX & SDRAM scheduling 

! defines “blocking time” at each MUX 
!ALTERNATE  

- max 1 cycle per MUX on request
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Memory Tree Timing - Worst-Case
§ CPU blocked on a cache miss 

!typical characteristic of CPUs 
!limits contending memory transactions 
!

§ SPM loads must complete before 
next can be issued 

!ie. blocking

!24

CPUCPUCPU

    MUX     MUX

      MUX

CPU

  SDRAM



Memory Tree Timing - Worst-Case
§ Burst requests supported 

!One memory request from CPU converted into a 
number of sequential accesses at memory 
controller 

!Worst-case time in SDRAM for sequential requests 
much better than random 

!Currently 1/2/4/8 supported
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Memory Tree Timing - Worst-Case
§ Burst requests supported 

!One memory request from CPU converted into a 
number of sequential accesses at memory 
controller 

!Worst-case time in SDRAM for sequential requests 
much better than random 

!Currently 1/2/4/8 supported 

!
§   Bandwidth control within memory 

  memory controller (TUE) 
!Effectively multiple channels / bandwidths can be 

set up 
• Currently max 4 

!Note still one channel between memory controller 
and SDRAM
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Memory Tree Timing - Worst-Case
§ Dual port “cache” provided between 

CPU and MUX 
!Allow CPU and memory tree to access local 

memory at same time
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§ Being extended to limit 
bandwidth of request 
issued by CPU 

!Mechanism can also be 
used to limit effect of 
“babbling idiot” 
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§ 16 CPU 
!

§ Mesh, tree 
in middle
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NoC & Overlayed Memory Mesh
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NoC & Overlayed Memory Mesh
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Summary

§ Mixed criticality memory systems based on predictable 
memory systems  (physical separation) 
!

§ Can support: 
!Per-latency analysis 
!Bandwidth analysis - (current work) 

more amenable to improved average case
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Summary

§ Mixed criticality memory systems based on predictable 
memory systems  (physical separation) 
!

§ Can support: 
!Per-latency analysis 
!Bandwidth analysis - (current work) 

more amenable to improved average case 
!

§ Mixed Criticality Systems:   
!a safety-critical system with a high performance average case system trying 

to get out?

!32


