
Safety Assurance Driven  
Problem Formulation for 

Mixed-Criticality Scheduling
Patrick Graydon, Mälardalens University"

Iain Bate, University of York"
"

First International Workshop on Mixed Criticality Systems

And now for something
completely different …

• Most MCS work is from
a real time perspective

• So … what does a
safety guy make of it?

!2

Vestal’s formulation

• Tasks τ1 … τn with periods Ti and deadlines Di

• ‘An ordered set of design assurance levels’  
ℒ={A, B, C, D} with A being the highest

• Ci,j gives the compute time for τi at level just

• Ci,A ≥ Ci,B ≥ Ci,C ≥ Ci,D

• Goal: ‘assure to level Li’ that each task τi ‘never
misses a deadline’

!3

Baruah and Burns
formulation

• Extends Vestal’s model with:

• Level-dependent periods Til (l > l′ ⇒ Til ≤ Til′)

• Level-dependent deadlines Dil (l > l′ ⇒ Dil ≤ Dil′)

• A criterion for when an overrun is over and we
can start executing less-critical tasks again  
(namely when the processor is next idle)

!4

Ekberg and Yi formulation

• Support reconfiguration more
generally

• ‘The system designer
[should] decide what it
means … to be in any one
criticality mode’

• DAG G defines system
modes and transitions

• Task τ1 is active in mode m
iff m ∈ τi

Mode 1: full
service

Mode 2:
sensors B
and C only

Mode 3:
critical tasks

only

… … … … …

!5

WCET confidence
monotonicity assumption

• All three formulations explicitly assume  
WCET confidence monotonicity:

• ∀ i : tasks, a, b : crit. levels ⦁ a > b ⇒ Ci,a ≥ Ci,b

• Is this true?

!6

Uncertainty in WCET

Aleatoric Epistemic
High Water
Mark Testing

Test coverage Tool correctness, configuration
management, measurement method

Probabilistic
Testing

Sample size,
chosen sigma

Tool correctness, CM, measurement
method, distribution suitability

Hybrid
Approaches

Test coverage Tool correctness, CM, measurement
method, analysis inputs

Static
Analysis

None Tool correctness, CM, tool inputs
(e.g. loop bounds)

!7

Horseshoes, hand grenades, &
WCET confidence monotonicity

• WCET confidence might not be monotonic

• Not clear how hybrid and probabilistic
approaches fit monotonicity assumption

• Maybe we don’t need strict monotonicity …

• Sometimes conservatism does buy confidence,
e.g. most HWM testing vs. most static analysis

• A little wording change might fix this problem

!8

Ask not what safety can do
for you …

• Safety standards vary
• Must satisfy common safety claims … and the

objectives of 61508, 50128, 178B/C, 26262, etc.

• But there are some common themes
• Derived software safety requirements
• SILs and process rigour
• Partitioning and integrity
• Survivability and graceful degradation

!9

Meaning of ‘critical’ is critical

• Criticality is not deadline,
period, or priority (directly)

• In Vestal’s formulation,
criticality level is SIL

• SILs are complex and
frequently misunderstood

• SIL is related to importance
and to confidence

• … but it is neither!

Safety
analyses

SIL determination

Risk
tables

Process
planning

Standard’s
recommendations

ISA’s guidance

Software process
(and design?)

!10

Survivability

• Provide essential services in
the event of attack or failure

• Might mean avoiding designs
that ‘go nonlinear’

• Might also mean
reconfiguration for a different
‘acceptable form of service’

• Ekberg and Yi call these
‘criticality modes’

Mode 1: 
full service

Mode 2: 
low

performance

Mode 3:
manual control

!11

Untangling ‘criticality’

• We humbly suggest one term per concept:
• Importance: the consequence of a task

overrunning its deadline (in a service mode)
• Confidence: the confidence (absence of

uncertainty) in a WCET limit or WCRT figure
• Service mode: the ‘acceptable form of service’

the system is to provide
• Mode of operation: how the operators are using

the system at a given time
!12

There are modes, and  
then there are modes

• Survivability and tolerating overruns share
similarities but there are important differences

• Reconfiguration to tolerate failures might:
• … involve loading new tasks into memory  

(e.g. onto a surviving IMA node)
• … involve blending output from new and old  

(e.g. when changing aircraft control laws)
• … be on a different time scale (secs, mins)

!13

Safety assurance

• Reconfiguration for survivability and tolerating
overruns have different assurance goals
• The former shows ‘graceful degradation’
• The latter shows ‘partitioning integrity’

• Mixing the two might make V&V harder
• We have to test each mode transition …  

… and each transition trigger …

• Suggestion: keep them separate
!14

To kill or not to kill?

• The path to recovery is not always clear

• E.g. Ekberg and Yi formulation specifies a DAG

• To never restart low-importance tasks following a
transient overload is … extreme

• Could be a catastrophe if important tasks depend
on ‘at least m-of-n service’ from less-important tasks

• Suggestion: explicit recovery with guarantees

!15

Conclusions

• We love MCS: we can have our cake and eat it, too

• Existing formulations could be improved (from a safety
assurance perspective)
• Relax WCET confidence monotonicity assumption

• Untangle the multiple meanings of ‘criticality’

• Separate ‘partitioning’ and ‘survivability’ mechanisms

• More rigorous treatment of recovery

• Next step: model safety argument surrounding MCS

!16

