
Mixed Criticality Scheduling in Time-Triggered
Legacy Systems

Jens Theis and Gerhard Fohler
Technische Universität Kaiserslautern, Germany

Email: {jtheis,fohler}@eit.uni-kl.de

Abstract—Research on mixed criticality real-time scheduling
has centered on an event-triggered (ET)/ priority-driven approach
to scheduling. Regarding the time-triggered (TT) approach, which
seems to have greater acceptability with certification authorities
for safety critical domains, only first results have been presented,
showing proof-of-concept of TT mixed criticality scheduling
algorithms and comparing their resource utilization guarantees
to those of ET ones. The algorithm is based on the offline
construction of two coordinated schedule tables and an online
mechanism. As a consequence, existing schedule tables for single
criticality, possibly certified, have to be discarded.

Here, we present an algorithm for the addition of mixed
criticality scheduling to legacy TT systems. It leaves the existing
schedule table unchanged, only provides analysis and adds a
simple online mechanism to handle the changed criticality.

I. INTRODUCTION

In many domains such as avionics, industrial control, or
health care, there is increasing demand for sharing computing
platforms among applications with different importance and
certification assurance levels. In the mixed criticality real-time
scheduling model of [7], it is assumed that in order to certify
a system as being correct, the certification authorities (CAs)
mandate certain assumptions about the worst-case behavior
of the system during runtime; these assumptions, e.g., for
execution time, are typically far more conservative than the
assumptions that the system designer would use during the
process of designing, implementing, and testing the system if
subsequent certification were not required. The difference in
pessimism between designer’s assumptions (likely at runtime)
and CAs’ mandate (most likely not at runtime) could be used
to add non-critical activities and increase utilization. However,
while the CAs are only concerned with the correctness of the
safety-critical part of the system, the system designer is respon-
sible for ensuring that the entire system is working correctly,
including the non-critical parts. The current body of work
in this area has focused on the event-triggered (ET)/priority-
driven approach to scheduling.

Current practice in many domains, including (the safety-
critical components of) automotive and avionics systems,
which must meet multiple assurance requirements up to the
highest criticality levels (e.g., DAL A in RTCA DO-178B or
SIL4 in EN ISO/IEC 61508), however, favors a time-triggered
approach (TT). In such TT systems, non-interference of
safety-critical components by non-critical ones is ensured by
strict isolation between components of different criticalities;
Although such isolation facilitates the certification of the

This work has been supported in part by the European project DREAMS
under project No. 610640.

safety-critical functionalities, it can cause very low resource
utilization.
A first result [1] shows proof-of-concept of mixed criticality
real-time scheduling based on the TT approach. It is based
on the offline construction of two coordinated schedule tables
and an online mechanism to handle a change in criticality.
In legacy TT systems, i.e. with existing, certified tables,
this algorithm cannot be applied as it requires existing
schedule tables to be changed, incurring substantial effort for
recertification. At runtime, the low-criticality schedule table
is executed until a high criticality job shows high criticality
behavior and then the system switches to the high criticality
schedule table. This solution shows a low runtime overhead
but at cost of inflexibility.
The ET approach mixed critical EDF with mode switches
was presented in [6]. In this approach, also two priority
tables are created based on the deadlines of the jobs. When
a high-criticality job exceeds its low criticality worst-case
execution time (WCET), the system is switched to high
criticality state with the high criticality priority table.

In this paper, we present a method to add the handling
of criticality changes to existing schedule tables for legacy
TT systems. It analyzes the existing table and properties of
the high-criticality job set offline. A simple online mechanism
then executes the jobs according to the existing table, manages
a change of criticality, and then continues to execute the high-
criticality job set. In case the existing schedule table is not
suitable for the given mixed criticality job set, indications for
its modification can be given. While in this case recertification
may become necessary, the efforts will be lower than recon-
struction of the schedule table from scratch.

Our method is based on slot-shifting [3] which was
originally designed to add flexibility to TT systems with
acceptable runtime overheads [5]. It takes the original task
set and a constructed scheduling table1as input. As the table
is constructed offline, complex constraints, such as distributed
systems, end-to-end deadlines, precedence, etc. can be con-
sidered. It analyzes the table and the constraints to determine
unused resources and leeways, which are represented as spare
capacities offline. These can be used to provide flexibility and
handle firm aperiodic tasks at runtime. Here, we build upon
the offline analysis part and spare capacities to handle changes
in criticality.

The remainder of this paper is structured as follows:
Section II presents terms and notation used in this paper.

1It does not depend on a particular offline table construction algorithm.

Afterwards, Section III shows the slot-shifting offline phase
for the mixed criticality job set. The results of the offline phase
are incorporated into the online phase, i.e. the actual runtime
scheduling, which is presented in Section IV. In Section V, we
recapitulate the results and the applicability of our solution.
Finally, Section VI concludes the paper.

II. TERMINOLOGY AND NOTATIONS

In this paper, we assume a dual-criticality system with
the criticality levels LO and HI. Unless otherwise defined,
we represent absolute times (e.g. release times) by lower
case variables and relative times (e.g. WCET) by upper case
variables.

The dual criticality jobs Ji with i ∈ {1, .., n} are charac-
terized by the 5-tuple 〈χi, ri, di, Ci(LO), Ci(HI)〉, with

• χi ∈ {LO, HI}: criticality level of job i

• ri ∈ R+: release time of job i

• di ∈ R+: absolute deadline of job i with di > ri

• Ci(LO): LO criticality WCET

• Ci(HI): HI criticality WCET

which is in line with the denomination in the work of
Baruah and Fohler [1]. For LO criticality jobs, we as-
sume Ci(LO) = Ci(HI), whereas for HI criticality jobs
Ci(LO) ≤ Ci(HI).

Slot-shifting [3] uses slots as granularity for scheduling
decisions. A slot s = i is the time interval [i; i+ 1). This
interval contains the worst case time to schedule jobs ∆tS
and the minimum guaranteed time to execute jobs ∆tE .
The length of ∆tS and ∆tE is determined by the designer
depending on the system under development. The WCET is
given as multiples of ∆tE . The length of a slot is defined as
|s| = ∆tS + ∆tE .

Another important concept of slot-shifting are capacity in-
tervals which are used to manage the execution of jobs. Section
III-A explains this concept in detail. The general notation of
capacity intervals is: start and end of a capacity interval Ii is
denominated by: start(Ii) and end(Ii), respectively. A capac-
ity interval Ii represents the time window [start(Ii); end(Ii)).
As a result, the length of a capacity interval Ii is calculated by
|Ii| = end(Ii) − start(Ii). Ic represents the current capacity
interval, i.e. in which capacity interval the current point in time
is located.

III. OFFLINE PHASE

In the offline phase of slot-shifting, we can resolve complex
constraints – e.g. precedence constraints – which is not the
scope of this paper. The interested reader is referred to [3].
Slot-shifting works on job-level, i.e. the instances of a periodic
task are scheduled as single jobs. Scheduling on job-level
allows for scheduling of time-triggered and event-triggered
tasks and jobs. In this section, we show how to determine
capacity intervals and how to calculate spare capacities which
form the basis for the slot-shifting runtime scheduler.

A. Capacity Intervals

We divide the schedule into disjoint capacity intervals
Ii with i ∈ {0, ..,m} based on the release times and deadlines
of the jobs. It is important to highlight that capacity intervals
are not identical to the execution windows, i.e. the time
between release and deadline of a job. In the following,
capacity intervals are briefly referred to as intervals. Each
deadline of a job marks the end end (Ii) of an interval Ii.
Each job Jk, k ∈ {1, .., n} is assigned to an interval with
end (Ii) = dk. Jobs with the same deadline belong to the
same interval. The earliest start time est (Ii) of an interval
Ii is determined by the minimum of all release times of jobs
assigned to this interval:

est(Ii) = min
∀Jk∈Ii

(rk) (1)

The start of an interval is determined by the maximum of
its earliest start time and the end of the previous interval:

start(Ii) = max (end(Ii−1), est(Ii)) (2)

The gaps between the determined intervals above are
defined as empty intervals, i.e. there is no job assigned to them.
An interval Ii is called independent if there is no interval Ie
with e < i and end(Ie) > est(Ii) and there is no interval Il
with i < l and end(Ii) > est(Il). The length |Ii| of an interval
is calculated by equation 3.

|Ii| = end(Ii)− start(Ii) (3)

Based on the observation that demand-based schedulability
tests need only to check intervals until deadlines of jobs
[2], capacity intervals, which partition considered demand
based on job deadlines, simplify the maintenance of demand
requirements and scheduling of the demand, respectively, at
runtime.

B. Spare Capacities

In the following, we explain the general concept of spare
capacities based on non-mixed-criticality jobs (as shown in
the original slot-shifting [3]). After that, we present how this
is applied to mixed criticality job sets. The spare capacity
sc(Ii) of an interval Ii represents the amount of available
resources within this interval after guaranteeing TT jobs. The
difference between the length of the interval and the amount
of demand of jobs assigned to this interval determines the
amount of available resources. Further, it is possible that the
demand within an interval is greater than the length of the
interval such that the spare capacity will be negative. In the
following, we show how spare capacities are calculated in
detail and in combination with section IV-A, we show the
consequences of negative spare capacities. We calculate spare
capacities beginning with the last interval Im until the first
interval I0.

Figure 1 shows an example to illustrate the calculation of
spare capacities. As shown in section III-A, we determine the

intervals I0− I4. In this example, we schedule the jobs as late
as possible to exemplify the calculation of spare capacities.
Jobs cannot be scheduled before their release time; otherwise,
the schedule is not feasible and the job set is not schedulable.
In the figure, time span α represents an independent interval.
The spare capacity of an independent interval is calculated by
the difference between the length of the interval and the sum of
WCETs of jobs assigned to this interval. Time span β shows an
empty interval, i.e. there are no jobs assigned to it, and hence,
the spare capacity of this interval is the length of the interval.
The consequences of negative spare capacities are illustrated
by time span γ. The amount of demand assigned to I2 is more
than the length of the interval. As a result, interval I1 has to
lend capacity to the succeeding interval I2. The consequence
of the negative spare capacity is called borrowing. Time span δ
shows the consequences of borrowing propagation, i.e. interval
I1 lent capacity to I2 such that I1 itself has to borrow capacity
from the earlier interval I0. Eventually, interval I0 is long
enough to lend capacity to I1 and schedule the jobs assigned
to I1. Thus, the spare capacity of I0 is non-negative.

Figure 1. Spare capacity calculation example: for simplicity of the example
without different criticality levels

We can test the schedulability based on the spare capacities,
under the condition of obeying release times and deadlines.
Spare capacities of independent intervals have to be non-
negative. Further, after borrowing and borrowing propagation
there must be an earlier interval with non-negative spare
capacity.
Equation (4) shows the calculation of spare capacities for
non-mixed-criticality jobs, which is in the following applied
to mixed criticality job sets. The calculation includes the
requirements described by Figure 1.

sc (Ii) = |Ii| −
∑
Jk∈Ii

Ck +min (sc (Ii+1) , 0) (4)

For the mixed criticality case, we use the calculations of
the spare capacities presented above. We calculate two spare

capacity values for each interval: scLO(Ii) and scHI(Ii). The
calculation of spare capacities is done by equations (5) and
(6). Spare capacities scLO(Ii) represent available capacities
based on designer’s assumptions, i.e. considering C(LO), with
all jobs. Additionally, scHI(Ii) represents available resources
based on CAs’ assumptions, i.e. considering C(HI), with only
HI criticality jobs.

scLO (Ii) = |Ii| −
∑
Jk∈Ii

Ck(LO) +min (scLO (Ii+1) , 0) (5)

scHI (Ii) = |Ii| −
∑
Jk∈Ii
∧χk=HI

Ck(HI) +min (scHI (Ii+1) , 0) (6)

As Figure 1 (intervals I0 and I4) shows, slot-shifting allows
for non-work-conserving scheduling based on spare capacities.
Further, slot-shifting allows for scheduling of strictly periodic
jobs, i.e. jobs that have to be executed directly at their periodic
release.

IV. ONLINE PHASE

At runtime, we execute mixed criticality jobs based on the
spare capacity in the current interval Ic and the deadlines of
the jobs. In this section, we present how to select the next
job for execution. Further, we show the update procedures for
spare capacities depending on the job execution.

A. Decision Mode and Selection Function

The decision mode of the slot-shifting runtime scheduler
is preemptive at slot borders. We use three ready queues:
RLO(t) = {Ji|ri ≤ t ∧ χi = LO} contains TT LO criticality
jobs. Further, RHI(t) = {Ji|ri ≤ t ∧ χi = HI} is used
for TT HI criticality jobs. An implementation with only one
queue is also possible, but for simplicity of explanation, we
will present the algorithm based on two queues. We define
R(t) := RLO(t)∪RHI(t) which represents all guaranteed jobs.
The scheduler selects the next executing jobs based on the
ready queues, the intervals and the spare capacities. In contrast
to standard slot-shifting, LO criticality spare capacities can be
negative in the current interval Ic. This can occur when a
HI criticality job executes for more than C(LO) and we have
to continue its execution. As long as the LO criticality spare
capacity in the current interval is negative, i.e. scLO(Ic) < 0,
we can only execute HI criticality jobs.
Based on these observations, we can distinguish the following
list of all possible decision cases at time t.

a) R(t) = {}: slot is idle because there are no ready jobs.

b) R(t) 6= {} ∧ scHI(Ic) > 0:

1) scLO(Ic) > 0:
We select the ready job with the earliest deadline
in R(t). Figure 2(a) illustrates this situation with an
example.

2) scLO(Ic) = 0:
We select the job with the earliest deadline in R(t)
because there are available resources for HI criticality
jobs and thus, no need to prioritize them. On the
contrary, there is no leeway for LO criticality demand

(a) RLO(t) = {J2}, RHI(t) = {J1},
scLO(Ic) > 0, and scHI(Ic) > 0

(b) RLO(t) = {J2}, RHI(t) = {J1},
scLO(Ic) = 0, and scHI(Ic) > 0

(c) RLO(t) = {J2}, RHI(t) = {J3},
scLO(Ic) < 0, and scHI(Ic) > 0

(d) RLO(t) = {}, RHI(t) = {J1},
scLO(Ic) > 0, and scHI(Ic) = 0

(e) RLO(t) = {J2}, RHI(t) = {J1},
scLO(Ic) ≤ 0, and scHI(Ic) = 0

Figure 2. Examples situation when selecting the next job for decision cases with R(t) 6= {} for an exemplary point in time t — J1, J3: HI criticality jobs,
J2: LO criticality job

and thus, we have to select a guaranteed job. Figure 2(b)
illustrates this situation with an example.

3) scLO(Ic) < 0:
We select the job with the earliest deadline in RHI(t).
There is not enough available LO criticality spare ca-
pacity in the current interval to complete remaining LO
criticality jobs and hence, they are skipped. Figure 2(c)
illustrates this situation with an example.

c) R(t) 6= {} ∧ scHI(Ic) = 0:

1) scLO(Ic) > 0:
The job with the earliest deadline in RHI(t) is selected
because we have to execute a HI criticality job to
guarantee completion with CAs’ assumptions. Figure
2(d) illustrates this situation with an example.

2) scLO(Ic) ≤ 0:
We select job with the earliest deadline in RHI(t)
because of the reasons mentioned in case c1. Figure
2(e) illustrates this situation with an example.

d) R(t) 6= {}∧ scHI(Ic) < 0: The HI criticality spare capacity
cannot be less than zero. This could only happen if we
execute a HI criticality job Ji for more than Ci(HI) which
we assume is prevented by the system.

B. Spare Capacity Maintenance

As a consequence of the process to select the next executing
job, we have to update the spare capacities depending on the
criticality level and type of the job.

No execution: If an idle slot has been scheduled, we decrease
both scLO(Ic) and scHI(Ic) by one slot.

Guaranteed job execution: If a guaranteed job Ji, either TT
or firm ET, has been scheduled, then we have to differentiate
whether Ji is assigned to the current interval Ic or to a
later interval Ik. Further, the fact whether a HI criticality
job exceeded C(LO), i.e. showed HI behavior, influences the
maintenance of spare capacities.

A) Ji ∈ Ic
1) Ji did not exceed Ci(LO):

In both spare capacity calculations, scLO(Ic) and
scHI(Ic), the scheduled demand has already been con-
sidered and hence, both spare capacities in the current
interval remain unchanged.

2) Ji exceeded Ci(LO):
As the job executes for more than the considered
amount of LO criticality execution time, we have to
decrease the LO criticality spare capacity in the cur-
rent interval by one slot. On the contrary, for the HI
criticality spare capacity scHI(Ic), this scheduled exe-
cution has already been considered and thus, scHI(Ic)
is unchanged.

B) Ji ∈ Ik with Ik 6= Ic
1. Ji did not exceed Ci(LO):

The scheduled demand has not been considered in
scLO(Ic). As a consequence, we decrease scLO(Ic) by
one slot. Additionally, we increase scLO(Ik) where the
demand has been originally considered in the spare

capacity calculations. In other words, one slot of ex-
ecution is swapped between the current interval Ic and
the assigned job interval Ik.
Furthermore, there is the aspect of borrowing which
has to be considered: If scLO(Ik) was less than zero
before increasing by one in the current step, then Ik was
borrowing capacity from at least one earlier interval.
Thus, we have to increase the spare capacities by one
if there was borrowing or borrowing propagation in one
or several of the intervals from Ic to Ik−1.
For the HI criticality spare capacities, we have to apply
the same procedure as for the LO criticality ones.

2. Ji exceeded Ci(LO):
The demand has not been considered in the LO critical-
ity spare capacities, neither in scLO(Ic) nor in scLO(Ik).
Thus, only the spare capacity in the current interval
scLO(Ic) is decreased by one.
For the HI criticality spare capacities, we have to apply
the same procedures as in step B1; which are:
The scheduled demand has not been considered in
scHI(Ic) and thus, we have to decrease scHI(Ic) by
one slot. Further, scHI(Ik), where the demand has been
originally considered, is increased by one.
Still, there may be the aspect of borrowing which has
to be considered: If scHI(Ik) was less than zero before
increasing by one in the current step, then Ik was
borrowing capacity from at least one earlier interval.
Thus, we have to increase the spare capacities by one
if there was borrowing or borrowing propagation in one
or several of the intervals from Ic to Ik−1.

After execution of a job in the current slot and before
the scheduling process continues in the next slot, we have to
compare the actual execution time of the job with the WCET
for the LO and the HI criticality case if the job finished in the
current slot. If TT jobs complete earlier than their specified
WCET (C(LO) for LO and C(HI) for HI criticality spare
capacities), the difference between actual execution time and
specified WCET can be added to the spare capacities of the
corresponding intervals, as shown in [4].

As a conclusion, we can make efficient use of the available
resources by the update mechanism presented above. Further,
the LO criticality and HI criticality spare capacities allow for
flexibility to react to the actual job behavior.

V. DISCUSSION

In contrast to [1], there is no need to construct two schedule
tables for the different requirements of the designer and the
CAs. We only need to calculate two sets of spare capacities
for the existing intervals whereas the intervals are identical
for designer’s and CAs’ assumptions. At runtime, the certified
schedule table is unchanged. Based on the spare capacities the
runtime mechanism handles the requirements of LO and HI
criticality jobs within the constraints of the offline computed,
certified schedule table. This simplifies offline preparation and
certification.

The runtime overhead of slot-shifting has been compared
to Linux’ Completely Fair Scheduler and Litmus RT, with the
conclusion that the overhead of slot-shifting is in the same
order as the reference schedulers [5]. The necessary changes

to extend the implemented slot-shifting version to our mixed
criticality slot-shifting affect only the selection of the next
job to execute and the update of the spare capacities. In both
job selection and spare capacity update, only a second spare
capacity has to be checked and updated, respectively.

The presented algorithm can be easily applied to resume
the LO criticality state after a switch to HI. The available
spare capacities are used to execute HI criticality jobs that
exceed the WCET based on the designer assumptions such
that we do not need to drop LO criticality jobs as long as
there are enough spare capacities available to not harm the
execution of HI criticality jobs. If there are no spare capacities
left, we continue the execution with the restricted job set of
only HI criticality jobs to guarantee them. The maintenance
of spare capacities within the capacity intervals allows for
switching back to the LO criticality system state as soon as
we can guarantee the execution of all jobs based on designer
assumptions. This is achieved by updating the LO criticality
spare capacities although only HI criticality jobs are executed.
The LO criticality spare capacities indicate the point in time
when the WCET of LO criticality jobs can be guaranteed for
them, again. The maximum number of spare capacity updates
per slot occurs when there is borrowing propagation and hence,
is bounded by the number of jobs. This is based on the fact
that job deadlines refer to end of intervals. More intervals
than jobs are only possible if there are empty intervals but
empty intervals are not affected by borrowing and borrowing
propagation. As a consequence, the complexity of the selection
function and the spare capacity maintenance can be bounded
by a linear function.

As a result, we can make use of TT legacy systems and add
flexibility without harming certified schedule tables at runtime.
Additionally, the implementation of slot-shifting shows an
applicable runtime overhead such that slot-shifting represents
a valid choice for safety-critical TT legacy systems with mixed
criticality job sets.

VI. CONCLUSION

In this paper, we have presented a method for including
mixed criticality real-time scheduling following the model of
[7] to legacy TT systems. Earlier results for TT systems [1]
require the offline construction of two coordinated schedule
tables from scratch for mixed criticality task sets. In case
a schedule table already exists and has been certified, this
approach, necessitates complete recertification.

In contrast, the method presented in this paper takes an
existing schedule table and the properties of the HI criticality
job set as input. It performs analyses and provides a simple
online mechanisms to include additional criticality job sets.
The jobs of the original schedule table are executed as before.
When a change of criticality arises, the online mechanism
manages it, and then continues to execute the HI criticality
jobs. In case the existing schedule table is not suitable for the
given mixed criticality job set, indications for its modification
can be given. While in this case recertification may become
necessary, the efforts will be lower than reconstruction of the
schedule table from scratch.

Future work will include analysis of the existing work
regarding limitations of the presented method and comparison

to pure TT and ET approaches. Additionally, the inclusion
of aperiodic jobs will be in the focus of our work. Further,
the extension to arbitrary criticality levels will be included in
future research.

REFERENCES

[1] Sanjoy Baruah and Gerhard Fohler. Certification-cognizant time-
triggered scheduling of mixed-criticality systems. In Real-Time Systems
Symposium, 2011.

[2] Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. Algorithms
and complexity concerning the preemptive scheduling of periodic, real-
time tasks on one processor. Real-Time Systems Journal, 1990.

[3] Gerhard Fohler. Joint scheduling of distributed complex periodic and
hard aperiodic tasks in statically scheduled systems. Real-Time Systems
Symposium, 1995.

[4] Damir Isovic and Gerhard Fohler. Handling mixed sets of tasks in
combined offline and online scheduled real-time systems. Real-Time
Systems Journal, 2009.

[5] Stefan Schorr and Gerhard Fohler. Integrated time- and event-triggered
scheduling an overhead analysis on the arm architecture. In Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, 2013.

[6] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga.
Mixed critical earliest deadline first. In Euromicro Conference on Real-
Time Systems, 2013.

[7] Steve Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. Real-Time Systems Sympo-
sium, 2007.

